Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 79(6): 307, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35593968

RESUMO

Sjögren's syndrome (SjS) is a chronic autoimmune disease characterized by immune cell infiltration of the exocrine glands, mainly the salivary and lacrimal glands. Despite recent advances in the clinical and mechanistic characterization of the disease, its etiology remains largely unknown. Here, we report that mice with a deficiency for either Atg7 or Atg3, which are enzymes involved in the ubiquitin modification pathway, in the salivary glands exhibit a SjS-like phenotype, characterized by immune cell infiltration with autoantibody detection, acinar cell death, and dry mouth. Prior to the onset of the SjS-like phenotype in these null mice, we detected an accumulation of secretory vesicles in the acinar cells of the salivary glands and found that GATE16, an uncharacterized autophagy-related molecule activated by ATG7 (E1-like enzyme) and ATG3 (E2-like enzyme), was highly expressed in these cells. Notably, GATE16 was activated by isoproterenol, an exocytosis inducer, and localized on the secretory vesicles in the acinar cells of the salivary glands. Failure to activate GATE16 was correlated with exocytosis defects in the acinar cells of the salivary glands in Atg7 and Atg3 cKO mice. Taken together, our results show that GATE16 activation regulated by the autophagic machinery is crucial for exocytosis and that defects in this pathway cause SjS.


Assuntos
Doenças Autoimunes , Síndrome de Sjogren , Animais , Autoanticorpos/metabolismo , Modelos Animais de Doenças , Exocitose , Camundongos , Glândulas Salivares , Síndrome de Sjogren/genética , Síndrome de Sjogren/metabolismo
2.
EMBO Rep ; 21(11): e50829, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33124769

RESUMO

Inflammatory caspase-11 (rodent) and caspases-4/5 (humans) detect the Gram-negative bacterial component LPS within the host cell cytosol, promoting activation of the non-canonical inflammasome. Although non-canonical inflammasome-induced pyroptosis and IL-1-related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non-canonical inflammasome in order to ensure efficient but non-deleterious inflammatory responses. Here, we show that the IFN-inducible protein Irgm2 and the ATG8 family member Gate-16 cooperatively counteract Gram-negative bacteria-induced non-canonical inflammasome activation, both in cultured macrophages and in vivo. Specifically, the Irgm2/Gate-16 axis dampens caspase-11 targeting to intracellular bacteria, which lowers caspase-11-mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)-dependent and GBP-independent routes for caspase-11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine-tune bacteria-activated non-canonical inflammasome responses and shed light on the understanding of the immune pathways they control.


Assuntos
Caspases , Lipopolissacarídeos , Família da Proteína 8 Relacionada à Autofagia , Caspases/genética , Caspases Iniciadoras , Bactérias Gram-Negativas , Inflamassomos/genética , Macrófagos
3.
Handb Exp Pharmacol ; 271: 83-96, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33404775

RESUMO

We reported previously that GEC1 (glandular epithelial cell 1), a member of microtubule-associated proteins (MAPs), interacted directly with the C-tail of KOR (KCT) and tubulin and enhanced cell surface expression of KOR in CHO cells by facilitating its trafficking along the export pathway. Two GEC1 analogs (GABARAP and GATE16) were also shown to increase KOR expression. In addition, to understand the underlying mechanism, we demonstrated that N-ethylmaleimide-sensitive factor (NSF), an essential component for membrane fusion, co-immunoprecipitated with GEC1 from brain extracts. In this study, using pull-down techniques, we have found that (1) GEC1 interacts with NSF directly and prefers the ADP-bound NSF to the ATP-bound NSF; (2) D1 and/or D2 domain(s) of NSF interact with GEC1, but the N domain of NSF does not; (3) NSF does not interact with KCT directly, but forms a protein complex with KCT via GEC1; (4) NSF and/or α-SNAP do not affect KCT-GEC1 interaction. Thus, GEC1 (vs the α-SNAP/SNAREs complex) binds to NSF in distinctive ways in terms of the ADP- or ATP-bound form and domains of NSF involved. In conclusion, GEC1 may, via its direct interactions with KOR, NSF, and tubulin, enhance trafficking and fusion of KOR-containing vesicles selectively along the export pathway, which leads to increase in surface expression of KOR. GABARAP and GATE16 may enhance KOR expression in a similar way.


Assuntos
Proteínas Associadas aos Microtúbulos , Receptores Opioides kappa , Animais , Cricetinae , Cricetulus , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo
4.
Biochem Biophys Res Commun ; 443(1): 56-61, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24269818

RESUMO

TRPML3 is a Ca(2+) permeable cation channel expressed in multiple intracellular compartments. Although TRPML3 is implicated in autophagy, how TRPML3 can regulate autophagy is not understood. To search interacting proteins with TRPML3 in autophagy, we performed split-ubiquitin membrane yeast two-hybrid (MY2H) screening with TRPML3-loop as a bait and identified GATE16, a mammalian ATG8 homologue. GST pull-down assay revealed that TRPML3 and TRPML3-loop specifically bind to GATE16, not to LC3B. Co-immunoprecipitation (co-IP) experiments showed that TRPML3 and TRPML3-loop pull down only the lipidated form of GATE16, indicating that the interaction occurs exclusively at the organellar membrane. The interaction of TRPML3 with GATE16 and GATE16-positive vesicle formation were increased in starvation induced autophagy, suggesting that the interaction facilitates the function of GATE16 in autophagosome formation. However, GATE16 was not required for TRPML3 trafficking to autophagosomes. Experiments using dominant-negative (DN) TRPML3(D458K) showed that GATE16 is localized not only in autophagosomes but also in extra-autophagosomal compartments, by contrast with LC3B. Since GATE16 acts at a later stage of the autophagosome biogenesis, our results suggest that TRPML3 plays a role in autophagosome maturation through the interaction with GATE16, by providing Ca(2+) in the fusion process.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Canais de Cálcio/metabolismo , Proteínas dos Microfilamentos/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Família da Proteína 8 Relacionada à Autofagia , Canais de Cálcio/genética , Células HEK293 , Células HeLa , Humanos , Proteínas dos Microfilamentos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mapeamento de Interação de Proteínas , Canais de Potencial de Receptor Transitório/genética , Ubiquitina/metabolismo
5.
Autophagy ; : 1-3, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38963025

RESUMO

Individual Atg8 (autophagy related 8) paralogs, comprising MAP1LC3A/LC3A, LC3B, LC3C, GABARAP, GABARAPL1 and GABARAPL2/GATE16, play a crucial role in canonical macroautophagy/autophagy. However, their functions remain unclear owing to functional redundancy. In a previous study, we reported that intracellular Streptococcus pneumoniae triggers hierarchical autophagy in response to bacterial infection. This process commences with the induction of conjugation of Atg8 paralogs (Atg8s) to single membranes (CASM), followed by CASM shedding and subsequent induction of xenophagy. In our recent study, we performed functional analysis of Atg8s during pneumococci-induced hierarchical autophagy. Our findings suggest that LC3A and GABARAPL1 are crucial for CASM induction, whereas GABARAPL2 and GABARAP play sequential roles in CASM shedding and subsequent induction of xenophagy, respectively.Abbreviation: Atg8: autophagy related 8; Atg8s: Atg8 paralogs; CASM: conjugation of Atg8s to single membranes; mpi: minutes post-infection; mpi: minutes post-infection; PcAV: pneumococci-containing autophagic vesicles; PcLV: LC3-associated phagosome (LAPosome)-like vacuole; PcV: pneumococci-containing vesicles; Sp: S. pneumoniae.

6.
Neurobiol Dis ; 49: 190-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22959883

RESUMO

Autophagosomal formation is an initial step for macroautophagy. Similar to the yeast autophagy-related gene 8 (ATG8), mammalian ATG8 is responsible for autophagosomal formation, and categorized into LC3 and GABARAPs/GATE-16. Recent studies have shown that impairment of the autophagy-lysosome system is associated with formation of cytoplasmic inclusions observed in various neurodegenerative disorders including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Although abnormal α-synuclein accumulation is a cardinal neuropathological feature in PD, DLB and multiple system atrophy (MSA), it is unclear whether autophagy is altered in MSA. We here demonstrated that the level of matured GABARAPs was significantly decreased in the cerebellum of MSA relative to controls, and that the higher levels of matured and lipidated LC3 were detected in detergent-insoluble fraction of MSA. Immunohistochemical analysis showed that the vast majority of glial cytoplasmic inclusions, a hallmark of MSA, were positive for LC3, whereas they were unstained or barely stained with anti-GABARAPs or anti-GATE-16 antibodies. Our data suggest that autophagy maturation is impaired through the repressed levels of autophagosomal proteins in MSA.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia/fisiologia , Encéfalo/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Atrofia de Múltiplos Sistemas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Reguladoras de Apoptose , Família da Proteína 8 Relacionada à Autofagia , Western Blotting , Feminino , Humanos , Imuno-Histoquímica , Corpos de Inclusão/metabolismo , Masculino , Pessoa de Meia-Idade , Neuroglia/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Biochem Biophys Res Commun ; 438(2): 283-8, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23891751

RESUMO

Autophagy is an intracellular bulk degradation process involved in cell survival upon stress induction, but also with a newly identified function in myeloid differentiation. The autophagy-related (ATG)8 protein family, including the GABARAP and LC3 subfamilies, is crucial for autophagosome biogenesis. In order to evaluate the significance of the GABARAPs in the pathogenesis of acute myeloid leukemia (AML), we compared their expression in primary AML patient samples, CD34(+) progenitor cells and in granulocytes from healthy donors. GABARAPL1 and GABARAPL2/GATE-16, but not GABARAP, were significantly downregulated in particular AML subtypes compared to normal granulocytes. Moreover, the expression of GABARAPL1 and GATE-16 was significantly induced during ATRA-induced neutrophil differentiation of acute promyelocytic leukemia cells (APL). Lastly, knocking down GABARAPL2/GATE-16 in APL cells attenuated neutrophil differentiation and decreased autophagic flux. In conclusion, low GABARAPL2/GATE-16 expression is associated with an immature myeloid leukemic phenotype and these proteins are necessary for neutrophil differentiation of APL cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Autofagia , Regulação Leucêmica da Expressão Gênica , Leucemia Promielocítica Aguda/metabolismo , Proteínas dos Microfilamentos/antagonistas & inibidores , Neutrófilos/citologia , Tretinoína/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Adulto , Idoso , Antígenos CD34/metabolismo , Proteínas Reguladoras de Apoptose , Família da Proteína 8 Relacionada à Autofagia , Diferenciação Celular , Linhagem Celular , Feminino , Humanos , Leucemia Promielocítica Aguda/genética , Masculino , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Adulto Jovem
8.
Biol Futur ; 73(2): 157-169, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35486231

RESUMO

GABARAPL2 was initially characterized for its involvement in protein transport and membrane fusion events, but has since gained notoriety for its role in autophagy. GABARAPL2 is frequently studied alongside its GABARAP subfamily members, GABARAP and GABARAPL1. Although functional redundancy exists among the subfamily members, a complex network of molecular interactions, physiological processes and pathologies can be primarily related to GABARAPL2. GABARAPL2 has a multifaceted role, ranging from cellular differentiation to intracellular degradation. Much of what we know about GABARAPL2 is gained through identifying its interacting partners-a list that is constantly growing. In this article, we review both the autophagy-dependent and autophagy-independent roles of GABARAPL2, and emphasize their implications for both health and disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Associadas aos Microtúbulos , Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagia/genética , Fusão de Membrana , Proteínas Associadas aos Microtúbulos/metabolismo , Transporte Proteico
9.
Biol Futur ; 73(4): 375-384, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35731422

RESUMO

Autophagy is a highly conserved self-degradation process of eukaryotic cells which is required for the effective elimination of damaged and unnecessary cytosolic constituents. Defects in the process can cause the intracellular accumulation of such damages, thereby leading to the senescence and subsequent loss of the affected cell. Defective autophagy hence is implicated in the development of various degenerative processes, including cancer, neurodegenerative diseases, diabetes, tissue atrophy and fibrosis, and immune deficiency, as well as in accelerated aging. The autophagic process is mediated by numerous autophagy-related (ATG) proteins, among which the ATG8/LC3/GABARAP (Microtubule-associated protein 1A/1B-light chain 3/Gammaaminobutyric acid receptor-associated protein) superfamily has a pivotal role in the formation and maturation of autophagosome, a key (macro) autophagic structure (the autophagosome sequesters parts of the cytoplasm which are destined for breakdown). While in the unicellular yeast there is only a single ATG8 protein, metazoan systems usually contain more ATG8 paralogs. ATG8 paralogs generally display tissue-specific expression patterns and their functions are not strictly restricted to autophagy. For example, GABARAP proteins also play a role in intracellular vesicle transport, and, in addition to autophagosome formation, ATG8 also functions in selective autophagy. In this review, we summarize the functional diversity of ATG8/LC3/GABARAP proteins, using tractable genetic models applied in autophagy research.


Assuntos
Família da Proteína 8 Relacionada à Autofagia , Autofagia , Evolução Molecular , Animais , Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/classificação , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Transporte Biológico , Vesículas Transportadoras/metabolismo , Filogenia
10.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 5): 140-147, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949974

RESUMO

The Atg8 protein family comprises the GABA type A receptor-associated proteins (GABARAPs) and microtubule-associated protein 1 light chains 3 (MAP1LC3s) that are essential mediators of autophagy. The LC3-interacting region (LIR) motifs of autophagy receptors and adaptors bind Atg8 proteins to promote autophagosome formation, cargo recruitment, and autophagosome closure and fusion to lysosomes. A crystal structure of human GABARAPL2 has been published [PDB entry 4co7; Ma et al. (2015), Biochemistry, 54, 5469-5479]. This was crystallized in space group P21 with a monoclinic angle of 90° and shows a pseudomerohedral twinning pathology. This article reports a new, untwinned GABARAPL2 crystal form, also in space group P21, but with a 98° monoclinic angle. No major conformational differences were observed between the structures. In the structure described here, the C-terminal Phe117 binds into the LIR docking site (LDS) of a neighbouring molecule within the asymmetric unit, as observed in the previously reported structure. This crystal contact blocks the LDS for co-crystallization with ligands. Phe117 of GABARAPL2 is normally removed during biological processing by Atg4 family proteases. These data indicate that to establish interactions with the LIR, Phe117 should be removed to eliminate the crystal contact and liberate the LDS for co-crystallization with LIR peptides.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fragmentos de Peptídeos/metabolismo , Fenilalanina/metabolismo , Família da Proteína 8 Relacionada à Autofagia/química , Cristalografia por Raios X , Humanos , Proteínas Associadas aos Microtúbulos/química , Modelos Moleculares , Fragmentos de Peptídeos/química , Fenilalanina/química , Ligação Proteica , Conformação Proteica
11.
Front Immunol ; 11: 561948, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042141

RESUMO

Sepsis is a life-threating multi-organ disease induced by host innate immunity to pathogen-derived endotoxins including lipopolysaccharide (LPS). Direct sensing of LPS by caspase-11 activates inflammasomes and causes lethal sepsis in mice. Inhibition of caspase-11 inflammasomes is important for the prevention of LPS-induced septic shock; however, whether a caspase-11 inflammasome-specific suppressive mechanism exists is unclear. Here we show that deficiency of GABARAP autophagy-related proteins results in over-activation of caspase-11 inflammasomes but not of canonical inflammasomes. Gate-16-/-Gabarap-/- macrophages exhibited elevated guanylate binding protein 2 (GBP2)-dependent caspase-11 activation and inflammatory responses. Deficiency of GABARAPs resulted in formation of GBP2-containing aggregates that promote IL-1ß production. High mortality after low dose LPS challenge in Gate-16-/-Gabarap-/- mice primed with poly(I:C) or polymicrobial sepsis was ameliorated by compound GBP2 deficiency. These results reveal a critical function of Gate-16 and Gabarap to suppress GBP2-dependent caspase-11-induced inflammation and septic shock.


Assuntos
Proteínas Reguladoras de Apoptose/deficiência , Família da Proteína 8 Relacionada à Autofagia/deficiência , Caspases Iniciadoras/metabolismo , Proteínas Associadas aos Microtúbulos/deficiência , Choque Séptico/imunologia , Choque Séptico/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Família da Proteína 8 Relacionada à Autofagia/genética , Proteínas de Ligação ao GTP/deficiência , Imunidade Inata , Inflamassomos/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/efeitos adversos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/genética , Piroptose/genética , Choque Séptico/induzido quimicamente , Transdução de Sinais/genética
12.
Protein Sci ; 29(6): 1387-1400, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31960529

RESUMO

In macroautophagy, de novo formation of the double membrane-bound organelles, termed autophagosomes, is essential for engulfing and sequestering the cytoplasmic contents to be degraded in the lytic compartments such as vacuoles and lysosomes. Atg8-family proteins have been known to be responsible for autophagosome formation via membrane tethering and fusion events of precursor membrane structures. Nevertheless, how Atg8 proteins act directly upon autophagosome formation still remains enigmatic. Here, to further gain molecular insights into Atg8-mediated autophagic membrane dynamics, we study the two representative human Atg8 orthologs, LC3B and GATE-16, by quantitatively evaluating their intrinsic potency to physically tether lipid membranes in a chemically defined reconstitution system using purified Atg8 proteins and synthetic liposomes. Both LC3B and GATE-16 retained the capacities to trigger efficient membrane tethering at the protein-to-lipid molar ratios ranging from 1:100 to 1:5,000. These human Atg8-mediated membrane-tethering reactions require trans-assembly between the membrane-anchored forms of LC3B and GATE-16 and can be reversibly and strictly controlled by the membrane attachment and detachment cycles. Strikingly, we further uncovered distinct membrane curvature dependences of LC3B- and GATE-16-mediated membrane tethering reactions: LC3B can drive tethering more efficiently than GATE-16 for highly curved small vesicles (e.g., 50 nm in diameter), although GATE-16 turns out to be a more potent tether than LC3B for flatter large vesicles (e.g., 200 and 400 nm in diameter). Our findings establish curvature-sensitive trans-assembly of human Atg8-family proteins in reconstituted membrane tethering, which recapitulates an essential subreaction of the biogenesis of autophagosomes in vivo.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/metabolismo , Autofagia , Bicamadas Lipídicas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Família da Proteína 8 Relacionada à Autofagia/química , Humanos , Bicamadas Lipídicas/química , Proteínas Associadas aos Microtúbulos/química
13.
Methods Enzymol ; 587: 207-225, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28253956

RESUMO

While only one Atg4 is present in yeast, there are four Atg4 homologues in human and in mouse with different substrate specificities and catalytic efficiencies. The molecule Atg4 is a type of cysteine protease, and is known for its crucial roles in cleavage of the Atg8 family proteins before they can be conjugated to phospholipids, and also in cleavage of the conjugated Atg8 molecules from the membrane, a process known as deconjugation. Both processes are required for the maximal efficiency in autophagosome biogenesis. Atg4 could thus be a target for intervention of the autophagy process. It is thus important to measure Atg4 activity to determine and to modulate the autophagy function. Here, we review the catalytic functions and regulatory mechanisms of human Atg4 proteases and discuss the methodology for analyzing Atg4 activity in details.


Assuntos
Proteínas Relacionadas à Autofagia/análise , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/análise , Cisteína Endopeptidases/metabolismo , Biologia Molecular/métodos , Engenharia de Proteínas/métodos , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/isolamento & purificação , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/química , Cisteína Endopeptidases/química , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala , Humanos , Cinética , Conformação Proteica , Proteínas Recombinantes/genética
14.
Autophagy ; 11(1): 9-27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25569839

RESUMO

The cellular recycling process of autophagy has been extensively characterized with standard assays in yeast and mammalian cell lines. In multicellular organisms, numerous external and internal factors differentially affect autophagy activity in specific cell types throughout the stages of organismal ontogeny, adding complexity to the analysis of autophagy in these metazoans. Here we summarize currently available assays for monitoring the autophagic process in the nematode C. elegans. A combination of measuring levels of the lipidated Atg8 ortholog LGG-1, degradation of well-characterized autophagic substrates such as germline P granule components and the SQSTM1/p62 ortholog SQST-1, expression of autophagic genes and electron microscopy analysis of autophagic structures are presently the most informative, yet steady-state, approaches available to assess autophagy levels in C. elegans. We also review how altered autophagy activity affects a variety of biological processes in C. elegans such as L1 survival under starvation conditions, dauer formation, aging, and cell death, as well as neuronal cell specification. Taken together, C. elegans is emerging as a powerful model organism to monitor autophagy while evaluating important physiological roles for autophagy in key developmental events as well as during adulthood.


Assuntos
Autofagia , Caenorhabditis elegans/citologia , Guias como Assunto , Animais , Bioensaio , Caenorhabditis elegans/embriologia , Desenvolvimento Embrionário , Modelos Biológicos
15.
Curr Protoc Cell Biol ; 64: 11.20.1-13, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25181299

RESUMO

Atg8 modifier in yeast is conjugated to phosphatidylethanolamine via ubiquitylation-like reactions essential for autophagy. Mammalian Atg8 homologs (Atg8s) including LC3, GABARAP, and GATE-16, are also ubiquitin-like modifiers. The carboxyl termini of mammalian Atg8 homologs are cleaved by Atg4B, a cysteine protease, to expose carboxyl terminal Gly which is essential for this ubiquitylation-like reaction. Thereafter, the Atg8 homologs are activated by Atg7, an E1-like enzyme, to form unstable Atg7-Atg8 E1-substrate intermediates via a thioester bond. The activated Atg8 homologs are transferred to mammalian Atg3, an E2-like enzyme, to form unstable Atg3-Atg8 E2-substrate intermediates via a thioester bond. Finally, Atg8 homologs are conjugated to phospholipids, phosphatidylethanolamine, and phosphatidylserine. Here, we describe a protocol for the reconstituted conjugation systems for mammalian Atg8 homologs in vitro using purified recombinant Atg proteins and liposomes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Lipoilação , Proteínas dos Microfilamentos/química , Fosfatidiletanolaminas/química , Fosfatidilserinas/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteína 7 Relacionada à Autofagia , Família da Proteína 8 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Humanos , Proteínas dos Microfilamentos/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Proteólise , Enzimas Ativadoras de Ubiquitina/química , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
16.
Autophagy ; 10(3): 408-15, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24343243

RESUMO

Representatives of all major metazoan lineages form biominerals. The molecular mechanisms that underlie this widespread and evolutionarily ancient ability are gradually being revealed for some lineages. However, until a wider range of metazoan biomineralization strategies are understood, the true diversity, and therefore the evolutionary origins of this process, will remain unknown. We have previously shown that the coralline demosponge, Astrosclera willeyana, in some way employs its endobiotic bacterial community to form its highly calcified skeleton. Here, using in situ hybridization and immunohistochemistry, we show that an ortholog of ATG8 (most likely a GABARAPL2/GATE-16 ortholog) is expressed in cells that construct the individual skeletal elements of the sponge. In TEM sections sponge cells can be observed to contain extensive populations of bacteria, and frequently possesses double-membrane structures which we interpret to be autophagosomes. In combination with our previous work, these findings support the hypothesis that the host sponge actively degrades a proportion of its bacterial community using an autophagy pathway, and uses the prokaryotic organic remains as a framework upon which calcification of the sponge skeleton is initiated.


Assuntos
Autofagia/genética , Calcificação Fisiológica/fisiologia , Evolução Molecular , Proteínas Associadas aos Microtúbulos/metabolismo , Poríferos/genética , Simbiose/genética , Animais , Autofagia/fisiologia , Fenômenos Fisiológicos Bacterianos , Calcificação Fisiológica/genética , Imuno-Histoquímica/métodos , Poríferos/citologia , Poríferos/metabolismo , Poríferos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA