Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 116(2): 604-628, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37583263

RESUMO

A combination of streamlined genetics, experimental tractability and relative morphological simplicity compared to vascular plants makes the liverwort Marchantia polymorpha an ideal model system for studying many aspects of plant biology. Here we describe a transformation vector combining a constitutive fluorescent membrane marker with a nuclear marker that is regulated by nearby enhancer elements and use this to produce a library of enhancer trap lines for Marchantia. Screening gemmae from these lines allowed the identification and characterization of novel marker lines, including markers for rhizoids and oil cells. The library allowed the identification of a margin tissue running around the thallus edge, highlighted during thallus development. The expression of this marker is correlated with auxin levels. We generated multiple markers for the meristematic apical notch region, which have different spatial expression patterns, reappear at different times during meristem regeneration following apical notch excision and have varying responses to auxin supplementation or inhibition. This reveals that there are proximodistal substructures within the apical notch that could not be observed otherwise. We employed our markers to study Marchantia sporeling development, observing meristem emergence as defining the protonema-to-prothallus stage transition, and subsequent production of margin tissue during the prothallus stage. Exogenous auxin treatment stalls meristem emergence at the protonema stage but does not inhibit cell division, resulting in callus-like sporelings with many rhizoids, whereas pharmacologically inhibiting auxin synthesis and transport does not prevent meristem emergence. This enhancer trap system presents a useful resource for the community and will contribute to future Marchantia research.


Assuntos
Marchantia , Marchantia/genética , Marchantia/metabolismo , Ácidos Indolacéticos/metabolismo , Divisão Celular
2.
New Phytol ; 238(4): 1479-1497, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36797656

RESUMO

The acquisition of dormancy capabilities has enabled plants to survive in adverse terrestrial environmental conditions. Dormancy accumulation and release is coupled with light signaling, which is well studied in Arabidopsis, but it is unclear in the distant nonvascular relative. We study the characteristics and function on dormancy regulation of a blue light receptor cryptochrome in Marchantia polymorpha (MpCRY). Here, we identified MpCRY via bioinformatics and mutant complement analysis. The biochemical characteristics were assessed by multiple protein-binding assays. The function of MpCRY in gemma dormancy was clarified by overexpression and mutation of MpCRY, and its mechanism was analyzed via RNA sequencing and quantitative PCR analyses associated with hormone treatment. We found that the unique MpCRY protein in M. polymorpha undergoes both blue light-promoted interaction with itself (self-interaction) and blue light-dependent phosphorylation. MpCRY has the specific characteristics of blue light-induced nuclear localization and degradation. We further demonstrated that MpCRY transcriptionally represses abscisic acid (ABA) signaling-related gene expression to suppress gemma dormancy, which is dependent on blue light signaling. Our findings indicate that MpCRY possesses specific biochemical and molecular characteristics, and modulates ABA signaling under blue light conditions to regulate gemma dormancy in M. polymorpha.


Assuntos
Arabidopsis , Marchantia , Marchantia/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Plantas/metabolismo , Luz , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo
3.
J Evol Biol ; 35(12): 1635-1645, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35411987

RESUMO

Sexual reproduction is almost universal in vertebrates; therefore, each animal species which uses it must have a mechanism for designating sex as male or female. Fish, especially, have a wide range of sex determining systems. In the present study, we aimed to identify a genetic basis for sex determination in the common creek chub (Semotilus atromaculatus) using genotyping-by-sequencing data. No sex-associated markers were found by RADSex or a GWAS using GEMMA; however, Weir and Cockerham locus-specific FST analysis and discriminant analysis of principal components revealed genetic differentiation between the sexes at several loci. While no explicit sex determination mechanism has been yet discovered in creek chub, these loci are potential candidates for future studies. Incompatible systems are thought to increase reproductive isolation but interspecific hybridization is common among groups such as cyprinid minnows; thus, studies such as ours can provide insight into hybridization and evolutionary diversification of this clade. We also highlight technical challenges involved in studying sex determination in evolutionary groups with extremely variable mechanisms and without heteromorphic sex chromosomes.


Assuntos
Cyprinidae , Animais , Masculino , Feminino , Cyprinidae/genética , Evolução Biológica , Processos de Determinação Sexual/genética
4.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498863

RESUMO

In this paper, we explore potential genetic factors in control of flax phenotypes associated with fiber by mining a collection of 306 flax accessions from the Federal Research Centre of the Bast Fiber Crops, Torzhok, Russia. In total, 11 traits were assessed in the course of 3 successive years. A genome-wide association study was performed for each phenotype independently using six different single-locus models implemented in the GAPIT3 R package. Moreover, we applied a multivariate linear mixed model implemented in the GEMMA package to account for trait correlations and potential pleiotropic effects of polymorphisms. The analyses revealed a number of genomic variants associated with different fiber traits, implying the complex and polygenic control. All stable variants demonstrate a statistically significant allelic effect across all 3 years of the experiment. We tested the validity of the predicted variants using gene expression data available for the flax fiber studies. The results shed new light on the processes and pathways associated with the complex fiber traits, while the pinpointed candidate genes may be further used for marker-assisted selection.


Assuntos
Linho , Linho/genética , Linho/metabolismo , Estudo de Associação Genômica Ampla , Fenótipo , Alelos , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único
5.
Mass Spectrom Rev ; 39(5-6): 499-522, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31876329

RESUMO

Virology, as a branch of the life sciences, discovered mass spectrometry (MS) to be the pivotal tool around two decades ago. The technique unveiled the complex network of interactions between the living world of pro- and eukaryotes and viruses, which delivered "a piece of bad news wrapped in protein" as defined by Peter Medawar, Nobel Prize Laureate, in 1960. However, MS is constantly evolving, and novel approaches allow for a better understanding of interactions in this micro- and nanoworld. Currently, we can investigate the interplay between the virus and the cell by analyzing proteomes, interactomes, virus-cell interactions, and search for the compounds that build viral structures. In addition, by using MS, it is possible to look at the cell from the broader perspective and determine the role of viral infection on the scale of the organism, for example, monitoring the crosstalk between infected tissues and the immune system. In such a way, MS became one of the major tools for the modern virology, allowing us to see the infection in the context of the whole cell or the organism. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.


Assuntos
Capsídeo/química , Interações Hospedeiro-Patógeno , Espectrometria de Massas/métodos , Proteínas Virais/análise , Virologia/métodos , Humanos , Espectrometria de Massas/instrumentação , Reação em Cadeia da Polimerase , Processamento de Proteína Pós-Traducional , Proteínas Virais/metabolismo , Vacinas Virais/farmacologia , Viroses/virologia , Vírus/classificação , Vírus/genética
6.
Electrophoresis ; 42(11): 1202-1208, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33651392

RESUMO

Gas-phase electrophoresis yields size distributions of polydisperse, aerosolized analytes based on electrophoretic principles. Nanometer-sized, surface-dry, single-charged particles are separated in a high laminar sheath flow of particle-free air and an orthogonal tunable electric field. Additionally, nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyzer (nES GEMMA) data are particle-number based. Therefore, small particles can be detected next to larger ones without a bias, for example, native proteins next to their aggregates. Analyte transition from the liquid to the gas phase is a method inherent prerequisite. In this context, nonvolatile sample buffers influence results. In the worst case, the (bio-)nanoparticle signal is lost due to an increased baseline and unspecific clustering of nonvolatile components. We present a novel online hyphenation of liquid chromatography and gas-phase electrophoresis, coupling a size-exclusion chromatography (SEC) column to an advanced nES GEMMA. Via this novel approach, it is possible to (i) separate analyte multimers already present in liquid phase from aggregates formed during the nES process, (ii) differentiate liquid phase and spray-induced multimers, and (iii) to remove nonvolatile buffer components online before SEC-nES GEMMA analysis. Due to these findings, SEC-nES GEMMA has the high potential to help to understand aggregation processes in biological buffers adding the benefit of actual size determination for noncovalent assemblies formed in solution. As detection and characterization of protein aggregation in large-scale pharmaceutical production or sizing of noncovalently bound proteins are findings directly related to technologically and biologically relevant situations, we proposed the presented method to be a valuable addition to LC-MS approaches.


Assuntos
Cromatografia em Gel , Eletroforese , Agregados Proteicos , Proteínas
7.
Anal Bioanal Chem ; 413(30): 7341-7352, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34622320

RESUMO

The emerging role of extracellular vesicles (EVs) as biomarkers and their envisioned therapeutic use require advanced techniques for their detailed characterization. In this context, we investigated gas-phase electrophoresis on a nano electrospray gas-phase electrophoretic mobility molecular analyzer (nES GEMMA, aka nES differential mobility analyzer, nES DMA) as an alternative to standard analytical techniques. In gas-phase electrophoresis, single-charged, surface-dry, native, polydisperse, and aerosolized analytes, e.g., proteins or bio-nanoparticles, are separated according to their electrophoretic mobility diameter, i.e., globular size. Subsequently, monodisperse particles are counted after a nucleation step in a supersaturated atmosphere as they pass a focused laser beam. Hence, particle number concentrations are obtained in accordance with recommendations of the European Commission for nanoparticle characterization (2011/696/EU from October 18th, 2011). Smaller sample constituents (e.g., co-purified proteins) can be detected next to larger ones (e.g., vesicles). Focusing on platelet-derived EVs, we compared different vesicle isolation techniques. In all cases, nanoparticle tracking analysis (NTA) confirmed the presence of vesicles. However, nES GEMMA often revealed a significant co-purification of proteins from the sample matrix, precluding gas-phase electrophoresis of less-diluted samples containing higher vesicle concentrations. Therefore, mainly peaks in the protein size range were detected. Mass spectrometry revealed that these main contaminants belonged to the group of globulins and coagulation-related components. An additional size exclusion chromatography (SEC) step enabled the depletion of co-purified, proteinaceous matrix components, while a label-free quantitative proteomics approach revealed no significant differences in the detected EV core proteome. Hence, the future in-depth analysis of EVs via gas-phase electrophoresis appears feasible. Platelet-derived extracellular vesicles (EVs)with/without additional size exclusion chromatographic (SEC) purification were subjected to nanoparticle tracking analysis (NTA) and gas-phase electrophoresis (nES GEMMA). The latter revealed presence of co-purified proteins, targetable via mass spectrometry (MS). MS also revealed that SEC did not influence EV protein content. To conclude, nES GEMMA is a valuable tool for quality control of EV-containing samples under native conditions allowing for detection of co-purified proteins from complex matrices.


Assuntos
Ensaio de Desvio de Mobilidade Eletroforética/métodos , Vesículas Extracelulares/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Gases , Humanos , Espectrometria de Massas por Ionização por Electrospray/instrumentação
8.
Anal Bioanal Chem ; 411(23): 5951-5962, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31280479

RESUMO

(Bio-)nanoparticle analysis employing a nano-electrospray gas-phase electrophoretic mobility molecular analyzer (native nES GEMMA) also known as nES differential mobility analyzer (nES DMA) is based on surface-dry analyte separation at ambient pressure. Based on electrophoretic principles, single-charged nanoparticles are separated according to their electrophoretic mobility diameter (EMD) corresponding to the particle size for spherical analytes. Subsequently, it is possible to correlate the (bio-)nanoparticle EMDs to their molecular weight (MW) yielding a corresponding fitted curve for an investigated analyte class. Based on such a correlation, (bio-)nanoparticle MW determination via its EMD within one analyte class is possible. Turning our attention to icosahedral, non-enveloped virus-like particles (VLPs), proteinaceous shells, we set up an EMD/MW correlation. We employed native electrospray ionization mass spectrometry (native ESI MS) to obtain MW values of investigated analytes, where possible, after extensive purification. We experienced difficulties in native ESI MS with time-of-flight (ToF) detection to determine MW due to sample inherent characteristics, which was not the case for charge detection (CDMS). nES GEMMA exceeds CDMS in speed of analysis and is likewise less dependent on sample purity and homogeneity. Hence, gas-phase electrophoresis yields calculated MW values in good approximation even when charge resolution was not obtained in native ESI ToF MS. Therefore, both methods-native nES GEMMA-based MW determination via an analyte class inherent EMD/MW correlation and native ESI MS-in the end relate (bio-)nanoparticle MW values. However, they differ significantly in, e.g., ease of instrument operation, sample and analyte handling, or costs of instrumentation. Graphical abstract.


Assuntos
Eletroforese/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Vacinas de Partículas Semelhantes a Vírus/química , Vírus/química , Peso Molecular , Tamanho da Partícula , Proteínas/química , Vírion/química
9.
Plant Cell Physiol ; 57(2): 230-56, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26657892

RESUMO

One of the classical research plants in plant biology, Marchantia polymorpha, is drawing attention as a new model system. Its ease of genetic transformation and a genome sequencing project have attracted attention to the species. Here I present a thorough assessment of the taxonomic status, anatomy and developmental morphology of each organ and tissue of the gametophyte and sporophyte on the basis of a thorough review of the literature and my own observations. Marchantia polymorpha has been a subject of intensive study for nearly 200 years, and the information summarized here offers an invaluable resource for future studies on this model plant.


Assuntos
Marchantia/anatomia & histologia , Marchantia/classificação , Modelos Biológicos , Filogenia , Cromossomos de Plantas/genética , Fertilização , Esporos/fisiologia
10.
Nanomedicine ; 10(8): 1591-600, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24846522

RESUMO

Nanoscale characterization tools hold the potential to overcome long-standing medicinal and pharmaceutical challenges. For example, electrospray differential mobility analysis (ES-DMA) is an emerging tool that rapidly provides label-free multimodal size distributions for proteins and particles from ~1 nm to <500 nm with subnanometer precision. Here we critically review the contributions of this tool to medicine, pharmaceutical practice, and pharmaceutical production. Our review critically evaluates, first, the use of ES-DMA for diagnostic strategies that detect and quantify lipoproteins, bacterial infections, viruses and amyloid fibrillation and then focuses on ES-DMA's contribution to treatment strategies that employ tailored virus-like particles as vaccines and decorated nanoparticle vectors for gene delivery. Our review also highlights ES-DMA's contribution to viral clearance and antibody aggregation and potential as a process analytical technology (PAT). FROM THE CLINICAL EDITOR: Electrospray differential mobility analysis is an emerging nanotechnology-based tool with potential clinical utility in the detection and quantification of lipoproteins, glycoproteins, viruses, amyloids, bacterial infections. Its contribution to treatment strategies and pharmaceutical production is also discussed in this comprehensive review.


Assuntos
Nanotecnologia/métodos , Nanopartículas/química , Proteínas/química , Espectrometria de Massas por Ionização por Electrospray , Vírion/química
11.
Front Plant Sci ; 15: 1358745, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984156

RESUMO

Strigolactones (SLs), a class of carotenoid-derived hormones, play a crucial role in flowering plants by regulating underground communication with symbiotic arbuscular mycorrhizal fungi (AM) and controlling shoot and root architecture. While the functions of core SL genes have been characterized in many plants, their roles in non-tracheophyte plants like liverworts require further investigation. In this study, we employed the model liverwort species Marchantia polymorpha, which lacks detectable SL production and orthologs of key SL biosynthetic genes, including CAROTENOID CLEAVAGE DIOXYGENASE 8 (CCD8) and MORE AXILLARY GROWTH 1 (MAX1). However, it retains some SL pathway components, including DWARF27 (D27) and CCD7. To help elucidate the function of these remaining components in M. polymorpha, knockout mutants were generated for MpD27-1, MpD27-2 and MpCCD7. Phenotypic comparisons of these mutants with the wild-type control revealed a novel role for these genes in regulating the release of gemmae from the gemma cup and the germination and growth of gemmae in the dark. Mpd27-1, Mpd27-2, and Mpccd7 mutants showed lower transcript abundance of genes involved in photosynthesis, such as EARLY LIGHT INDUCED (ELI), and stress responses such as LATE EMBRYOGENESIS ABUNDANT (LEA) but exhibited higher transcript levels of ETHYLENE RESPONSE FACTORS (ERFs) and SL and carotenoid related genes, such as TERPENE SYNTHASE (TS), CCD7 and LECITHIN-RETINAL ACYL TRANSFERASE (LRAT). Furthermore, the mutants of M. polymorpha in the SL pathway exhibited increased contents of carotenoid. This unveils a previously unrecognized role for MpD27-1, MpD27-2 and MpCCD7 in controlling release, germination, and growth of gemmae in response to varying light conditions. These discoveries enhance our comprehension of the regulatory functions of SL biosynthesis genes in non-flowering plants.

12.
Front Cell Infect Microbiol ; 14: 1382228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698904

RESUMO

Background: Tick-borne pathogen (TBP) surveillance studies often use whole-tick homogenates when inferring tick-pathogen associations. However, localized TBP infections within tick tissues (saliva, hemolymph, salivary glands, and midgut) can inform pathogen transmission mechanisms and are key to disentangling pathogen detection from vector competence. Methods: We screened 278 camel blood samples and 504 tick tissue samples derived from 126 camel ticks sampled in two Kenyan counties (Laikipia and Marsabit) for Anaplasma, Ehrlichia, Coxiella, Rickettsia, Theileria, and Babesia by PCR-HRM analysis. Results: Candidatus Anaplasma camelii infections were common in camels (91%), but absent in all samples from Rhipicephalus pulchellus, Amblyomma gemma, Hyalomma dromedarii, and Hyalomma rufipes ticks. We detected Ehrlichia ruminantium in all tissues of the four tick species, but Rickettsia aeschlimannii was only found in Hy. rufipes (all tissues). Rickettsia africae was highest in Am. gemma (62.5%), mainly in the hemolymph (45%) and less frequently in the midgut (27.5%) and lowest in Rh. pulchellus (29.4%), where midgut and hemolymph detection rates were 17.6% and 11.8%, respectively. Similarly, in Hy. dromedarii, R. africae was mainly detected in the midgut (41.7%) but was absent in the hemolymph. Rickettsia africae was not detected in Hy. rufipes. No Coxiella, Theileria, or Babesia spp. were detected in this study. Conclusions: The tissue-specific localization of R. africae, found mainly in the hemolymph of Am. gemma, is congruent with the role of this tick species as its transmission vector. Thus, occurrence of TBPs in the hemolymph could serve as a predictor of vector competence of TBP transmission, especially in comparison to detection rates in the midgut, from which they must cross tissue barriers to effectively replicate and disseminate across tick tissues. Further studies should focus on exploring the distribution of TBPs within tick tissues to enhance knowledge of TBP epidemiology and to distinguish competent vectors from dead-end hosts.


Assuntos
Babesia , Camelus , Ehrlichia , Theileria , Carrapatos , Animais , Quênia/epidemiologia , Camelus/parasitologia , Camelus/microbiologia , Theileria/isolamento & purificação , Theileria/genética , Babesia/isolamento & purificação , Babesia/genética , Ehrlichia/isolamento & purificação , Ehrlichia/genética , Carrapatos/microbiologia , Carrapatos/parasitologia , Doenças Transmitidas por Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/parasitologia , Anaplasma/isolamento & purificação , Anaplasma/genética , Rickettsia/isolamento & purificação , Rickettsia/genética , Coxiella/isolamento & purificação , Coxiella/genética , Hemolinfa/microbiologia , Hemolinfa/parasitologia , Glândulas Salivares/microbiologia , Glândulas Salivares/parasitologia
13.
Bioengineering (Basel) ; 11(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38671764

RESUMO

Large language models (LLMs) are transformer-based neural networks that can provide human-like responses to questions and instructions. LLMs can generate educational material, summarize text, extract structured data from free text, create reports, write programs, and potentially assist in case sign-out. LLMs combined with vision models can assist in interpreting histopathology images. LLMs have immense potential in transforming pathology practice and education, but these models are not infallible, so any artificial intelligence generated content must be verified with reputable sources. Caution must be exercised on how these models are integrated into clinical practice, as these models can produce hallucinations and incorrect results, and an over-reliance on artificial intelligence may lead to de-skilling and automation bias. This review paper provides a brief history of LLMs and highlights several use cases for LLMs in the field of pathology.

14.
Dev Cell ; 58(15): 1429-1444.e6, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37321217

RESUMO

Bryophytes represent a sister to the rest of land plants. Despite their evolutionary importance and relatively simple body plan, a comprehensive understanding of the cell types and transcriptional states that underpin the temporal development of bryophytes has not been achieved. Using time-resolved single-cell RNA sequencing, we define the cellular taxonomy of Marchantia polymorpha across asexual reproduction phases. We identify two maturation and aging trajectories of the main plant body of M. polymorpha at single-cell resolution: the gradual maturation of tissues and organs along the tip-to-base axis of the midvein and the progressive decline of meristem activities in the tip along the chronological axis. Specifically, we observe that the latter aging axis is temporally correlated with the formation of clonal propagules, suggesting an ancient strategy to optimize allocation of resources to producing offspring. Our work thus provides insights into the cellular heterogeneity that underpins the temporal development and aging of bryophytes.


Assuntos
Marchantia , Marchantia/citologia , Marchantia/fisiologia
15.
Curr Biol ; 33(7): 1196-1210.e4, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36863344

RESUMO

In vegetative reproduction of Marchantia polymorpha (M. polymorpha), propagules, called gemmae, are formed in gemma cups. Despite its significance for survival, control of gemma and gemma cup formation by environmental cues is not well understood. We show here that the number of gemmae formed in a gemma cup is a genetic trait. Gemma formation starts from the central region of the floor of the gemma cup, proceeds to the periphery, and terminates when the appropriate number of gemmae is initiated. The MpKARRIKIN INSENSITIVE2 (MpKAI2)-dependent signaling pathway promotes gemma cup formation and gemma initiation. The number of gemmae in a cup is controlled by modulating the ON/OFF switch of the KAI2-dependent signaling. Termination of the signaling results in the accumulation of MpSMXL, a suppressor protein. In the Mpsmxl mutants, gemma initiation continues, leading to the formation of a highly increased number of gemmae in a cup. Consistent with its function, the MpKAI2-dependent signaling pathway is active in gemma cups where gemmae initiate, as well as in the notch region of the mature gemma and midrib of the ventral side of the thallus. In this work, we also show that GEMMA CUP-ASSOCIATED MYB1 works downstream of this signaling pathway to promote gemma cup formation and gemma initiation. We also found that the availability of potassium affects gemma cup formation independently from the KAI2-dependent signaling pathway in M. polymorpha. We propose that the KAI2-dependent signaling pathway functions to optimize vegetative reproduction by adapting to the environment in M. polymorpha.


Assuntos
Marchantia , Marchantia/genética , Ligantes , Transdução de Sinais , Reprodução , Proteínas de Plantas/metabolismo
16.
Viruses ; 15(6)2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37376661

RESUMO

Gas-phase electrophoresis on a nano-Electrospray Gas-phase Electrophoretic Mobility Molecular Analyzer (nES GEMMA) separates single-charged, native analytes according to the surface-dry particle size. A volatile electrolyte, often ammonium acetate, is a prerequisite for electrospraying. Over the years, nES GEMMA has demonstrated its unique capability to investigate (bio-)nanoparticle containing samples in respect to composition, analyte size, size distribution, and particle numbers. Virus-like particles (VLPs), being non-infectious vectors, are often employed for gene therapy applications. Focusing on adeno-associated virus 8 (AAV8) based VLPs, we investigated the response of these bionanoparticles to pH changes via nES GEMMA as ammonium acetate is known to exhibit these changes upon electrospraying. Indeed, slight yet significant differences in VLP diameters in relation to pH changes are found between empty and DNA-cargo-filled assemblies. Additionally, filled VLPs exhibit aggregation in dependence on the applied electrolyte's pH, as corroborated by atomic force microscopy. In contrast, cryogenic transmission electron microscopy did not relate to changes in the overall particle size but in the substantial particle's shape based on cargo conditions. Overall, we conclude that for VLP characterization, the pH of the applied electrolyte solution has to be closely monitored, as variations in pH might account for drastic changes in particles and VLP behavior. Likewise, extrapolation of VLP behavior from empty to filled particles has to be carried out with caution.


Assuntos
Dependovirus , Dependovirus/genética , Eletroforese/métodos , Microscopia de Força Atômica , Concentração de Íons de Hidrogênio
17.
Bioelectrochemistry ; 143: 107988, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34763170

RESUMO

Ion attachment can modify stability and structure of phospholipid bilayers. Of particular importance is the interaction of phospholipids with divalent cations, such as calcium ions playing an important role in numerous cellular processes. The aim of our study was to determine effects of calcium ions on phospholipid membranes employing two cell membrane analogues, liposomes and planar lipid bilayers, and for the first time the combination of two instrumental setups: gas-phase electrophoresis (nES GEMMA instrumentation) and electrical (capacitance and resistance) measurements. Liposomes and planar lipid bilayers consisted of phosphatidylcholine, cholesterol and phosphatidylethanolamine. Liposomes were prepared from dried lipid films via hydration while planar lipid bilayers were formed using a Mueller-Rudin method. Calcium ions were added to membranes from higher concentrated stock solutions. Changes in phospholipid bilayer properties due to calcium presence were observed for both studied cell membrane analogues. Changes in liposome size were observed, which might either be related to tighter packing of phospholipids in the bilayer or local distortions of the membrane. Likewise, a measurable change in planar lipid bilayer resistance and capacitance was observed in the presence of calcium ions, which can be due to an increased rigidity and tighter packing of the lipid molecules in the bilayer.


Assuntos
Fosfolipídeos
18.
PhytoKeys ; 206: 109-117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761270

RESUMO

A new propaguliferous moss species, Pohliatibetana X.R.Wang & X.M.Shao (Mielichhoferiaceae), from Tibet, southwest China, is described. The new species differs most saliently from other species of Pohlia by its combination of slender plants, loosely attached leaves and axillary solitary, and dark red and flower-like gemmae. In this paper, the line drawings, photographs, habit of the new species are provided and a morphological comparison of it with the similar species is made.

19.
Membranes (Basel) ; 12(9)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36135891

RESUMO

Extracellular vesicles (EVs) are in the scientific spotlight due to their potential application in the medical field, ranging from medical diagnosis to therapy. These applications rely on EV stability during isolation and purification-ideally, these steps should not impact vesicle integrity. In this context, we investigated EV stability and particle numbers via nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA) and nanoparticle tracking analysis (NTA). In nES GEMMA, native, surface-dry analytes are separated in the gas-phase according to the particle size. Besides information on size and particle heterogeneity, particle number concentrations are obtained in accordance with recommendations of the European Commission for nanoparticle characterization (2011/696/EU, 18 October 2011). Likewise, and in contrast to NTA, nES GEMMA enables detection of co-purified proteins. On the other hand, NTA, yielding data on hydrodynamic size distributions, is able to relate particle concentrations, omitting electrolyte exchange (and resulting EV loss), which is prerequisite for nES GEMMA. Focusing on EVs of different origin, we compared vesicles concentrations and stability, especially after electrolyte exchange and size exclusion chromatography (SEC). Co-isolated proteins were detected in most samples, and the vesicle amount varied in dependence on the EV source. We found that depletion of co-purified proteins was achievable via SEC, but was associated with a loss of EVs and-most importantly-with decreased vesicle stability, as detected via a reduced nES GEMMA measurement repeatability. Ultimately, we propose the repeatability of nES GEMMA to yield information on EV stability, and, as a result, we propose that nES GEMMA can yield additional valuable information in EV research.

20.
Trends Analyt Chem ; 30(1): 123-132, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25892833

RESUMO

The electrophoretic mobility of charged, airborne nanoparticles (NPs) or macromolecules and their specific complexes opens new avenues for their analysis and handling. The newly developed parallel differential mobility analyzer in combination with an electrostatic particle sampler enables not only the characterization of bio-NPs, but even their sampling while preserving their bioactivity (e.g., the enzyme activity of galactosidase). Precondition for the applicability of this technique is a well-defined charging status of the NPs in question. This charge conditioning can be achieved by means of a radioactive source, Po-210, even if the yield in terms of charged particles is low for sub-20-nm particles and the aging of the source influences the size spectra measured. Nevertheless, this technique enables size-defined sampling and enrichment, combined with real-time measurement of the size of both NPs and viruses. Furthermore, it allows determination of the number of attached biospecific antibodies, thereby providing information about the surface coverage of viruses by antibodies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA