Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 101: 117638, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38394996

RESUMO

As a result of our continued efforts to pursue Gal-3 inhibitors that could be used to fully evaluate the potential of Gal-3 as a therapeutic target, two novel series of benzothiazole derived monosaccharides as potent (against both human and mouse Gal-3) and orally bioavailable Gal-3 inhibitors, represented by 4 and 5, respectively, were identified. These discoveries were made based on proposals that the benzothiazole sulfur atom could interact with the carbonyl oxygen of G182/G196 in h/mGal-3, and that the anomeric triazole moiety could be modified into an N-methyl carboxamide functionality. The interaction between the benzothiazole sulfur and the carbonyl oxygen of G196 in mGal-3 was confirmed by an X-ray co-crystal structure of early lead 9, providing a rare example of using a S···O binding interaction for drug design. It was found that for both the series, methylation of 3-OH in the monosaccharides caused no loss in h & mGal-3 potencies but significantly improved permeability of the molecules.


Assuntos
Galectina 3 , Monossacarídeos , Animais , Humanos , Camundongos , Benzotiazóis/química , Benzotiazóis/farmacologia , Desenho de Fármacos , Galectina 3/antagonistas & inibidores , Galectinas/antagonistas & inibidores , Monossacarídeos/química , Monossacarídeos/farmacologia , Oxigênio , Enxofre
2.
Heart Vessels ; 39(1): 86-94, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37537380

RESUMO

Patients with heart failure (HF) are at a higher risk of rehospitalisation. In this study, we investigated the prognostic utility of galectin-3 (Gal-3) and NT-proBNP fragments (1-76aa and 13-71aa) as biomarkers to predict outcomes for patients with HF. We collected blood samples from patients with HF (n = 101). Gal-3 and NT-proBNP fragments (1-76aa and 13-71aa) concentrations were measured by immunoassay. Survival analysis and Cox proportional regression models were used to determine the prognostic utility of Gal-3 and NT-proBNP fragments. In patients with increased baseline levels of NT-proBNP1-76 the time to primary endpoint (cardiovascular death or re-hospitalisation) was significantly shorter (p = 0.0058), but not in patient with increased baseline levels of Gal-3 or NTproBNP13-71. Patients with increased levels of NT-proBNP13-71aa at 1 month showed reduced time to the primary endpoint (p = 0.0123). Our findings demonstrated that Gal-3 and NT-proBNP can be used as prognostic biomarkers to stratify patients with HF.


Assuntos
Galectina 3 , Insuficiência Cardíaca , Humanos , Prognóstico , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Biomarcadores , Hospitalização
3.
Chem Biodivers ; 21(7): e202400104, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38588017

RESUMO

Diabetic nephropathy (DN) is a significant global health concern with a high morbidity rate. Accumulating evidence reveals that Galectin-3 (Gal-3), a ß-galactoside-binding lectin, is a biomarker in kidney diseases. Our study aimed to assess the advantageous impacts of modified citrus pectin (MCP) as an alternative therapeutic strategy for the initial and ongoing progression of DN in mice with type 2 diabetes mellitus (T2DM). The animal model has been split into four groups: control group, T2DM group (mice received intraperitoneal injections of nicotinamide (NA) and streptozotocin (STZ), T2DM+MCP group (mice received 100 mg/kg/day MCP following T2DM induction), and MCP group (mice received 100 mg/kg/day). After 4 weeks, kidney weight, blood glucose level, serum kidney function tests, histopathological structure alterations, oxidative stress, inflammation, apoptosis, and fibrosis parameters were determined in renal tissues. Our findings demonstrated that MCP treatment reduced blood glucose levels, renal histological damage, and restored kidney weight and kidney function tests. Additionally, MCP reduced malondialdehyde level and restored glutathione level, and catalase activity. MCP demonstrated a notable reduction in inflammatory and apoptosis mediators TNF-α, iNOS, TGF-ßRII and caspase-3. Overall, MCP could alleviate renal injury in an experimental model of DN by suppressing renal oxidative stress, inflammation, fibrosis, and apoptosis mediators.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Pectinas , Animais , Masculino , Camundongos , Apoptose/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Glicemia/análise , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pectinas/farmacologia , Pectinas/química , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química , Estreptozocina , Galectina 3/química , Galectina 3/farmacologia
4.
Environ Toxicol ; 39(7): 3779-3789, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38488668

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer with known neurotoxic effects. However, the specific mechanism underlying this neurotoxicity remains unclear. This study aimed to investigate the role of lysosomal function and lysophagy in DEHP-induced neurotoxicity, with a particular focus on the regulatory role of Transcription factor EB (TFEB). To achieve this, we utilized in vitro models of DEHP-exposed SH-SY5Y cells and HT22 cells. Our findings revealed that DEHP exposure led to lysosomal damage and dysfunction. Moreover, we observed impaired autophagic degradation, characterized by elevated levels of LC3II and p62. DEHP treatment downregulated the expression of TFEB, GAL3, and TRIM16, while upregulating the expression of PARP. This led to the inhibition of GAL3/TRIM16 axis dependent lysophagy and ultimately excessive apoptosis in neuronal cells. Importantly, TFEB overexpression alleviated lysosomal dysfunction, activated lysophagy, and mitigated DEHP-induced apoptosis. Overall, our results suggest that DEHP induces not only lysosomal dysfunction, but also inhibits lysophagy through the suppression of GAL3/TRIM16 axis. Consequently, impaired clearance of damaged lysosomes occurs, culminating in neuronal apoptosis. Taken together, our findings highlight the critical role of TFEB in regulating lysophagy and lysosomal function. Furthermore, TFEB may serve as a potential therapeutic target for mitigating DEHP-induced neuronal toxicity.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Dietilexilftalato , Lisossomos , Ubiquitina-Proteína Ligases , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Humanos , Dietilexilftalato/toxicidade , Autofagia/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Apoptose/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Camundongos , Plastificantes/toxicidade , Linhagem Celular Tumoral , Linhagem Celular
5.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000386

RESUMO

Cholangiocarcinoma (CCA), or bile duct cancer, is the second most common liver malignancy, with an increasing incidence in Western countries. The lack of effective treatments associated with the absence of early symptoms highlights the need to search for new therapeutic targets for CCA. Sulfatides (STs), a type of sulfoglycosphingolipids, have been found in the biliary tract, with increased levels in CCA and other types of cancer. STs are involved in protein trafficking and cell adhesion as part of the lipid rafts of the plasma membrane. We aimed to study the role of STs in CCA by the genetic targeting of GAL3ST1, an enzyme involved in ST synthesis. We used the CRISPR-Cas9 system to generate GAL3ST1-deficient TFK1 cells. GAL3ST1 KO cells showed lower proliferation and clonogenic activity and reduced glycolytic activity compared to TFK1 cells. Polarized TFK1 GAL3ST1 KO cells displayed increased transepithelial resistance and reduced permeability compared to TFK1 wt cells. The loss of GAL3ST1 showed a negative effect on growth in 30 out of 34 biliary tract cancer cell lines from the DepMap database. GAL3ST1 deficiency partially restored epithelial identity and barrier function and reduced proliferative activity in CCA cells. Sulfatide synthesis may provide a novel therapeutic target for CCA.


Assuntos
Neoplasias dos Ductos Biliares , Proliferação de Células , Colangiocarcinoma , Transição Epitelial-Mesenquimal , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Colangiocarcinoma/genética , Humanos , Transição Epitelial-Mesenquimal/genética , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/genética , Linhagem Celular Tumoral , Sulfotransferases/metabolismo , Sulfotransferases/genética , Sulfotransferases/deficiência , Sulfoglicoesfingolipídeos/metabolismo , Sistemas CRISPR-Cas , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia
6.
Biol Proced Online ; 25(1): 30, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017376

RESUMO

BACKGROUND: Ischemic stroke (IS) occurs when a blood vessel supplying the brain becomes obstructed, resulting in cerebral ischemia. This type of stroke accounts for approximately 87% of all strokes. Globally, IS leads to high mortality and poor prognosis and is associated with neuroinflammation and neuronal apoptosis. D-allose is a bio-substrate of glucose that is widely expressed in many plants. Our previous study showed that D-allose exerted neuroprotective effects against acute cerebral ischemic/reperfusion (I/R) injury by reducing neuroinflammation. Here, we aimed to clarify the beneficial effects D-allose in suppressing IS-induced neuroinflammation damage, cytotoxicity, neuronal apoptosis and neurological deficits and the underlying mechanism in vitro and in vivo. METHODS: In vivo, an I/R model was induced by middle cerebral artery occlusion and reperfusion (MCAO/R) in C57BL/6 N mice, and D-allose was given by intraperitoneal injection within 5 min after reperfusion. In vitro, mouse hippocampal neuronal cells (HT-22) with oxygen-glucose deprivation and reperfusion (OGD/R) were established as a cell model of IS. Neurological scores, some cytokines, cytotoxicity and apoptosis in the brain and cell lines were measured. Moreover, Gal-3 short hairpin RNAs, lentiviruses and adeno-associated viruses were used to modulate Gal-3 expression in neurons in vitro and in vivo to reveal the molecular mechanism. RESULTS: D-allose alleviated cytotoxicity, including cell viability, LDH release and apoptosis, in HT-22 cells after OGD/R, which also alleviated brain injury, as indicated by lesion volume, brain edema, neuronal apoptosis, and neurological functional deficits, in a mouse model of I/R. Moreover, D-allose decreased the release of inflammatory factors, such as IL-1ß, IL-6 and TNF-α. Furthermore, the expression of Gal-3 was increased by I/R in wild-type mice and HT-22 cells, and this factor further bound to TLR4, as confirmed by three-dimensional structure prediction and Co-IP. Silencing the Gal-3 gene with shRNAs decreased the activation of TLR4 signaling and alleviated IS-induced neuroinflammation, apoptosis and brain injury. Importantly, the loss of Gal-3 enhanced the D-allose-mediated protection against I/R-induced HT-22 cell injury, inflammatory insults and apoptosis, whereas activation of TLR4 by the selective agonist LPS increased the degree of neuronal injury and abolished the protective effects of D-allose. CONCLUSIONS: In summary, D-allose plays a crucial role in inhibiting inflammation after IS by suppressing Gal-3/TLR4/PI3K/AKT signaling pathway in vitro and in vivo.

7.
Mol Ecol ; 32(13): 3557-3574, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37052375

RESUMO

Optimized nutrient utilization is crucial for the progression of microorganisms in competing communities. Here we investigate how different budding yeast species and ecological isolates have established divergent preferences for two alternative sugar substrates: Glucose, which is fermented preferentially by yeast, and galactose, which is alternatively used upon induction of the relevant GAL metabolic genes. We quantified the dose-dependent induction of the GAL1 gene encoding the central galactokinase enzyme and found that a very large diversification exists between different yeast ecotypes and species. The sensitivity of GAL1 induction correlates with the growth performance of the respective yeasts with the alternative sugar. We further define some of the mechanisms, which have established different glucose/galactose consumption strategies in representative yeast strains by modulating the activity of the Gal3 inducer. (1) Optimal galactose consumers, such as Saccharomyces uvarum, contain a hyperactive GAL3 promoter, sustaining highly sensitive GAL1 expression, which is not further improved upon repetitive galactose encounters. (2) Desensitized galactose consumers, such as S. cerevisiae Y12, contain a less sensitive Gal3 sensor, causing a shift of the galactose response towards higher sugar concentrations even in galactose experienced cells. (3) Galactose insensitive sugar consumers, such as S. cerevisiae DBVPG6044, contain an interrupted GAL3 gene, causing extremely reluctant galactose consumption, which is, however, improved upon repeated galactose availability. In summary, different yeast strains and natural isolates have evolved galactose utilization strategies, which cover the whole range of possible sensitivities by modulating the expression and/or activity of the inducible galactose sensor Gal3.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Açúcares/metabolismo , Galactose/genética , Galactose/metabolismo , Genes Fúngicos , Glucose/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Acta Neuropathol ; 146(1): 51-75, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37202527

RESUMO

Parkinson's Disease (PD) is a neurodegenerative and progressive disorder characterised by intracytoplasmic inclusions called Lewy bodies (LB) and degeneration of dopaminergic neurons in the substantia nigra (SN). Aggregated α-synuclein (αSYN) is known to be the main component of the LB. It has also been reported to interact with several proteins and organelles. Galectin-3 (GAL3) is known to have a detrimental function in neurodegenerative diseases. It is a galactose-binding protein without known catalytic activity and is expressed mainly by activated microglial cells in the central nervous system (CNS). GAL3 has been previously found in the outer layer of the LB in post-mortem brains. However, the role of GAL3 in PD is yet to be elucidated. In post-mortem samples, we identified an association between GAL3 and LB in all the PD subjects studied. GAL3 was linked to less αSYN in the LB outer layer and other αSYN deposits, including pale bodies. GAL3 was also associated with disrupted lysosomes. In vitro studies demonstrate that exogenous recombinant Gal3 is internalised by neuronal cell lines and primary neurons where it interacts with endogenous αSyn fibrils. In addition, aggregation experiments show that Gal3 affects spatial propagation and the stability of pre-formed αSyn fibrils resulting in short, amorphous toxic strains. To further investigate these observations in vivo, we take advantage of WT and Gal3KO mice subjected to intranigral injection of adenovirus overexpressing human αSyn as a PD model. In line with our in vitro studies, under these conditions, genetic deletion of GAL3 leads to increased intracellular αSyn accumulation within dopaminergic neurons and remarkably preserved dopaminergic integrity and motor function. Overall, our data suggest a prominent role for GAL3 in the aggregation process of αSYN and LB formation, leading to the production of short species to the detriment of larger strains which triggers neuronal degeneration in a mouse model of PD.


Assuntos
Galectina 3 , Doença de Parkinson , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos/metabolismo , Galectina 3/metabolismo , Corpos de Lewy/metabolismo , Doença de Parkinson/metabolismo
9.
Anim Biotechnol ; 34(3): 672-678, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35001788

RESUMO

Copy number variation (CNV) is a type of genomic structural variation, and the research on it has flourished in recent years. According to the high-throughput sequencing data, we found that the copy number variation region of the GAL3ST1 gene was correlated with the growth traits of bovine. It is significant that we study the CNV of GAL3ST1 gene and process the association analysis between results of Q-PCR and growth traits of Chinese cattle. In this research, SPSS software was used to detect the distribution of GAL3ST1 gene copy number in four cattle breeds and the correlation of growth traits was analyzed. Correlation analysis showed that GAL3ST1 CNV had positive effects on some growth traits of bovine (p < 0.05). In addition, the study detects the expression of GAL3ST1 gene in different tissues of Xia'nan cattles on mRNA level. The result showed that GAL3ST1 gene has different expression conditions in different tissues, results showed that the expression level was high in intestine and low in liver tissue. In a word, we speculated that the GAL3ST1 gene can be used as a molecular marker and this study confirmed that the CNV of it can provide theoretical basis for molecular breeding of cattle in China.


Assuntos
Variações do Número de Cópias de DNA , Animais , Bovinos/genética , Variações do Número de Cópias de DNA/genética , Fenótipo , Dosagem de Genes , Peso Corporal/genética , China
10.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139047

RESUMO

Gangliosides are major glycans on vertebrate nerve cells, and their metabolic disruption results in congenital disorders with marked cognitive and motor deficits. The sialyltransferase gene St3gal2 is responsible for terminal sialylation of two prominent brain gangliosides in mammals, GD1a and GT1b. In this study, we analyzed the expression of calcium-binding interneurons in primary sensory (somatic, visual, and auditory) and motor areas of the neocortex, hippocampus, and striatum of St3gal2-null mice as well as St3gal3-null and St3gal2/3-double null. Immunohistochemistry with highly specific primary antibodies for GABA, parvalbumin, calretinin, and calbindin were used for interneuron detection. St3gal2-null mice had decreased expression of all three analyzed types of calcium-binding interneurons in all analyzed regions of the neocortex. These results implicate gangliosides GD1a and GT1b in the process of interneuron migration and maturation.


Assuntos
Cálcio , Neocórtex , Sialiltransferases , beta-Galactosídeo alfa-2,3-Sialiltransferase , Animais , Camundongos , Calbindina 2/metabolismo , Calbindinas/metabolismo , Cálcio/metabolismo , Gangliosídeos/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Mamíferos/metabolismo , Camundongos Knockout , Mutação , Neocórtex/metabolismo , Sialiltransferases/genética , Sialiltransferases/metabolismo , beta-Galactosídeo alfa-2,3-Sialiltransferase/genética , beta-Galactosídeo alfa-2,3-Sialiltransferase/metabolismo
11.
Molecules ; 28(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770718

RESUMO

Galectins are ß-galactosyl-binding proteins that fulfill essential physiological functions. In the biotechnological field, galectins are versatile tools, such as in the development of biomaterial coatings or the early-stage diagnosis of cancer diseases. Recently, we introduced galectin-1 (Gal-1) and galectin-3 (Gal-3) as fusion proteins of a His6-tag, a SNAP-tag, and a fluorescent protein. We characterized their binding in ELISA-type assays and their application in cell-surface binding. In the present study, we have constructed further fusion proteins of galectins with fluorescent protein color code. The fusion proteins of Gal-1, Gal-3, and Gal-8 were purified by affinity chromatography. For this, we have prepared glycoprotein affinity resins based on asialofetuin (ASF) and fetuin and combined this in a two-step purification with Immobilized Metal Affinity chromatography (IMAC) to get pure and active galectins. Purified galectin fractions were analyzed by size-exclusion chromatography. The binding characteristics to ASF of solely His6-tagged galectins and galectin fusion proteins were compared. As an example, we demonstrate a 1.6-3-fold increase in binding efficiency for HSYGal-3 (His6-SNAP-yellow fluorescent protein-Gal-3) compared to the HGal-3 (His6-Gal-3). Our results reveal an apparent higher binding efficiency for galectin SNAP-tag fusion proteins compared to His6-tagged galectins, which are independent of the purification mode. This is also demonstrated by the binding of galectin fusion proteins to extracellular glycoconjugates laminin, fibronectin, and collagen IV. Our results indicate the probable involvement of the SNAP-tag in apparently higher binding signals, which we discuss in this study.


Assuntos
Galectinas , Glicoproteínas , Galectinas/química , Glicoproteínas/metabolismo , Galectina 3/química , Membrana Celular/metabolismo , Ligação Proteica
12.
Pak J Med Sci ; 39(4): 1095-1100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492290

RESUMO

Objective: To investigate the correlation between GAL-3, Klotho, calcium and phosphorus indexes and cardiovascular complications in patients with chronic kidney disease (CKD). Methods: This is a retrospective study. Forty patients with CKD and cardiovascular complications admitted to the Affiliated Hospital of Hebei University from February 20, 2022 to February 20, 2023 were selected as the experimental group, and another 40 patients with CKD without cardiovascular complications were selected as the control group. The differences in serum Ca+2, PO- 4, GAL-3 and Klotho levels between the two groups were analyzed, and the correlations between the above indicators levels and creatinine levels were analyzed. The correlation between the above indicators levels and cardiac function classification was analyzed, and analyzed the risk factors of CKD complicated with cardiovascular complications. Results: The levels of Ca+2, PO- 4 and GAL-3 in the experimental group were significantly higher than those in the control group, while the level of Klotho was significantly lower than that in the control group. The levels of Ca+2 and PO- 4 were positively correlated with the level of Creatinine (Cr), while the level of Klotho was negatively correlated with the Cr. The levels of Ca+2 and PO- 4 were positively correlated with cardiac function classification, while the level of Klotho was negatively correlated with cardiac function classification. Logistic regression analysis showed that hypertension, BMI, Cr, Ca+2, PO- 4 and VLDL were risk factors for cardiovascular complications, and Klotho level was a protective factor. Conclusion: A positive correlation can be seen between the levels of Ca+2, PO- 4 and cardiac function classification in patients with CKD. Klotho is a protective factor for cardiovascular diseases.

13.
Cardiovasc Diabetol ; 21(1): 36, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277168

RESUMO

BACKGROUND: Soluble suppression of tumorigenesis-2 (sST2) and galectin (Gal)-3 are two biomarkers related to inflammation, metabolic disturbances and to myocardial fibrosis that characterize several cardiac pathological conditions. Increased circulating levels of these molecules have been associated with risk of cardiovascular death. Treatment with liraglutide, a glucagon-like peptide 1 analog, is associated with weight loss, improved glycemic control, and reduced cardiovascular risk. We wanted to assess (I) potential differences between subjects with prediabetes or type 2 diabetes mellitus (T2DM) and healthy controls in sST2 and Gal-3 circulating levels, and their relationship with glycemic control and markers of beta cell function and myocardial injury; (II) whether liraglutide treatment modulates these markers in subjects with prediabetes or early T2DM independently of weight loss; (III) whether baseline levels of any of these two molecules may predict the response to liraglutide treatment. METHODS: Forty metformin-treated obese subjects (BMI ≥ 30) with prediabetes [impaired fasting glucose (IFG) or impaired glucose tolerance (IGT) or both (n = 23)] or newly diagnosed T2DM (n = 17), were randomized to liraglutide or lifestyle counseling until achieving a comparable weight loss (7% of initial body weight). Thirteen subjects were enrolled as healthy controls for baseline sST2 and Gal-3 levels. RESULTS: Baseline sST2 levels were comparable between controls and obese patients (p = 0.79) whereas Gal-3 levels were significantly higher in patients as compared to controls (p < 0.001). Liraglutide treatment, but not weight loss achieved by lifestyle counseling, decreased plasma sST2 levels (- 9%, beta = - 14.9, standard deviation 6.9, p = 0.037) while Gal-3 levels did not change. A reduction in serum hs-Troponin I was observed after intervention, due to a 19% (p = 0.29) increase in the lifestyle arm, and a 25% decrease (p = 0.033) in the liraglutide arm (between-group difference p = 0.083). Lower baseline Gal-3 levels predicted a better improvement in beta cell function after liraglutide treatment. CONCLUSIONS: Liraglutide-induced reduction in sST2 and possibly hs-TnI suggests that in obese patients with prediabetes or early T2DM this drug may have a positive effect on (cardiac) fibrosis, whereas plasma level of Gal-3 before liraglutide initiation may predict response to the drug in terms of beta cell function improvement. Trial registration Eudract: 2013-001356-36.


Assuntos
Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Galectina 3/uso terapêutico , Humanos , Hipoglicemiantes/efeitos adversos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Estilo de Vida , Liraglutida/efeitos adversos , Obesidade/diagnóstico , Obesidade/tratamento farmacológico , Estado Pré-Diabético/diagnóstico , Estado Pré-Diabético/tratamento farmacológico , Redução de Peso
14.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555552

RESUMO

The "iron hypothesis" of atherosclerosis has long been controversial. Several studies have shown that dietary iron restriction or low-iron diets can effectively alleviate atherosclerosis in rabbits and mice. However, the underlying molecular mechanisms of these phenomena remain to be elucidated. In this study, we further evaluated possible correlations between a low-iron diet and atherosclerosis alleviation by using a quantitative proteomic approach. For this purpose, apolipoprotein E knockout (ApoE KO) mice were divided into three groups and fed a normal diet (ND), a high-fat diet (HFD), or a high-fat +low-iron diet (HFD + LI). Our results showed that the HFD-LI improved atherosclerosis by decreasing en face lesions of the aorta and reducing the accumulation of macrophages and disordered smooth muscle cells. HFD-LI also decreased iron levels, serum hepcidin levels and the serum concentration of low-density lipoprotein cholesterol (LDL-C). The use of the isobaric tag for absolute quantification (iTRAQ) proteomic method and subsequent multi-technique molecular validation indicated that many of the proteins involved in atherosclerotic inflammation, vascular remodeling, and focal adhesion had significant changes in their expression among the diet groups. Importantly, the proteins Gal-3 and VCAM1, which are key participants of atherosclerosis pathogenesis, revealed lower expression after a low-iron diet. The present findings widely support the "iron hypothesis" of atherosclerosis. Further studies are suggested to fully understand the implications of these results.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Coelhos , Aterosclerose/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ferro , Camundongos Endogâmicos C57BL , Placa Aterosclerótica/patologia , Proteômica , Camundongos Knockout para ApoE
15.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232314

RESUMO

Advancements in medicine have increased the longevity of humans, resulting in a higher incidence of chronic diseases. Due to the rise in the elderly population, age-dependent neurodegenerative disorders are becoming increasingly prevalent. The available treatment options only provide symptomatic relief and do not cure the underlying cause of the disease. Therefore, it has become imperative to discover new markers and therapies to modulate the course of disease progression and develop better treatment options for the affected individuals. Growing evidence indicates that neuroinflammation is a common factor and one of the main inducers of neuronal damage and degeneration. Galectins (Gals) are a class of ß-galactoside-binding proteins (lectins) ubiquitously expressed in almost all vital organs. Gals modulate various cellular responses and regulate significant biological functions, including immune response, proliferation, differentiation, migration, and cell growth, through their interaction with glycoproteins and glycolipids. In recent years, extensive research has been conducted on the Gal superfamily, with Gal-1, Gal-3, and Gal-9 in prime focus. Their roles have been described in modulating neuroinflammation and neurodegenerative processes. In this review, we discuss the role of Gals in the causation and progression of neurodegenerative disorders. We describe the role of Gals in microglia and astrocyte modulation, along with their pro- and anti-inflammatory functions. In addition, we discuss the potential use of Gals as a novel therapeutic target for neuroinflammation and restoring tissue damage in neurodegenerative diseases.


Assuntos
Galectinas , Doenças Neurodegenerativas , Idoso , Anti-Inflamatórios , Galectinas/metabolismo , Glicolipídeos , Humanos , Microglia/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico
16.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806317

RESUMO

Galectin-3 binding protein (Gal-3BP) is a multifunctional glycoprotein involved in cell-cell and cell-matrix interactions known to be upregulated in cancer and various viral infections, including HIV-1, HCV, and SARS-CoV-2, with a key role in regulating the antiviral immune response. Studies have identified a direct correlation between circulating levels of Gal-3BP and the severity of disease and/or disease progression for some viral infections, including SARS-CoV-2, suggesting a role of Gal-3BP in these processes. Due to Gal-3BP's complex biology, the molecular mechanisms underlying its role in viral diseases have been only partially clarified. Gal-3BP induces the expression of interferons (IFNs) and proinflammatory cytokines, including interleukin-6 (IL-6), mainly interacting with galectin-3, targeting the TNF receptor-associated factors (TRAF-6 and TRAF-3) complex, thus having a putative role in the modulation of TGF-ß signaling. In addition, an antiviral activity of Gal-3BP has been ascribed to a direct interaction of the protein with virus components. In this review, we explored the role of Gal-3BP in viral infections and the relationship between Gal-3BP upregulation and disease severity and progression, mainly focusing on SARS-CoV-2. Augmented knowledge of Gal-3BP's role in virus infections can be useful to evaluate its possible use as a prognostic biomarker and as a putative target to block or attenuate severe disease.


Assuntos
COVID-19 , Viroses , Antivirais , Galectina 3/metabolismo , Humanos , SARS-CoV-2
17.
J Biol Chem ; 295(11): 3678-3691, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31996371

RESUMO

Alzheimer's disease (AD) is the most common type of dementia, and its pathogenesis is associated with accumulation of ß-amyloid (Aß) peptides. Aß is produced from amyloid precursor protein (APP) that is sequentially cleaved by ß- and γ-secretases. Therefore, APP processing has been a target in therapeutic strategies for managing AD; however, no effective treatment of AD patients is currently available. Here, to identify endogenous factors that modulate Aß production, we performed a gene microarray-based transcriptome analysis of neuronal cells derived from human induced pluripotent stem cells, because Aß production in these cells changes during neuronal differentiation. We found that expression of the glycophosphatidylinositol-specific phospholipase D1 (GPLD1) gene is associated with these changes in Aß production. GPLD1 overexpression in HEK293 cells increased the secretion of galectin 3-binding protein (GAL3BP), which suppressed Aß production in an AD model, neuroglioma H4 cells. Mechanistically, GAL3BP suppressed Aß production by directly interacting with APP and thereby inhibiting APP processing by ß-secretase. Furthermore, we show that cells take up extracellularly added GAL3BP via endocytosis and that GAL3BP is localized in close proximity to APP in endosomes where amyloidogenic APP processing takes place. Taken together, our results indicate that GAL3BP may be a suitable target of AD-modifying drugs in future therapeutic strategies for managing AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Comunicação Autócrina , Diferenciação Celular , Linhagem Celular , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Comunicação Parácrina , Fosfolipase D/metabolismo , Ligação Proteica
18.
Heart Fail Rev ; 26(4): 799-812, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32472523

RESUMO

The objective was to evaluate the diagnosis of heart failure with preserved ejection fraction (HFpEF) using the biomarkers, growth differentiation factor-15 (GDF-15), galectin-3 (Gal-3), and soluble ST2 (sST2), and to determine whether they can differentiate HFpEF from heart failure with reduced ejection fraction (HFrEF). Medline and Embase databases were searched with the terms diastolic heart failure or HFpEF, biomarkers, and diagnosis, limited to years 2000 to 2019. There were significantly and consistently higher levels of GDF-15, Gal-3, and sST2 in HFpEF compared to no heart failure. Importantly, the magnitude of the increase in GDF-15 or Gal-3 and possibly sST2,correlated with a greater degree of diastolic dysfunction. There were no significant differences between GDF-15, Gal-3, and sST2 in patients with HFpEF vs HFrEF. In the studies assessing these three biomarkers, BNP was significantly greater in heart failure than controls. Furthermore, BNP was significantly higher in HFrEF compared to HFpEF. The diagnostic utility of GDF-15, Gal-3, and sST2 compared to BNP was evaluated by comparing ROC curves. The data supports the contention that to distinguish HFpEF from HFrEF, an index is needed that incorporates GDF-15, Gal-3, or sST2 as well as BNP. The three biomarkers GDF-15, Gal-3, or sST2 can identify patients with HFpEF compared to individuals without heart failure but cannot differentiate HFpEF from HFrEF. BNP is higher in and is better at differentiating HFrEF from HFpEF. Indices that incorporate GDF-15, Gal-3, or sST2 as well as BNP show promise in differentiating HFpEF from HFrEF.


Assuntos
Biomarcadores/sangue , Insuficiência Cardíaca , Proteínas Sanguíneas , Galectina 3/sangue , Galectinas , Fator 15 de Diferenciação de Crescimento/sangue , Insuficiência Cardíaca/diagnóstico , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/sangue , Volume Sistólico
19.
Mol Biol Rep ; 48(7): 5699-5705, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34241773

RESUMO

BACKGROUND: Galectin-3 is part of a protein group called lectins and acts as a multifunctional glycoprotein due to its expression location. Galectin-3 is expressed by different human tissues. It plays a significant role in carcinogenesis and the selection of tumor-related physiological and pathological activities. Galectin-3 has been utilized through the years as a diagnostic and prognostic marker for various types of cancers. METHODS AND RESULTS: This review describes the outcomes of some studies on the matter that were selected appropriately through a review of the existing literature. These studies examined the levels of Galectin-3 expression in endometrial carcinomas, the outcomes, and the prognosis of these carcinomas. Two of the studies concluded that high expression of Galectin-3 is associated with a tumor's histological grade, type and depth. This enhanced nuclear Galectin-3 expression might assist in progression to atypia and neoplasia. The other three on the contrary concluded that malignant tumors had a decreased expression of Galectin-3 and that Galectin-3 played a suppressive role in tumor growth. CONCLUSIONS: The part Galectin-3 might potentially have in metastasis of cancers and the offering of a better prognosis for patients is of high importance. To date, there is minimal literature regarding the effects of Galectin-3 and more research is required.


Assuntos
Proteínas Sanguíneas/genética , Suscetibilidade a Doenças , Neoplasias do Endométrio/etiologia , Neoplasias do Endométrio/metabolismo , Galectinas/genética , Regulação Neoplásica da Expressão Gênica , Biomarcadores , Proteínas Sanguíneas/metabolismo , Gerenciamento Clínico , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/terapia , Feminino , Galectinas/metabolismo , Humanos , Transdução de Sinais
20.
Inflammopharmacology ; 29(1): 205-219, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32356088

RESUMO

Gentianella acuta (G. acuta), as a folk medicine, was used to treat heart disease by the Ewenki people in Inner Mongolia. However, the effect of G. acuta on acute myocardial infarction (AMI) is not clear. To explore the mechanisms of G. acuta on isoproterenol (ISO)-induced AMI, rats were administered G. acuta for 28 days, then injected intraperitoneally with ISO (85 mg/kg) on days 29 and 30. An electrocardiogram helped to evaluate the myocardial injury. Serum lactate dehydrogenase (LDH), creatinine kinase (CK) and aspartate aminotransferase (AST) levels were evaluated, and haematoxylin eosin, Masson's trichrome staining and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining were used to detect myocardial histological changes. Radioimmunoassay was used to measure serum tumour necrosis factor alpha (TNFα) and interleukin (IL)-6. An enzyme-linked immunosorbent assay kit was used to analyse serum galectin-3 (Gal-3) levels. Immunohistochemistry, Western blotting and reverse transcription polymerase chain reaction were used to examine relevant molecular events. The results revealed that pre-treatment with G. acuta decreased the elevation in the ST segment; reduced serum LDH, CK and AST levels; alleviated cardiac structure disorder; and reduced inflammatory infiltration, abnormal collagen deposition and cardiomyocyte apoptosis that were induced by ISO. Furthermore, pre-treatment with G. acuta inhibited serum Gal-3 levels and Gal-3 expression in heart tissue, and also impeded TLR4/MyD88/NF-кB signalling activation, which ultimately prevented the expression of inflammatory cytokines. The study indicated that pre-treatment with G. acuta protects against ISO-induced AMI, and the protective role may be related to inhibiting Gal-3/TLR4/MyD88/NF-кB inflammatory signalling.


Assuntos
Cardiotônicos/farmacologia , Gentianella/química , Infarto do Miocárdio/prevenção & controle , Extratos Vegetais/farmacologia , Animais , Apoptose/efeitos dos fármacos , Cardiotônicos/isolamento & purificação , Citocinas/metabolismo , Galectina 3/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Isoproterenol/toxicidade , Masculino , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA