Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 984
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(23): e2316971121, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38809703

RESUMO

Assessing within-species variation in response to drought is crucial for predicting species' responses to climate change and informing restoration and conservation efforts, yet experimental data are lacking for the vast majority of tropical tree species. We assessed intraspecific variation in response to water availability across a strong rainfall gradient for 16 tropical tree species using reciprocal transplant and common garden field experiments, along with measurements of gene flow and key functional traits linked to drought resistance. Although drought resistance varies widely among species in these forests, we found little evidence for within-species variation in drought resistance. For the majority of functional traits measured, we detected no significant intraspecific variation. The few traits that did vary significantly between drier and wetter origins of the same species all showed relationships opposite to expectations based on drought stress. Furthermore, seedlings of the same species originating from drier and wetter sites performed equally well under drought conditions in the common garden experiment and at the driest transplant site. However, contrary to expectation, wetter-origin seedlings survived better than drier-origin seedlings under wetter conditions in both the reciprocal transplant and common garden experiment, potentially due to lower insect herbivory. Our study provides the most comprehensive picture to date of intraspecific variation in tropical tree species' responses to water availability. Our findings suggest that while drought plays an important role in shaping species composition across moist tropical forests, its influence on within-species variation is limited.


Assuntos
Secas , Chuva , Árvores , Clima Tropical , Árvores/fisiologia , Mudança Climática , Água/metabolismo , Plântula/genética , Plântula/fisiologia , Especificidade da Espécie , Florestas , Fluxo Gênico , Resistência à Seca
2.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38581421

RESUMO

Boolean models of gene regulatory networks (GRNs) have gained widespread traction as they can easily recapitulate cellular phenotypes via their attractor states. Their overall dynamics are embodied in a state transition graph (STG). Indeed, two Boolean networks (BNs) with the same network structure and attractors can have drastically different STGs depending on the type of Boolean functions (BFs) employed. Our objective here is to systematically delineate the effects of different classes of BFs on the structural features of the STG of reconstructed Boolean GRNs while keeping network structure and biological attractors fixed, and explore the characteristics of BFs that drive those features. Using $10$ reconstructed Boolean GRNs, we generate ensembles that differ in BFs and compute from their STGs the dynamics' rate of contraction or 'bushiness' and rate of 'convergence', quantified with measures inspired from cellular automata (CA) that are based on the garden-of-Eden (GoE) states. We find that biologically meaningful BFs lead to higher STG 'bushiness' and 'convergence' than random ones. Obtaining such 'global' measures gets computationally expensive with larger network sizes, stressing the need for feasible proxies. So we adapt Wuensche's $Z$-parameter in CA to BFs in BNs and provide four natural variants, which, along with the average sensitivity of BFs computed at the network level, comprise our descriptors of local dynamics and we find some of them to be good proxies for bushiness. Finally, we provide an excellent proxy for the 'convergence' based on computing transient lengths originating at random states rather than GoE states.


Assuntos
Algoritmos , Modelos Genéticos , Redes Reguladoras de Genes , Autômato Celular
3.
Proc Natl Acad Sci U S A ; 119(18): e2107584119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476511

RESUMO

The extent to which evolution can rescue a species from extinction, or facilitate range expansion, depends critically on the rate, duration, and geographical extent of the evolutionary response to natural selection. Adaptive evolution can occur quickly, but the duration and geographical extent of contemporary evolution in natural systems remain poorly studied. This is particularly true for species with large geographical ranges and for timescales that lie between "long-term" field experiments and the fossil record. Here, we introduce the Virtual Common Garden (VCG) to investigate phenotypic evolution in natural history collections while controlling for phenotypic plasticity in response to local growing conditions. Reconstructing 150 y of evolution in Lythrum salicaria (purple loosestrife) as it invaded North America, we analyze phenology measurements of 3,429 herbarium records, reconstruct growing conditions from more than 12 million local temperature records, and validate predictions across three common gardens spanning 10° of latitude. We find that phenological clines have evolved repeatedly throughout the range, during the first century of evolution. Thereafter, the rate of microevolution stalls, recapitulating macroevolutionary stasis observed in the fossil record. Our study demonstrates that preserved specimens are a critical resource for investigating limits to evolution in natural populations. Our results show how natural selection and trade-offs measured in field studies predict adaptive divergence observable in herbarium specimens over 15 decades at a continental scale.


Assuntos
Evolução Biológica , Fósseis , Adaptação Fisiológica/genética , Plantas , Reprodução
4.
Mol Biol Evol ; 40(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37738160

RESUMO

The evolution of gene expression is thought to be an important mechanism of local adaptation and ecological speciation. Gene expression divergence occurs through the evolution of cis- polymorphisms and through more widespread effects driven by trans-regulatory factors. Here, we explore expression and sequence divergence in a large sample of Panicum hallii accessions encompassing the species range using a reciprocal transplantation experiment. We observed widespread genotype and transplant site drivers of expression divergence, with a limited number of genes exhibiting genotype-by-site interactions. We used a modified FST-QST outlier approach (QPC analysis) to detect local adaptation. We identified 514 genes with constitutive expression divergence above and beyond the levels expected under neutral processes. However, no plastic expression responses met our multiple testing correction as QPC outliers. Constitutive QPC outlier genes were involved in a number of developmental processes and responses to abiotic environments. Leveraging earlier expression quantitative trait loci results, we found a strong enrichment of expression divergence, including for QPC outliers, in genes previously identified with cis and cis-environment interactions but found no patterns related to trans-factors. Population genetic analyses detected elevated sequence divergence of promoters and coding sequence of constitutive expression outliers but little evidence for positive selection on these proteins. Our results are consistent with a hypothesis of cis-regulatory divergence as a primary driver of expression divergence in P. hallii.

5.
Plant Cell Physiol ; 65(1): 35-48, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37757822

RESUMO

As sessile, photoautotrophic organisms, plants are subjected to fluctuating sunlight that includes potentially detrimental ultraviolet-B (UV-B) radiation. Experiments under controlled conditions have shown that the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) controls acclimation and tolerance to UV-B in Arabidopsis thaliana; however, its long-term impact on plant fitness under naturally fluctuating environments remain poorly understood. Here, we quantified the survival and reproduction of different Arabidopsis mutant genotypes under diverse field and laboratory conditions. We found that uvr8 mutants produced more fruits than wild type when grown in growth chambers under artificial low-UV-B conditions but not under natural field conditions, indicating a fitness cost in the absence of UV-B stress. Importantly, independent double mutants of UVR8 and the blue light photoreceptor gene CRYPTOCHROME 1 (CRY1) in two genetic backgrounds showed a drastic reduction in fitness in the field. Experiments with UV-B attenuation in the field and with supplemental UV-B in growth chambers demonstrated that UV-B caused the cry1 uvr8 conditional lethal phenotype. Using RNA-seq data of field-grown single and double mutants, we explicitly identified genes showing significant statistical interaction of UVR8 and CRY1 mutations in the presence of UV-B in the field. They were enriched in Gene Ontology categories related to oxidative stress, photoprotection and DNA damage repair in addition to UV-B response. Our study demonstrates the functional importance of the UVR8-mediated response across life stages in natura, which is partially redundant with that of cry1. Moreover, these data provide an integral picture of gene expression associated with plant responses under field conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Cromossômicas não Histona , Criptocromos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Regulação da Expressão Gênica de Plantas , Luz Solar , Raios Ultravioleta , Proteínas Cromossômicas não Histona/metabolismo
6.
BMC Plant Biol ; 24(1): 387, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724946

RESUMO

BACKGROUND: Woody bamboos are the only diverse large perennial grasses in mesic-wet forests and are widely distributed in the understory and canopy. The functional trait variations and trade-offs in this taxon remain unclear due to woody bamboo syndromes (represented by lignified culm of composed internodes and nodes). Here, we examined the effects of heritable legacy and occurrence site climates on functional trait variations in leaf and culm across 77 woody bamboo species in a common garden. We explored the trade-offs among leaf functional traits, the connection between leaf nitrogen (N), phosphorus (P) concentrations and functional niche traits, and the correlation of functional traits between leaves and culms. RESULTS: The Bayesian mixed models reveal that the combined effects of heritable legacy (phylogenetic distances and other evolutionary processes) and occurrence site climates accounted for 55.10-90.89% of the total variation among species for each studied trait. The standardized major axis analysis identified trade-offs among leaf functional traits in woody bamboo consistent with the global leaf economics spectrum; however, compared to non-bamboo species, the woody bamboo exhibited lower leaf mass per area but higher N, P concentrations and assimilation, dark respiration rates. The canonical correlation analysis demonstrated a positive correlation (ρ = 0.57, P-value < 0.001) between leaf N, P concentrations and morphophysiology traits. The phylogenetic principal components and trait network analyses indicated that leaf and culm traits were clustered separately, with leaf assimilation and respiration rates associated with culm ground diameter. CONCLUSION: Our study confirms the applicability of the leaf economics spectrum and the biogeochemical niche in woody bamboo taxa, improves the understanding of woody bamboo leaf and culm functional trait variations and trade-offs, and broadens the taxonomic units considered in plant functional trait studies, which contributes to our comprehensive understanding of terrestrial forest ecosystems.


Assuntos
Nitrogênio , Folhas de Planta , Folhas de Planta/fisiologia , Folhas de Planta/genética , Nitrogênio/metabolismo , Sasa/genética , Sasa/fisiologia , Poaceae/genética , Poaceae/fisiologia , Fósforo/metabolismo , Filogenia , Teorema de Bayes
7.
Proc Biol Sci ; 291(2015): 20232457, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38264779

RESUMO

How mosquitoes may respond to rapid climate warming remains unknown for most species, but will have major consequences for their future distributions, with cascading impacts on human well-being, biodiversity and ecosystem function. We investigated the adaptive potential of a wide-ranging mosquito species, Aedes sierrensis, across a large climatic gradient by conducting a common garden experiment measuring the thermal limits of mosquito life-history traits. Although field-collected populations originated from vastly different thermal environments that spanned over 1200 km, we found limited variation in upper thermal tolerance between populations. In particular, the upper thermal limits of all life-history traits varied by less than 3°C across the species range and, for most traits, did not differ significantly between populations. For one life-history trait-pupal development rate-we did detect significant variation in upper thermal limits between populations, and this variation was strongly correlated with source temperatures, providing evidence of local thermal adaptation for pupal development. However, we found that maximum environmental temperatures across most of the species' range already regularly exceed the highest upper thermal limits estimated under constant temperatures. This result suggests that strategies for coping with and/or avoiding thermal extremes are likely key components of current and future mosquito thermal tolerance.


Assuntos
Aedes , Ecossistema , Humanos , Animais , Aclimatação , Biodiversidade , Capacidades de Enfrentamento
8.
New Phytol ; 243(3): 909-921, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38877705

RESUMO

Leaf decomposition varies widely across temperate forests, shaped by factors like litter quality, climate, soil properties, and decomposers, but forest heterogeneity may mask local tree influences on decomposition and litter-associated microbiomes. We used a 24-yr-old common garden forest to quantify local soil conditioning impacts on decomposition and litter microbiology. We introduced leaf litter bags from 10 tree species (5 arbuscular mycorrhizal; 5 ectomycorrhizal) to soil plots conditioned by all 10 species in a full-factorial design. After 6 months, we assessed litter mass loss, C/N content, and bacterial and fungal composition. We hypothesized that (1) decomposition and litter-associated microbiome composition would be primarily shaped by the mycorrhizal type of litter-producing trees, but (2) modified significantly by underlying soil, based on mycorrhizal type of the conditioning trees. Decomposition and, to a lesser extent, litter-associated microbiome composition, were primarily influenced by the mycorrhizal type of litter-producing trees. Interestingly, however, underlying soils had a significant secondary influence, driven mainly by tree species, not mycorrhizal type. This secondary influence was strongest under trees from the Pinaceae. Temperate trees can locally influence underlying soil to alter decomposition and litter-associated microbiology. Understanding the strength of this effect will help predict biogeochemical responses to forest compositional change.


Assuntos
Microbiota , Micorrizas , Folhas de Planta , Microbiologia do Solo , Solo , Especificidade da Espécie , Árvores , Árvores/microbiologia , Solo/química , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Micorrizas/fisiologia , Clima
9.
Mol Ecol ; 33(1): e17186, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37905582

RESUMO

Coral capacity to tolerate low pH affects coral community composition and, ultimately, reef ecosystem function. Low pH submarine discharges ('Ojo'; Yucatán, México) represent a natural laboratory to study plasticity and acclimatization to low pH in relation to ocean acidification. A previous >2-year coral transplant experiment to ambient and low pH common garden sites revealed differential survivorship across species and sites, providing a framework to compare mechanistic responses to differential pH exposures. Here, we examined gene expression responses of transplants of three species of reef-building corals (Porites astreoides, Porites porites and Siderastrea siderea) and their algal endosymbiont communities (Symbiodiniaceae) originating from low pH (Ojo) and ambient pH native origins (Lagoon or Reef). Transplant pH environment had the greatest effect on gene expression of Porites astreoides hosts and symbionts and P. porites hosts. Host P. astreoides Ojo natives transplanted to ambient pH showed a similar gene expression profile to Lagoon natives remaining in ambient pH, providing evidence of plasticity in response to ambient pH conditions. Although origin had a larger effect on host S. siderea gene expression due to differences in symbiont genera within Reef and Lagoon/Ojo natives, subtle effects of low pH on all origins demonstrated acclimatization potential. All corals responded to low pH by differentially expressing genes related to pH regulation, ion transport, calcification, cell adhesion and stress/immune response. This study demonstrates that the magnitude of coral gene expression responses to pH varies considerably among populations, species and holobionts, which could differentially affect acclimatization to and impacts of ocean acidification.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Ecossistema , Concentração de Íons de Hidrogênio , Água do Mar/química , Transcriptoma/genética
10.
Glob Chang Biol ; 30(4): e17266, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533756

RESUMO

Climatic drivers alone do not adequately explain the regional variation in budburst timing in deciduous forests across Europe. Stand-level factors, such as tree species richness, might affect budburst timing by creating different microclimates under the same site macroclimate. We assessed different phases of the spring phenology (start, midpoint, end, and overall duration of the budburst period) of four important European tree species (Betula pendula, Fagus sylvatica, Quercus robur and Tilia cordata) in monocultures and four-species mixture stands of a common garden tree biodiversity experiment in Belgium (FORBIO) in 2021 and 2022. Microclimatic differences between the stands in terms of bud chilling, temperature forcing, and soil temperature were considerable, with four-species mixtures being generally colder than monocultures in spring, but not in winter. In the colder spring of 2021, at the stand level, the end of the budburst period was advanced, and its overall duration shortened, in the four-species mixtures. At species level, this response was significant for F. sylvatica. In the warmer spring of 2022, advances in spring phenology in four-species stands were observed again in F. sylvatica and, less markedly, in B. pendula but without a general response at the stand level. Q. robur showed specific patterns with delayed budburst start in 2021 in the four-species mixtures and very short budburst duration for all stands in 2022. Phenological differences between monocultures and four-species mixtures were linked to microclimatic differences in light availability rather than in temperature as even comparatively colder microclimates showed an advanced phenology. Compared to weather conditions, tree species richness had a lower impact on budburst timing, but this impact can be of importance for key species like F. sylvatica and colder springs. These results indicate that forest biodiversity can affect budburst phenology, with wider implications, especially for forest- and land surface models.


Assuntos
Temperatura Baixa , Árvores , Árvores/fisiologia , Temperatura , Estações do Ano , Florestas , Folhas de Planta/fisiologia
11.
Ann Bot ; 134(1): 101-116, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38488820

RESUMO

BACKGROUND AND AIMS: Intra- and transgenerational plasticity may provide substantial phenotypic variation to cope with environmental change. Since assessing the unique contribution of the maternal environment to the offspring phenotype is challenging in perennial, outcrossing plants, little is known about the evolutionary and ecological implications of transgenerational plasticity and its persistence over the life cycle in these species. We evaluated how intra- and transgenerational plasticity interplay to shape the adaptive responses to drought in two perennial Mediterranean shrubs. METHODS: We used a novel common garden approach that reduced within-family genetic variation in both the maternal and offspring generations by growing the same maternal individual in two contrasting watering environments, well-watered and drought, in consecutive years. We then assessed phenotypic differences at the reproductive stage between offspring reciprocally grown in the same environments. KEY RESULTS: Maternal drought had an effect on offspring performance only in Helianthemum squamatum. Offspring of drought-stressed plants showed more inflorescences, less sclerophyllous leaves and higher growth rates in both watering conditions, and heavier seeds under drought, than offspring of well-watered maternal plants. Maternal drought also induced similar plasticity patterns across maternal families, showing a general increase in seed mass in response to offspring drought, a pattern not observed in the offspring of well-watered plants. In contrast, both species expressed immediate adaptive plasticity, and the magnitude of intragenerational plasticity was larger than the transgenerational plastic responses. CONCLUSIONS: Our results highlight that adaptive effects associated with maternal drought can persist beyond the seedling stage and provide evidence of species-level variation in the expression of transgenerational plasticity. Such differences between co-occurring Mediterranean species in the prevalence of this form of non-genetic inheritance may result in differential vulnerability to climate change.


Assuntos
Adaptação Fisiológica , Secas , Adaptação Fisiológica/genética , Fenótipo , Região do Mediterrâneo , Sementes/genética , Sementes/fisiologia , Sementes/crescimento & desenvolvimento , Variação Genética
12.
Ecol Appl ; 34(1): e2903, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37347236

RESUMO

Rapid adaptive evolution and phenotypic plasticity are two mechanisms that often underlie invasiveness of alien plant species, but whether they can co-occur within invasive plant populations under altered environmental conditions such as nitrogen (N) enrichment has seldom been explored. Latitudinal clines in plant trait responses to variation in environmental factors may provide evidence of local adaptation. Here, we inferred the relative contributions of phenotypic plasticity and local adaptation to the performance of the invasive plant Ambrosia artemisiifolia under different soil N levels, using a common garden approach. We grew A. artemisiifolia individuals raised from seeds that were sampled from six invasive populations along a wide latitudinal cline in China (23°42' N to 45°43' N) under three N (0, 5, and 10 g N m-2 ) levels in a common garden. Results show significant interpopulation genetic differentiation in plant height, number of branches, total biomass, and transpiration rate of the invader A. artemisiifolia across the N treatments. The populations also expressed genetic differentiation in basal diameter, growth rate, leaf area, seed width, root biomass, aboveground biomass, stomatal conductance, and intercellular CO2 concentration regardless of N treatments. Moreover, plants from different populations of the invader displayed plastic responses in time to first flower, hundred-grain weight, net photosynthetic rate, and relative biomass allocation to roots and shoots and seed length under different N treatments. Additionally, individuals of A. artemisiifolia from higher latitudes grew shorter and allocated less biomass to the roots regardless of N treatment, while latitudinal cline (or lack thereof) in other traits depended on the level of N in which the plants were grown. Overall, these results suggest that rapid adaptive evolution and phenotypic plasticity in the various traits that we quantified may jointly contribute to invasiveness of A. artemisiifolia under different levels of N availability. More broadly, the results support the idea that phenotypic plasticity and rapid adaptive evolution can jointly enable invasive plants to colonize a wide range of environmental conditions.


Assuntos
Ambrosia , Nitrogênio , Humanos , Ambrosia/genética , Adaptação Fisiológica/genética , Fenótipo , Plantas , Genética Populacional , Espécies Introduzidas
13.
Am J Bot ; 111(7): e16371, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39001583

RESUMO

PREMISE: Light is essential for plants, and local populations exhibit adaptive photosynthetic traits depending on their habitats. Although plastic responses in morphological and/or physiological characteristics to different light intensities are well known, adaptive divergence with genetic variation remains to be explored. This study focused on Saxifraga fortunei (Saxifragaceae) growing in sun-exposed and shaded habitats. METHODS: We measured the leaf anatomical structure and photosynthetic rate of plants grown in their natural habitats and in a common greenhouse (high- and low-intensity light experimental sites). To assess differences in ecophysiological tolerance to high-intensity light between the sun and shade types, we evaluated the level of photoinhibition of photosystem II and the leaf mortality rate under high-intensity light conditions. In addition, population genetic analysis was conducted to investigate phylogenetic origins. RESULTS: Clear phenotypic differences were found between the sun and shade types despite their recent phylogenetic origin. The leaf anatomical structure and photosynthetic rate showed plastic changes in response to growing conditions. Moreover, the sun type had a well-developed palisade parenchyma and a higher photosynthetic rate, which were genetically fixed, and a lower level of photoinhibition under high-intensity light. CONCLUSIONS: Our findings demonstrate that light intensity is a selective pressure that can rapidly promote phenotypic divergence between the sun and shade types. While phenotypic changes in multiple photosynthetic traits were plastic, genetic divergence in specific traits related to adaptation to high-intensity light would be fundamental for ecotypic divergence to different light regimes.


Assuntos
Adaptação Fisiológica , Fotossíntese , Saxifragaceae , Saxifragaceae/genética , Saxifragaceae/fisiologia , Sistema Solar , Ecossistema , Variação Genética , Microclima , Genética Populacional , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia
14.
Am J Bot ; 111(1): e16260, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38031482

RESUMO

PREMISE: Herbivore pressure can vary across the range of a species, resulting in different defensive strategies. If herbivory is greater at lower latitudes, plants may be better defended there, potentially driving a latitudinal gradient in defense. However, relationships that manifest across the entire range of a species may be confounded by differences within genetic subpopulations, which may obscure the drivers of these latitudinal gradients. METHODS: We grew plants of the widespread perennial grass Panicum virgatum in a common garden that included genotypes from three genetic subpopulations spanning an 18.5° latitudinal gradient. We then assessed defensive strategies of these plants by measuring two physical resistance traits-leaf mass per area (LMA) and leaf ash, a proxy for silica-and multiple measures of herbivory by caterpillars of the generalist herbivore fall armyworm (Spodoptera frugiperda). RESULTS: Across all genetic subpopulations, low-latitude plants experienced less herbivory than high-latitude plants. Within genetic subpopulations, however, this relationship was inconsistent-the most widely distributed and phenotypically variable subpopulation (Atlantic) exhibited more consistent latitudinal trends than either of the other two subpopulations. The two physical resistance traits, LMA and leaf ash, were both highly heritable and positively associated with resistance to different measures of herbivory across all subpopulations, indicating their importance in defense against herbivores. Again, however, these relationships were inconsistent within subpopulations. CONCLUSIONS: Defensive gradients that occur across the entire species range may not arise within localized subpopulations. Thus, identifying the drivers of latitudinal gradients in herbivory defense may depend on adequately sampling the diversity within a species.


Assuntos
Herbivoria , Poaceae , Animais , Plantas , Genótipo , Folhas de Planta , Insetos
15.
Am J Bot ; 111(3): e16304, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517213

RESUMO

PREMISE: The soil microbiome plays a role in plant trait expression and fitness, and plants may be locally adapted or maladapted to their soil microbiota. However, few studies of local adaptation in plants have incorporated a microbial treatment separate from manipulations of the abiotic environment, so our understanding of microbes in plant adaptation is limited. METHODS: Here we tested microbial effects on local adaptation in four paired populations of an abundant alpine plant from two community types, dry and moist meadow. In a 5-month greenhouse experiment, we manipulated source population, soil moisture, and soil microbiome and measured plant survival and biomass to assess treatment effects. RESULTS: Dry meadow populations had higher biomass than moist meadow populations at low moisture, demonstrating evidence of local adaptation to soil moisture in the absence of microbes. In the presence of microbes, dry meadow populations had greater survival than moist meadow populations when grown with dry meadow microbes regardless of moisture. Moist meadow populations showed no signs of adaptation or maladaptation. CONCLUSIONS: Our research highlights the importance of microbial mutualists in local adaptation, particularly in dry environments with higher abiotic stress. Plant populations from environments with greater abiotic stress exhibit different patterns of adaptation when grown with soil microbes versus without, while plant populations from less abiotically stressful environments do not. Improving our understanding of the role microbes play in plant adaptation will require further studies incorporating microbial manipulations.


Assuntos
Microbiota , Solo , Plantas , Biomassa , Microbiologia do Solo , Pradaria
16.
Am J Bot ; 111(5): e16349, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38783552

RESUMO

PREMISE: Leaf tensile resistance, a leaf's ability to withstand pulling forces, is an important determinant of plant ecological strategies. One potential driver of leaf tensile resistance is growing season length. When growing seasons are long, strong leaves, which often require more time and resources to construct than weak leaves, may be more advantageous than when growing seasons are short. Growing season length and other ecological conditions may also impact the morphological traits that underlie leaf tensile resistance. METHODS: To understand variation in leaf tensile resistance, we measured size-dependent leaf strength and size-independent leaf toughness in diverse genotypes of the widespread perennial grass Panicum virgatum (switchgrass) in a common garden. We then used quantitative genetic approaches to estimate the heritability of leaf tensile resistance and whether there were genetic correlations between leaf tensile resistance and other morphological traits. RESULTS: Leaf tensile resistance was positively associated with aboveground biomass (a proxy for fitness). Moreover, both measures of leaf tensile resistance exhibited high heritability and were positively genetically correlated with leaf lamina thickness and leaf mass per area (LMA). Leaf tensile resistance also increased with the growing season length in the habitat of origin, and this effect was mediated by both LMA and leaf thickness. CONCLUSIONS: Differences in growing season length may promote selection for different leaf lifespans and may explain existing variation in leaf tensile resistance in P. virgatum. In addition, the high heritability of leaf tensile resistance suggests that P. virgatum will be able to respond to climate change as growing seasons lengthen.


Assuntos
Folhas de Planta , Estações do Ano , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Panicum/genética , Panicum/fisiologia , Panicum/anatomia & histologia , Panicum/crescimento & desenvolvimento , Resistência à Tração , Biomassa , Fenótipo , Genótipo , Característica Quantitativa Herdável
17.
Psychophysiology ; : e14628, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961523

RESUMO

This study tackles the Garden of Forking Paths, as a challenge for replicability and reproducibility of ERP studies. Here, we applied a multiverse analysis to a sample ERP N400 dataset, donated by an independent research team. We analyzed this dataset using 14 pipelines selected to showcase the full range of methodological variability found in the N400 literature using systematic review approach. The selected pipelines were compared in depth by looking into statistical test outcomes, descriptive statistics, effect size, data quality, and statistical power. In this way we provide a worked example of how analytic flexibility can impact results in research fields with high dimensionality such as ERP, when analyzed using standard null-hypothesis significance testing. Out of the methodological decisions that were varied, high-pass filter cut-off, artifact removal method, baseline duration, reference, measurement latency and locations, and amplitude measure (peak vs. mean) were all shown to affect at least some of the study outcome measures. Low-pass filtering was the only step which did not notably influence any of these measures. This study shows that even some of the seemingly minor procedural deviations can influence the conclusions of an ERP study. We demonstrate the power of multiverse analysis in both identifying the most reliable effects in a given study, and for providing insights into consequences of methodological decisions.

18.
Oecologia ; 205(1): 81-94, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38687376

RESUMO

The ability of non-native species to successfully invade new ecosystems sometimes involves evolutionary processes such as hybridization. Hybridization can produce individuals with superior traits that give them a competitive advantage over their parent species, allowing for rapid spread. Here we assess growth, functional morphology, and species interactions between two non-native beachgrass species (Ammophila arenaria and A. breviligulata) and their recently discovered hybrid (A. arenaria × A. breviligulata) on the U.S. Pacific Northwest coast. We asked whether the hybrid beachgrass differs from its parent species in morphology and growth, whether it competes with its parent species, and, if so, what are the potential mechanisms of competition. Plant taxa were grown in low- and high-density monocultures and in two-way interactions in a common garden environment. We show that the hybrid grew taller and more densely, with greater total biomass, than either parent species. The hybrid was also the better competitor, resulting in the model prediction of competitive exclusion against A. breviligulata and, depending on its relative abundance, A. arenaria. The hybrid displays a mixed 'guerilla-phalanx' growth form that allows it to spread laterally and achieve high shoot densities, giving it a competitive advantage. Given the current dominance of A. breviligulata compared to A. arenaria in most of the region where these taxa co-occur, we suggest that the hybrid will grow, compete, and spread quickly with potentially widespread consequences for the two non-native Ammophila congeners and the dunes they build.


Assuntos
Hibridização Genética , Espécies Introduzidas , Ecossistema , Biomassa
19.
Philos Trans A Math Phys Eng Sci ; 382(2268): 20230013, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38281713

RESUMO

Sheaves are mathematical objects that describe the globally compatible data associated with open sets of a topological space. Original examples of sheaves were continuous functions; later they also became powerful tools in algebraic geometry, as well as logic and set theory. More recently, sheaves have been applied to the theory of contextuality in quantum mechanics. Whenever the local data are not necessarily compatible, sheaves are replaced by the simpler setting of presheaves. In previous work, we used presheaves to model lexically ambiguous phrases in natural language and identified the order of their disambiguation. In the work presented here, we model syntactic ambiguities and study a phenomenon in human parsing called garden-pathing. It has been shown that the information-theoretic quantity known as 'surprisal' correlates with human reading times in natural language but fails to do so in garden-path sentences. We compute the degree of signalling in our presheaves using probabilities from the large language model BERT and evaluate predictions on two psycholinguistic datasets. Our degree of signalling outperforms surprisal in two ways: (i) it distinguishes between hard and easy garden-path sentences (with a [Formula: see text]-value [Formula: see text]), whereas existing work could not, (ii) its garden-path effect is larger in one of the datasets (32 ms versus 8.75 ms per word), leading to better prediction accuracies. This article is part of the theme issue 'Quantum contextuality, causality and freedom of choice'.

20.
Environ Res ; 242: 117642, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37996006

RESUMO

Sound disturbance and sleep problems are regarded as the most common adverse effects of environmental noise but evidence of the role of air pollution and greenspace is scant. This is especially true for children who find themselves in a sensitive developmental period and experience their environment differently than adults. This study examined the joint effects of traffic exposures and residential greenspace on child sound disturbance and sleep problems via perceptions of neighborhood quality. We used cross-sectional data for 1251 schoolchildren (8-12 years) in the Tyrol region of Austria/Italy. Questionnaires provided information on sociodemographic and housing factors, perceived neighborhood quality, sound disturbance in different situations, and sleep problems. Modelled acoustic indicators included day-evening-night sound levels and the highest percentile level, and night-time sound level and a bespoke sleep disturbance index. Nitrogen dioxide served as a proxy for traffic-related air pollution. The normalized difference vegetation index was calculated as a measure of residential greenspace, and presence of a domestic garden was self-reported. Results showed that higher level of traffic-related exposures was positively associated with sound disturbance and sleep problems, while living in a greener area, especially in a house with a garden, was associated with lower sound disturbance and less sleep problems even in the presence of traffic. Traffic exposures contributed to more unfavorable, and greenspace to more positive perceptions in terms of traffic-related stressors, opportunities for outdoor recreation, and general satisfaction with the neighborhood. This indirect path seemed more important for greenspace than for traffic exposures. In conclusion, it seems advantageous to combine traffic-related mitigation with improving access to greenspace in interventions for supporting the acoustic comfort of children during day and nighttime. Even highly nature-dominated environments could still benefit from proximal green infrastructure, especially from domestic gardens.


Assuntos
Poluição do Ar , Parques Recreativos , Criança , Humanos , Estudos Transversais , Meio Ambiente , Exposição Ambiental , Ruído/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA