Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2407261, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324291

RESUMO

Single-atom metal catalysts are promising electrocatalysts for water electrolysis. Nickel-based electrocatalysts have shown attractive application prospects for water electrolysis. However, synthesizing stable Ni single atoms using chemical and physical approaches remains a practical challenge. Here, a facile and precise method for synthesizing stable nickel single atoms on the surface of Geobacter sulfurreducens using a microbial-mediated extracellular electron transfer (EET) process is demonstrated. It is shown that G. sulfurreducens can effectively anchor nickel single atoms on their surface. X-ray absorption near-edge structure and Fourier-transformed extended X-ray absorption fine structure spectroscopy confirm that the nickel single atom is coordinated to nitrogen in the cytochromes. The as-synthesized nickel single atoms on G. sulfurreducens exhibit excellent bifunctional catalytic properties for alkaline water electrolysis with low overpotential (η) to achieve current density (10 mA cm-2) for both hydrogen evolution reactions (η = 80 mV) and oxygen evolution reaction (η = 330 mV) with minimal catalyst loading of 0.0015 mg Ni cm-2. The nickel single-atom catalyst shows long-term stability at a constant electrode potential. This synthesis method based on the EET capability of electroactive bacteria provides a simple and scalable approach for producing low-cost and highly efficient nonnoble transition metal single-atom catalysts for practical applications.

2.
Environ Res ; 245: 118038, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38147916

RESUMO

The basis for bioelectrochemical technology is the capability of electroactive bacteria (EAB) to perform bidirectional extracellular electron transfer (EET) with electrodes, i.e. outward- and inward-EET. Extracellular polymeric substances (EPS) surrounding EAB are the necessary media for EET, but the biochemical and molecular analysis of EPS of Geobacter biofilms on electrode surface is largely lacked. This study constructed Geobacter sulfurreducens-biofilms performing bidirectional EET to explore the bidirectional EET mechanisms through EPS characterization using electrochemical, spectroscopic fingerprinting and proteomic techniques. Results showed that the inward-EET required extracellular redox proteins with lower formal potentials relative to outward-EET. Comparing to the EPS extracted from anodic biofilm (A-EPS), the EPS extracted from cathodic biofilm (C-EPS) exhibited a lower redox activity, mainly due to a decrease of protein/polysaccharide ratio and α-helix content of proteins. Furthermore, less cytochromes and more tyrosine- and tryptophan-protein like substances were detected in C-EPS than in A-EPS, indicating a diminished role of cytochromes and a possible role of other redox proteins in inward-EET. Proteomic analysis identified a variety of redox proteins including cytochrome, iron-sulfur clusters-containing protein, flavoprotein and hydrogenase in EPS, which might serve as an extracellular redox network for bidirectional EET. Those redox proteins that were significantly stimulated in A-EPS and C-EPS might be essential for outward- and inward-EET and warranted further research. This work sheds light on the mechanism of bidirectional EET of G. sulfurreducens biofilms and has implications in improving the performance of bioelectrochemical technology.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Geobacter , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Elétrons , Proteômica , Biofilmes , Oxirredução , Citocromos/metabolismo
3.
J Nanobiotechnology ; 22(1): 203, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659001

RESUMO

BACKGROUND: Biogeochemical processing of metals including the fabrication of novel nanomaterials from metal contaminated waste streams by microbial cells is an area of intense interest in the environmental sciences. RESULTS: Here we focus on the fate of Ce during the microbial reduction of a suite of Ce-bearing ferrihydrites with between 0.2 and 4.2 mol% Ce. Cerium K-edge X-ray absorption near edge structure (XANES) analyses showed that trivalent and tetravalent cerium co-existed, with a higher proportion of tetravalent cerium observed with increasing Ce-bearing of the ferrihydrite. The subsurface metal-reducing bacterium Geobacter sulfurreducens was used to bioreduce Ce-bearing ferrihydrite, and with 0.2 mol% and 0.5 mol% Ce, an Fe(II)-bearing mineral, magnetite (Fe(II)(III)2O4), formed alongside a small amount of goethite (FeOOH). At higher Ce-doping (1.4 mol% and 4.2 mol%) Fe(III) bioreduction was inhibited and goethite dominated the final products. During microbial Fe(III) reduction Ce was not released to solution, suggesting Ce remained associated with the Fe minerals during redox cycling, even at high Ce loadings. In addition, Fe L2,3 X-ray magnetic circular dichroism (XMCD) analyses suggested that Ce partially incorporated into the Fe(III) crystallographic sites in the magnetite. The use of Ce-bearing biomagnetite prepared in this study was tested for hydrogen fuel cell catalyst applications. Platinum/carbon black electrodes were fabricated, containing 10% biomagnetite with 0.2 mol% Ce in the catalyst. The addition of bioreduced Ce-magnetite improved the electrode durability when compared to a normal Pt/CB catalyst. CONCLUSION: Different concentrations of Ce can inhibit the bioreduction of Fe(III) minerals, resulting in the formation of different bioreduction products. Bioprocessing of Fe-minerals to form Ce-containing magnetite (potentially from waste sources) offers a sustainable route to the production of fuel cell catalysts with improved performance.


Assuntos
Cério , Óxido Ferroso-Férrico , Geobacter , Platina , Cério/química , Cério/metabolismo , Geobacter/metabolismo , Catálise , Óxido Ferroso-Férrico/química , Platina/química , Oxirredução , Compostos Férricos/química , Compostos Férricos/metabolismo
4.
Appl Environ Microbiol ; 89(3): e0217522, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36853045

RESUMO

The reduction of Sb(V)-bearing ferrihydrite by Geobacter sulfurreducens was studied to determine the fate of the metalloid in Fe-rich systems undergoing redox transformations. Sb(V) added at a range of concentrations adsorbed readily to ferrihydrite, and the loadings had a pronounced impact on the rate and extent of Fe(III) reduction and the products formed. Magnetite dominated at low (0.5 and 1 mol%) Sb(V) concentrations, with crystallite sizes decreasing at higher Sb loadings: 37-, 25-, and 17-nm particles for no-Sb, 0.5% Sb, and 1% Sb samples, respectively. In contrast, goethite was the dominant end product for samples with higher antimony loadings (2 and 5 mol%), with increased goethite grain size in the 5% Sb sample. Inductively coupled mass spectrometry (ICP-MS) analysis confirmed that Sb was not released to solution during the bioreduction process, and X-ray photoelectron spectroscopy (XPS) analyses showed that no Sb(III) was formed throughout the experiments, confirming that the Fe(III)-reducing bacterium Geobacter sulfurreducens cannot reduce Sb(V) enzymatically or via biogenic Fe(II). These findings suggest that Fe (bio)minerals have a potential role in limiting antimony pollution in the environment, even when undergoing redox transformations. IMPORTANCE Antimony is an emerging contaminant that shares chemical characteristics with arsenic. Metal-reducing bacteria (such as Geobacter sulfurreducens) can cause the mobilization of arsenic from Fe(III) minerals under anaerobic conditions, causing widespread contamination of aquifers worldwide. This research explores whether metal-reducing bacteria can drive the mobilization of antimony under similar conditions. In this study, we show that G. sulfurreducens cannot reduce Sb(V) directly or cause Sb release during the bioreduction of the Fe(III) mineral ferrihydrite [although the sorbed Sb(V) did alter the Fe(II) mineral end products formed]. Overall, this study highlights the tight associations between Fe and Sb in environmental systems, suggesting that the microbial reduction of Fe(III)/Sb mineral assemblages may not lead to Sb release (in stark contrast to the mobilization of As in iron-rich systems) and offers potential Fe-based remediation options for Sb-contaminated environments.


Assuntos
Arsênio , Geobacter , Compostos Férricos/metabolismo , Antimônio , Arsênio/metabolismo , Minerais/metabolismo , Óxido Ferroso-Férrico/metabolismo , Geobacter/metabolismo , Oxirredução
5.
Biotechnol Bioeng ; 120(5): 1346-1356, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36779277

RESUMO

Dissimilatory metal-reducing bacteria (DMRB) can transfer electrons to extracellular insoluble electron acceptors and play important roles in geochemical cycling, biocorrosion, environmental remediation, and bioenergy generation. c-type cytochromes (c-Cyts) are synthesized by DMRB and usually transported to the cell surface to form modularized electron transport conduits through protein assembly, while some of them are released as extracellularly free-moving electron carriers in growth to promote electron transport. However, the type of these released c-Cyts, the timing of their release, and the functions they perform have not been unrevealed yet. In this work, after characterizing the types of c-Cyts released by Geobacter sulfurreducens under a variety of cultivation conditions, we found that these c-Cyts accumulated up to micromolar concentrations in the surrounding medium and conserved their chemical activities. Further studies demonstrated that the presence of c-Cyts accelerated the process of microbial extracellular electron transfer and mediated long-distance electron transfer. In particular, the presence of c-Cyts promoted the microbial respiration and affected the physiological state of the microbial community. In addition, c-Cyts were observed to be adsorbed on the surface of insoluble electron acceptors and modify electron acceptors. These results reveal the overlooked multiple roles of the released c-Cyts in acting as public goods, delivering electrons, modifying electron acceptors, and even regulating bacterial community structure in natural and artificial environments.


Assuntos
Citocromos , Geobacter , Transporte de Elétrons , Citocromos/metabolismo , Membrana Celular/metabolismo , Metais , Oxirredução
6.
Microb Cell Fact ; 22(1): 54, 2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36935505

RESUMO

The strain Lsc-8 can produce a current density of 33.08 µA cm-2 using carboxymethylcellulose (CMC) as a carbon source in a three-electrode configuration. A co-culture system of strain Lsc-8 and Geobacter sulfurreducens PCA was used to efficiently convert cellulose into electricity to improve the electricity generation capability of microbial fuel cells (MFCs). The maximum current density achieved by the co-culture with CMC was 559 µA cm-2, which was much higher than that of strain Lsc-8 using CMC as the carbon source. The maximum power density reached 492.05 ± 52.63 mW cm-2, which is much higher than that previously reported. Interaction mechanism studies showed that strain Lsc-8 had the ability to secrete riboflavin and convert cellulose into acetic acid, which might be the reason for the high electrical production performance of the co-culture system. In addition, to the best of our knowledge, a co-culture or single bacteria system using agricultural straw as the carbon source to generate electricity has not been reported. In this study, the maximum current density of the three-electrode system inoculated with strain Lsc-8 was 14.56 µA cm-2 with raw corn stover as the sole carbon source. Raw corn stover as a carbon source was also investigated for use in a co-culture system. The maximum current density achieved by the co-culture was 592 µA cm-2. The co-culture system showed a similar electricity generation capability when using raw corn stover and when using CMC. This research shows for the first time that a co-culture or single bacteria system can realize both waste biomass treatment and waste power generation.


Assuntos
Fontes de Energia Bioelétrica , Zea mays , Fontes de Energia Bioelétrica/microbiologia , Eletricidade , Celulose , Bactérias , Carbono
7.
Microb Ecol ; 85(2): 535-543, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35254501

RESUMO

Anaerobic digestion (AD) has been widely applied for the degradation of organic wastewater due to its advantages of high-load operation and energy recovery. However, some challenges, such as low treatment capacity and instability caused by the accumulation of volatile fatty acids, limit its further application. Here, S. wolfei and G. sulfurreducens were initially co-cultured in the anaerobic anode of bio-electrochemical system for degrading butyric acid. Butyrate degradation characteristics in different conditions were quantitatively described. Moreover, G. sulfurreducens simultaneously strengthened the consumption of H2 and acetic acid via direct interspecies electron transfer, thereby strengthening the degradation of butyric acid via a co-metabolic process. During butyrate degradation, the co-culture of S. wolfei and G. sulfurreducens showed more advantages than that of S. wolfei and methanogens. This present study provides a new perspective of butyrate metabolism, which was independent of methanogens in an AD process.


Assuntos
Geobacter , Anaerobiose , Transporte de Elétrons , Ácido Butírico
8.
Environ Res ; 218: 115063, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528045

RESUMO

Bacteria have evolved several mechanisms to resist Cd toxicity, which are crucial for Cd detoxication and have the potential to be used for bioremediation of Cd. Geobacter species are widely found in anaerobic environments and play important roles in natural biogeochemical cycles. However, the transcriptomic response of Geobacter sulfurreducens under Cd stress have not been fully elucidated. Through integrated analysis of transcriptomic and protein-protein interaction (PPI) data, we uncovered a global view of mRNA changes in Cd-induced cellular processes in this study. We identified 182 differentially expressed genes (|log2(fold change)| > 1, adjusted P < 0.05) in G. sulfurreducens exposed to 0.1 mM CdCl2 using RNA sequencing (RNA-seq). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that CdCl2 significantly affected sulfur compound metabolic processes. In addition, through PPI network analysis, hub genes related to molecular chaperones were identified to play important role in Cd stress response. We also identified a Cd-responsive transcriptional regulator ArsR2 (coded by GSU2149) and verified the function of ArsR2-ParsR2 regulatory circuit in Escherichia coli. This study provides new insight into Cd stress response in G. sulfurreducens, and identified a potential sensor element for Cd detection.


Assuntos
Geobacter , Transcriptoma , Cádmio/toxicidade , Geobacter/genética , Perfilação da Expressão Gênica
9.
Appl Microbiol Biotechnol ; 106(2): 865-876, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34939136

RESUMO

Recently, a study showed that glycerol fermentation by Clostridium pasteurianum could be metabolically redirected when the electroactive bacterium Geobacter sulfurreducens was added in the culture. It was assumed that this metabolic shift of the fermentative species resulted from an interspecies electron transfer. The aim of this study was to find out the mechanisms used for this interaction and how they affect the metabolism of C. pasteurianum. To get insights into the mechanisms involved, several coculture setups and RNA sequencing with differential expression analysis were performed. As a result, a putative interaction model was proposed: G. sulfurreducens produces cobamide molecules that possibly modify C. pasteurianum metabolic pathway at the key enzyme glycerol dehydratase, and affect its vanadium nitrogenase expression. In addition, the results suggested that G. sulfurreducens' electrons could enter C. pasteurianum through its transmembrane flavin-bound polyferredoxin and cellular cytochrome b5-rubredoxin interplay, putatively reinforcing the metabolic shift. Unravelling the mechanisms behind the interaction between fermentative and electroactive bacteria helps to better understand the role of bacterial interactions in fermentation setups. KEY POINTS: • C. pasteurianum-G. sulfurreducens interaction inducing a metabolic shift is mediated • C. pasteurianum's metabolic shift in coculture might be induced by cobamides • Electrons possibly enter C. pasteurianum through a multiflavin polyferredoxin.


Assuntos
Geobacter , Clostridium/genética , Transporte de Elétrons , Geobacter/genética , Oxirredução
10.
Proc Natl Acad Sci U S A ; 116(41): 20716-20724, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548422

RESUMO

Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration. Geobacter sulfurreducens is a commonly enriched electricity-producing organism, forming thick conductive biofilms that magnify total activity by supporting respiration of cells not in direct contact with electrodes. Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, and a lack of direct measurements of cellular growth within biofilms prevents discrimination between these models. To address this fundamental question, we measured the anabolic activity of G. sulfurreducens biofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry (nanoSIMS). Our results demonstrate that the most active cells are at the anode surface, and that this activity decreases with distance, reaching a minimum 10 µm from the electrode. Cells nearest the electrode continue to grow at their maximum rate in weeks-old biofilms 80-µm-thick, indicating nutrient or buffer diffusion into the biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with each cell layer, is present in thin biofilms (<5 µm) and fully grown biofilms (>20 µm), and at different anode redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron acceptors at micron distances, which has important implications for improving microbial electrochemical devices as well as our understanding of syntrophic associations harnessing the phenomenon of microbial conductivity.


Assuntos
Biofilmes/crescimento & desenvolvimento , Respiração Celular , Eletricidade , Eletrodos , Geobacter/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Espectrometria de Massa de Íon Secundário/métodos , Fenômenos Bioquímicos , Fontes de Energia Bioelétrica , Geobacter/crescimento & desenvolvimento , Nanotecnologia , Oxirredução
11.
Mol Microbiol ; 113(4): 783-793, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31872462

RESUMO

The electrically conductive pili (e-pili) of Geobacter species enable extracellular electron transfer to insoluble metallic minerals, electrodes and other microbial species, which confers biogeochemical significance and global prevalence on Geobacter in diverse anaerobic environments. E-pili are constructed by truncated PilA which is considered to have evolved from full-length pilin by gene fission under positive evolutionary selection. However, this hypothesis is based on phylogenetic analysis and has not yet been experimentally confirmed. Here, we reconstructed an ancestral strain of G. sulfurreducens (designated COMB) carrying full-length PilA by combining genes GSU1496 and GSU1497. The results demonstrated that strain COMB expressed and assembled the full-length fused PilA and exhibited an outer membrane c-type cytochrome profile similar to the wild-type strain. Surprisingly, the generated COMB-pili were also conductive, indicating the evolution of truncated PilA did not occur for conductivity. Moreover, strain COMB minimally reduced Fe(III) oxides but maintained its ability to respire electrodes, demonstrating the truncation of pilin enables iron respiration. This study provides the first experimental evidence that the truncation of pilin in Geobacter species confers adaption to Fe(III)-mineral-mediated selective pressures, and suggests an evolutionary event during which the separation of the GSU1497 gene helped Geobacter survive and thrive in natural environments.


Assuntos
Evolução Biológica , Compostos Férricos/metabolismo , Fímbrias Bacterianas/metabolismo , Geobacter/fisiologia , Adaptação Biológica , Transporte de Elétrons , Proteínas de Fímbrias/metabolismo , Oxirredução
12.
Biochem Biophys Res Commun ; 547: 65-68, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33596482

RESUMO

Single-molecule real-time DNA sequencing revealed that 4-methylcytosine (m4C) commonly exists in bacterial genomes. In this work, samples with different m4C methylation patterns were studied. Results reveal that m4C modification is a biochemical reaction with distance effect, and its distribution follows the power function in the positive, negative, and double strands of genomic DNA sequences of Geobacter sulfurreducens. Furthermore, the value of regression coefficient in the fitting formula for double strands was the sum of those in the fitting formulae for positive and negative strands. Meanwhile, the value of exponent coefficient was the average, implicating an interesting mathematical phenomenon about power function. Considering the potent role of m4C in gene expression and the present results being obtained from the same genomic DNA sequence, this work suggests that the patterns of m4C distribution may be served as a signal for G. sulfurreducens to rapidly identify the genes to respond to environmental stresses or signals. This study opens a new avenue to extend our knowledge about the modification mechanisms and the epigenetic information of m4C modification in prokaryotes.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citosina/metabolismo , Metilação de DNA , Geobacter/genética , Geobacter/metabolismo , Citosina/análogos & derivados , Citosina/química , Genoma Bacteriano , Filogenia , Análise de Sequência de DNA/métodos
13.
Appl Environ Microbiol ; 87(12): e0261720, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33837010

RESUMO

An outer membrane c-type cytochrome (OmcZ) in Geobacter sulfurreducens is essential for optimal current production in microbial fuel cells. OmcZ exists in two forms, small and large, designated OmcZS and OmcZL, respectively. However, it is still not known how these two structures are formed. A mutant with a disruption of the GSU2075 gene encoding a subtilisin-like serine protease (designated ozpA for the OmcZprotease), which is located downstream of omcZ, produced low currents at a level similar to that of the omcZ-deficient mutant strain. Biochemical analyses revealed that the ozpA mutant accumulated OmcZL and did not produce OmcZS, which is thought to be a mature form that is essential for the extracellular electron transfer to the electrode. A heterologous expression system cell lysate from an Escherichia coli strain producing OzpA cleaved OmcZL and generated OmcZS as the proteolytic product. Among the culture supernatant, loosely bound outer surface, and intracellular protein fractions from wild-type G. sulfurreducens, only the culture supernatant protein fraction showed OmcZL cleavage activity, indicating that the mature form of OmcZ, OmcZS, can be produced outside the cells. These results indicate that OzpA is an essential protease for current production via the maturation of OmcZ, and OmcZS is the key to the extracellular electron transfer to electrodes. This proteolytic maturation of OmcZ is a unique regulation among known c-type cytochromes in G. sulfurreducens. IMPORTANCE Microbial fuel cells are a promising technology for energy generation from various waste types. However, the molecular mechanisms of microbial extracellular electron transfer to the electrode need to be elucidated. G. sulfurreducens is a common key player in electricity generation in mixed-culture microbial fuel cell systems and a model microorganism for the study of extracellular electron transfer. Outer membrane c-type cytochrome OmcZ is essential for an optimal current production by G. sulfurreducens. OmcZ proteolytic cleavage occurs during maturation, but the underlying mechanism is unknown. This study identifies a subtilisin-like protease, OzpA, which plays a role in cleaving OmcZ and generating the mature form of OmcZ (OmcZS). OzpA is essential for current production and, thus, the proteolytic maturation of OmcZ. This is a novel regulation of the c-type cytochrome for G. sulfurreducens extracellular electron transfer. This study also provides new insights into the design strategy and development of microbial extracellular electron transfer for an efficient energy conversion from chemical energy to electricity.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Fontes de Energia Bioelétrica , Geobacter/metabolismo , Serina Proteases/metabolismo , Eletricidade , Geobacter/genética , Mutação , Proteólise , Serina Proteases/genética
14.
Appl Environ Microbiol ; 87(17): e0070621, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34190605

RESUMO

A strain of Geobacter sulfurreducens, an organism capable of respiring solid extracellular substrates, lacking four of five outer membrane cytochrome complexes (extABCD+ strain) grows faster and produces greater current density than the wild type grown under identical conditions. To understand cellular and biofilm modifications in the extABCD+ strain responsible for this increased performance, biofilms grown using electrodes as terminal electron acceptors were sectioned and imaged using electron microscopy to determine changes in thickness and cell density, while parallel biofilms incubated in the presence of nitrogen and carbon isotopes were analyzed using NanoSIMS (nanoscale secondary ion mass spectrometry) to quantify and localize anabolic activity. Long-distance electron transfer parameters were measured for wild-type and extABCD+ biofilms spanning 5-µm gaps. Our results reveal that extABCD+ biofilms achieved higher current densities through the additive effects of denser cell packing close to the electrode (based on electron microscopy), combined with higher metabolic rates per cell compared to the wild type (based on increased rates of 15N incorporation). We also observed an increased rate of electron transfer through extABCD+ versus wild-type biofilms, suggesting that denser biofilms resulting from the deletion of unnecessary multiheme cytochromes streamline electron transfer to electrodes. The combination of imaging, physiological, and electrochemical data confirms that engineered electrogenic bacteria are capable of producing more current per cell and, in combination with higher biofilm density and electron diffusion rates, can produce a higher final current density than the wild type. IMPORTANCE Current-producing biofilms in microbial electrochemical systems could potentially sustain technologies ranging from wastewater treatment to bioproduction of electricity if the maximum current produced could be increased and current production start-up times after inoculation could be reduced. Enhancing the current output of microbial electrochemical systems has been mostly approached by engineering physical components of reactors and electrodes. Here, we show that biofilms formed by a Geobacter sulfurreducens strain producing ∼1.4× higher current than the wild type results from a combination of denser cell packing and higher anabolic activity, enabled by an increased rate of electron diffusion through the biofilms. Our results confirm that it is possible to engineer electrode-specific G. sulfurreducens strains with both faster growth on electrodes and streamlined electron transfer pathways for enhanced current production.


Assuntos
Biofilmes , Espaço Extracelular/metabolismo , Geobacter/química , Geobacter/fisiologia , Eletricidade , Eletrodos , Transporte de Elétrons , Espaço Extracelular/química , Geobacter/crescimento & desenvolvimento
15.
Environ Sci Technol ; 55(21): 14928-14937, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34676765

RESUMO

Geobacter spp. are well-known exoelectrogenic microorganisms that often predominate acetate-fed biofilms in microbial fuel cells (MFCs) and other bioelectrochemical systems (BESs). By using an amplicon sequence variance analysis (at one nucleotide resolution), we observed a succession between two closely related species (98% similarity in 16S RNA), Geobacter sulfurreducens and Geobacter anodireducens, in the long-term studies (20 months) of MFC biofilms. Geobacter spp. predominated in the near-electrode portion of the biofilm, while the outer layer contained an abundance of aerobes, which may have helped to consume oxygen but reduced the relative abundance of Geobacter. Removal of the outer aerobes by norspermidine washing of biofilms revealed a transition from G. sulfurreducens to G. anodireducens. This succession was also found to occur rapidly in co-cultures in BES tests even in the absence of oxygen, suggesting that oxygen was not a critical factor. G. sulfurreducens likely dominated in early biofilms by its relatively larger cell size and production of extracellular polymeric substances (individual advantages), while G. anodireducens later predominated due to greater cell numbers (quantitative advantage). Our findings revealed the interspecies competition in the long-term evolution of Geobacter genus, providing microscopic insights into Geobacter's niche and competitiveness in complex electroactive microbial consortia.


Assuntos
Fontes de Energia Bioelétrica , Geobacter , Biofilmes , Eletrodos , Geobacter/genética
16.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32826217

RESUMO

Geobacter sulfurreducens is a good candidate as a chassis organism due to its ability to form thick, conductive biofilms, enabling long-distance extracellular electron transfer (EET). Due to the complexity of EET pathways in G. sulfurreducens, a dynamic approach is required to study genetically modified EET rates in the biofilm. By coupling online resonance Raman microscopy with chronoamperometry, we were able to observe the dynamic discharge response in the biofilm's cytochromes to an increase in anode voltage. Measuring the heme redox state alongside the current allows for the fitting of a dynamic model using the current response and a subsequent validation of the model via the value of a reduced cytochrome c Raman peak. The modeled reduced cytochromes closely fitted the Raman response data from the G. sulfurreducens wild-type strain, showing the oxidation of heme groups in cytochromes until a new steady state was achieved. Furthermore, the use of a dynamic model also allows for the calculation of internal rates, such as acetate and NADH consumption rates. The Raman response of a mutant lacking OmcS showed a higher initial oxidation rate than predicted, followed by an almost linear decrease of the reduced mediators. The increased initial rate could be attributed to an increase in biofilm conductivity, previously observed in biofilms lacking OmcS. One explanation for this is that OmcS acts as a conduit between cytochromes; therefore, deleting the gene restricts the rate of electron transfer to the extracellular matrix. This could, however, be modeled assuming a linear oxidation rate of intercellular mediators.IMPORTANCE Bioelectrochemical systems can fill a vast array of application niches, due to the control of redox reactions that it offers. Although native microorganisms are preferred for applications such as bioremediation, more control is required for applications such as biosensors or biocomputing. The development of a chassis organism, in which the EET is well defined and readily controllable, is therefore essential. The combined approach in this work offers a unique way of monitoring and describing the reaction kinetics of a G. sulfurreducens biofilm, as well as offering a dynamic model that can be used in conjunction with applications such as biosensors.


Assuntos
Transporte de Elétrons/fisiologia , Geobacter/fisiologia , Modelos Químicos
17.
Appl Environ Microbiol ; 86(18)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32680873

RESUMO

Biomineralization of Cu has been shown to control contaminant dynamics and transport in soils. However, very little is known about the role that subsurface microorganisms may play in the biogeochemical cycling of Cu. In this study, we investigate the bioreduction of Cu(II) by the subsurface metal-reducing bacterium Geobacter sulfurreducens Rapid removal of Cu from solution was observed in cell suspensions of G. sulfurreducens when Cu(II) was supplied, while transmission electron microscopy (TEM) analyses showed the formation of electron-dense nanoparticles associated with the cell surface. Energy-dispersive X-ray spectroscopy (EDX) point analysis and EDX spectrum image maps revealed that the nanoparticles are rich in both Cu and S. This finding was confirmed by X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses, which identified the nanoparticles as Cu2S. Biomineralization of CuxS nanoparticles in soils has been reported to enhance the colloidal transport of a number of contaminants, including Pb, Cd, and Hg. However, formation of these CuxS nanoparticles has only been observed under sulfate-reducing conditions and could not be repeated using isolates of implicated organisms. As G. sulfurreducens is unable to respire sulfate, and no reducible sulfur was supplied to the cells, these data suggest a novel mechanism for the biomineralization of Cu2S under anoxic conditions. The implications of these findings for the biogeochemical cycling of Cu and other metals as well as the green production of Cu catalysts are discussed.IMPORTANCE Dissimilatory metal-reducing bacteria are ubiquitous in soils and aquifers and are known to utilize a wide range of metals as terminal electron acceptors. These transformations play an important role in the biogeochemical cycling of metals in pristine and contaminated environments and can be harnessed for bioremediation and metal bioprocessing purposes. However, relatively little is known about their interactions with Cu. As a trace element that becomes toxic in excess, Cu can adversely affect soil biota and fertility. In addition, biomineralization of Cu nanoparticles has been reported to enhance the mobilization of other toxic metals. Here, we demonstrate that when supplied with acetate under anoxic conditions, the model metal-reducing bacterium Geobacter sulfurreducens can transform soluble Cu(II) to Cu2S nanoparticles. This study provides new insights into Cu biomineralization by microorganisms and suggests that contaminant mobilization enhanced by Cu biomineralization could be facilitated by Geobacter species and related organisms.


Assuntos
Biomineralização , Cobre/metabolismo , Geobacter/metabolismo , Nanopartículas Metálicas , Sulfetos/metabolismo
18.
Appl Microbiol Biotechnol ; 104(9): 4059-4069, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32179949

RESUMO

Geobacter sulfurreducens is capable of reducing Pd(II) to Pd(0) using acetate as electron donor; however, the biochemical and genetic mechanisms involved in this process have not been described. In this work, we carried out transcriptome profiling analysis to identify the genes involved in Pd(II) reduction in this bacterium. Our results showed that 252 genes were upregulated while 141 were downregulated during Pd(II) reduction. Among the upregulated genes, 12 were related to energy metabolism and electron transport, 50 were classified as involved in protein synthesis, 42 were associated to regulatory functions and transcription, and 47 have no homologs with known function. RT-qPCR data confirmed upregulation of genes encoding PilA, the structural protein for electrically conductive pili, as well as c-type cytochromes GSU1062, GSU2513, GSU2808, GSU2934, GSU3107, OmcH, OmcM, PpcA, and PpcD under Pd(II)-reducing conditions. ΔpilA and ΔpilR mutant strains showed 20% and 40% decrease in the Pd(II)-reducing capacity, respectively, as compared to the wild type strain, indicating the central role of pili in this process. RT-qPCR data collected during Pd(II) reduction also confirmed downregulation of omcB, omcC, omcZ, and omcS genes, which have been shown to be involved in the reduction of Fe(III) and electrodes. The present study contributes to elucidate the mechanisms involved in Pd(II) reduction by G. sulfurreducens. Graphical Abstract KEY POINTS: • Transcriptome analysis provided evidence on Pd(II) reduction by G. sulfurreducens. • Results indicate that electrically conductive pili is involved in Pd(II) reduction. • G. sulfurreducens was not able to grow under Pd(II)-reducing conditions. • The study contributes to a better understanding of the mechanisms in Pd(II) reduction.


Assuntos
Citocromos/genética , Perfilação da Expressão Gênica , Geobacter/genética , Paládio/metabolismo , Citocromos/classificação , Regulação para Baixo , Transporte de Elétrons/genética , Metabolismo Energético/genética , Regulação Bacteriana da Expressão Gênica , Oxirredução , Regulação para Cima
19.
Angew Chem Int Ed Engl ; 59(30): 12331-12336, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-31815351

RESUMO

Anaerobic microorganisms of the Geobacter genus are effective electron sources for the synthesis of nanoparticles, for bioremediation of polluted water, and for the production of electricity in fuel cells. In multistep reactions, electrons are transferred via iron/heme cofactors of c-type cytochromes from the inner cell membrane to extracellular metal ions, which are bound to outer membrane cytochromes. We measured electron production and electron flux rates to 5×105  e s-1 per G. sulfurreducens. Remarkably, these rates are independent of the oxidants, and follow zero order kinetics. It turned out that the microorganisms regulate electron flux rates by increasing their Fe2+ /Fe3+ ratios in the multiheme cytochromes whenever the activity of the extracellular metal oxidants is diminished. By this mechanism the respiration remains constant even when oxidizing conditions are changing. This homeostasis is a vital condition for living systems, and makes G. sulfurreducens a versatile electron source.

20.
Biochem Biophys Res Commun ; 516(2): 474-479, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31229265

RESUMO

Selenite reduction is a key step in the biogeochemical cycle of selenium-an essential trace element for life. A variety of bacteria can transform selenite into elemental selenium nanoparticles on the cell surface via anaerobic respiration or detoxification processes. However, the proteins associated with the uptake of selenite for these processes are poorly understood. In this study, we investigated the role of an outer membrane porin-like protein, ExtI, in selenite permeation in Geobacter sulfurreducens. We demonstrated that selenite uptake and selenium nanoparticle formation were impaired in an extI-deficient strain. A putative rhodanese-like lipoprotein is encoded by an extH gene located immediately upstream of extI in the genome. We showed that ExtH is translocated into inner and outer membranes and that extI deficiency exclusively affects the localization of ExtH in the outer membrane. Coelution of ExtI and ExtH during gel filtration analysis of the outer membrane fraction of wild-type cells suggests a direct protein-protein interaction between them. Taken together, these results lead us to propose a physiological role for ExtI as a selenite channel associated with ExtH in the outer membrane.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Geobacter/metabolismo , Lipoproteínas/metabolismo , Porinas/metabolismo , Ácido Selenioso/metabolismo , Tiossulfato Sulfurtransferase/metabolismo , Membrana Celular/metabolismo , Nanopartículas/química , Nanopartículas/ultraestrutura , Frações Subcelulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA