Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 434
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Diabetologia ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953925

RESUMO

Suboptimal glycaemic management in hospitals has been associated with adverse clinical outcomes and increased financial costs to healthcare systems. Despite the availability of guidelines for inpatient glycaemic management, implementation remains challenging because of the increasing workload of clinical staff and rising prevalence of diabetes. The development of novel and innovative technologies that support the clinical workflow and address the unmet need for effective and safe inpatient diabetes care delivery is still needed. There is robust evidence that the use of diabetes technology such as continuous glucose monitoring and closed-loop insulin delivery can improve glycaemic management in outpatient settings; however, relatively little is known of its potential benefits and application in inpatient diabetes management. Emerging data from clinical studies show that diabetes technologies such as integrated clinical decision support systems can potentially mediate safer and more efficient inpatient diabetes care, while continuous glucose sensors and closed-loop systems show early promise in improving inpatient glycaemic management. This review aims to provide an overview of current evidence related to diabetes technology use in non-critical care adult inpatient settings. We highlight existing barriers that may hinder or delay implementation, as well as strategies and opportunities to facilitate the clinical readiness of inpatient diabetes technology in the future.

2.
Chemphyschem ; 25(6): e202300658, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38269420

RESUMO

Synthesising and designing pseudocapacitive material with good electrochemical and electrocatalytic behaviour is essential to use as supercapacitor as well as non-enzymatic glucose sensor electrode. In this work, NiCo2 S4 nanoparticles decorated onto the 2D-Carbyne nanosheets are achieved by the solvothermal process. The as-prepared NiCo2 S4 @2D-Carbyne provides rich reaction sites and better diffusion pathways. On usage as an electrode for supercapacitor application, the NiCo2 S4 @2D-Carbyne exhibits the specific capacitance of about 2507 F g-1 at 1 A g-1 . In addition, the fabricated hybrid device generates an energy density of 52.2 Wh kg-1 at a power density of 1.01 kW kg-1 . Besides, the glucose oxidation behaviour of NiCo2 S4 @2D-Carbyne modified GCE has also been performed. The diffusion of glucose from the electrolyte to the electrode obeys the kinetic control process. Furthermore, the fabricated NiCo2 S4 @2D-Carbyne non-enzymatic glucose sensor exhibits a limit of detection of about 34.5 µM with a sensitivity of about 135 µA mM-1 cm-2 . These findings highlight the need to design and synthesis electrode materials with adequate electrolyte-electrode contact, strong structural integrity, and rapid ion/electron transport.

3.
Nanotechnology ; 35(36)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904452

RESUMO

Copper/Cuprous oxide/Carbon nanoparticles decorated MXene composite was prepared and subsequently examined for its potential application as a non-enzymatic glucose sensor. To carry out this, initially the Cu MOF/MXene composite was synthesised by the hydrothermal method and was annealed in an unreacted environment at different time intervals. During this process, petal like Cu MOF on MXene loses the organic ligands to form a Cu/Cu2O/C based nanoparticles on MXene. Further, an electrode was fabricated with the developed material for understanding the sensing performance by cyclic voltammetry and chronoamperometry in 0.1 M NaOH solution. Results reveal that the highest weight percentage of copper oxide in the composite (15 min of annealed material) shows a higher electro catalytic activity for sensing glucose molecules due to more active sites with good electron transfer ability in the composite. The formed composite exhibits a wide linear range of 0.001-26.5 mM, with a sensitivity of 762.53µAmM-1cm-2(0.001-10.1 mM), and 397.18µAmM-1cm-2(11.2-26.9 mM) and the limit of detection was 0.103µM. In addition to this, the prepared electrode shows a good reusability, repeatability, selectivity with other interferences, stability (93.65% after 30 days of storage), and feasibility of measuring glucose in real samples. This finding reveals that the metal oxide derived from MOF based nanoparticle on the MXene surface will promote the use of non-enzymatic glucose sensors.


Assuntos
Cobre , Eletrodos , Glucose , Nanopartículas , Cobre/química , Glucose/análise , Nanopartículas/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Carbono/química , Técnicas Eletroquímicas/métodos , Limite de Detecção
4.
Anal Bioanal Chem ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613683

RESUMO

The development of cost-effective and highly efficient electrocatalysts is critical to help electrochemical non-enzymatic sensors achieve high performance. Here, a new class of catalyst, Ru single atoms confined on Cu nanotubes as a single-atom alloy (Ru1Cu NTs), with a unique electronic structure and property, was developed to construct a novel electrochemical non-enzymatic glucose sensor for the first time. The Ru1Cu NTs with a diameter of about 24.0 nm showed a much lower oxidation potential (0.38 V) and 9.0-fold higher response (66.5 µA) current than Cu nanowires (Cu NWs, oxidation potential 0.47 V and current 7.4 µA) for glucose electrocatalysis. Moreover, as an electrochemical non-enzymatic glucose sensor, Ru1Cu NTs not only exhibited twofold higher sensitivity (54.9 µA mM-1 cm-2) and wider linear range (0.5-8 mM) than Cu NWs, but also showed a low detection limit (5.0 µM), excellent selectivity, and great stability. According to theoretical calculation results, the outstanding catalytic and sensing performance of Ru1Cu NTs could be ascribed to the upshift of the d-band center that helped promote glucose adsorption. This work presents a new avenue for developing highly active catalysts for electrochemical non-enzymatic sensors.

5.
Environ Res ; 252(Pt 2): 118772, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604481

RESUMO

Nanostructured inorganic materials have potential advantages as glucose-sensing elements in diabetes care, thereby circumventing the need for expensive enzymatic agents. However, many nonenzymatic sensors face challenges related to selectivity and reliability, reducing their efficacy in body fluids. In this study, we introduce an Iridium oxide (IrO2)-based non-enzymatic glucose sensor. This sensor demonstrates exceptional electro-catalytic properties in human serum, characterized by high sensitivity (638 µA µM-1cm2) and a consistent recovery rate (∼104%) across 15 cycles in saline. Furthermore, its impressive performance in human serum, as evidenced by a low relative standard deviation (RSD <1.57%), underscores its applicability in biological matrices such as interstitial fluids. Overall, the IrO2 sensor is a promising, highly reversible, economical, and simple method for detecting glucose in continuous monitoring systems.


Assuntos
Irídio , Irídio/química , Humanos , Glucose/análise , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Biossensoriais/métodos , Glicemia/análise , Catálise
6.
Sens Actuators B Chem ; 4052024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38464808

RESUMO

Nitric oxide (NO) release from S-nitrosothiol-modified mesoporous silica nanoparticles imbedded in the diffusion limiting layer of a glucose sensor has been demonstrated as an effective strategy for mitigating the foreign body response common to sensor implantation, resulting in improved analytical performance. With respect to potential clinical translation of this approach, the effects of sterilization on NO-releasing biosensors require careful evaluation, as NO donor chemistry is sensitive to temperature and environment. Herein, we evaluated the influence of multiple sterilization methods on 1) sterilization success; 2) NO payload; and 3) sensor performance to establish the commercialization potential of NO-releasing glucose sensors. Sensors were treated with ethylene oxide gas, the most common sterilization method for intricate medical devices, which led to undesirable (i.e., premature) release of NO. To reduce NO loss, alternative sterilization methods that were studied included exposure to ultraviolet (UV) light and immersion in 70% ethanol (EtOH). Sterilization cycle times required to reach a 10-6 sterility assurance level were determined for both UV light and 70% EtOH against Gram-negative and -positive bacteria. The longest sterilization cycle times (258 s and 628 s for 70% EtOH and UV light, respectively) resulted in a negligible impact on benchtop sensor performance. However, sterilization with 70% ethanol resulted in a reduced NO-release duration. Ultraviolet light exposure for ~10 min proved successful at eliminating bacteria without compromising NO payloads or durations and presents as the most promising method for sterilization of these sensors. In addition, storage of NO-releasing sensor membranes at -20 and -80°C resulted in preservation of NO release for 6 and 12 months, respectively.

7.
J Nanobiotechnology ; 22(1): 377, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937768

RESUMO

BACKGROUND: Efficient monitoring of glucose concentration in the human body necessitates the utilization of electrochemically active sensing materials in nonenzymatic glucose sensors. However, prevailing limitations such as intricate fabrication processes, lower sensitivity, and instability impede their practical application. Herein, ternary Cu-Co-Ni-S sulfides nanoporous network structure was synthesized on carbon fiber paper (CP) by an ultrafast, facile, and controllable technique through on-step cyclic voltammetry, serving as a superior self-supporting catalytic electrode for the high-performance glucose sensor. RESULTS: The direct growth of free-standing Cu-Co-Ni-S on the interconnected three-dimensional (3D) network of CP boosted the active site of the composites, improved ion diffusion kinetics, and significantly promoted the electron transfer rate. The multiple oxidation states and synergistic effects among Co, Ni, Cu, and S further promoted glucose electrooxidation. The well-architected Cu-Co-Ni-S/CP presented exceptional electrocatalytic properties for glucose with satisfied linearity of a broad range from 0.3 to 16,000 µM and high sensitivity of 6829 µA mM- 1 cm- 2. Furthermore, the novel sensor demonstrated excellent selectivity and storage stability, which could successfully evaluate the glucose levels in human serum. Notably, the novel Cu-Co-Ni-S/CP showed favorable biocompatibility, proving its potential for in vivo glucose monitoring. CONCLUSION: The proposed 3D hierarchical morphology self-supported electrode sensor, which demonstrates appealing analysis behavior for glucose electrooxidation, holds great promise for the next generation of high-performance glucose sensors.


Assuntos
Técnicas Biossensoriais , Fibra de Carbono , Cobalto , Cobre , Técnicas Eletroquímicas , Eletrodos , Níquel , Sulfetos , Cobre/química , Níquel/química , Catálise , Humanos , Cobalto/química , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Sulfetos/química , Fibra de Carbono/química , Glucose/análise , Glucose/química , Nanoporos , Oxirredução , Glicemia/análise
8.
Contact Dermatitis ; 90(5): 495-500, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38316128

RESUMO

BACKGROUND: Allergic contact dermatitis (ACD) has been reported as an adverse effect from the use of several glucose sensors and insulin pumps from different manufacturers. Isobornyl acrylate (IBOA) has been identified as a major culprit sensitizer, but also other acrylates and (modified) colophonium have been reported as causes of ACD. OBJECTIVES: To report the two first cases diagnosed with ACD caused by the Dexcom G7 (DG7) glucose sensor. PATIENTS AND METHODS: Two children with suspected ACD from DG7 were patch tested with our medical device series with an addition of selected test preparations including two variants of modified colophonium - methyl hydrogenated rosinate (MHR) and glyceryl hydrogenated rosinate (GHR). Both patients were also tested with acetone extracts made from different parts of the DG7 sensor. The extracts were analysed by gas chromatography-mass spectrometry (GC-MS). RESULTS: Both patients tested positive to IBOA, hydroabietyl alcohol and GHR. In addition, patient 1 had a positive reaction to MHR and patient 2 had a positive reaction to colophonium. The GC-MS analyses showed the presence of IBOA and colophonium-related substances in the DG7 extracts. CONCLUSIONS: Both patients were diagnosed with contact allergy to well-known medical device-related sensitizers. The presence of IBOA and (modified) colophonium in a newly introduced (on the Swedish market in 2023) glucose sensor is remarkable and indicates an inadequate toxicological assessment of the materials used in the sensor.


Assuntos
Alérgenos , Canfanos , Dermatite Alérgica de Contato , Criança , Humanos , Alérgenos/efeitos adversos , Dermatite Alérgica de Contato/diagnóstico , Dermatite Alérgica de Contato/etiologia , Automonitorização da Glicemia/efeitos adversos , Adesivos/efeitos adversos , Acrilatos/efeitos adversos , Glucose , Testes do Emplastro/efeitos adversos
9.
Chem Pharm Bull (Tokyo) ; 72(3): 249-252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38432905

RESUMO

Electrochemical enzyme sensors are suitable for simple monitoring methods, for example, as glucose sensors for diabetic patients; however, they have several disadvantages arising from the properties of the enzyme. Therefore, non-enzymatic electrochemical sensors using functional molecules are being developed. In this paper, we report the electrochemical characterization of a new hydroxylamine compound, 7-azabicyclo[2.2.1]heptan-7-ol (ABHOL), and its application to glucose sensing. Although the cyclic voltammogram for the first cycle was unstable, it was reproducible after the second cycle, enabling electrochemical analysis of ethanol and glucose. In the first cycle, ABHOL caused complex reactions, including electrochemical oxidation and comproportionation with the generated oxoammonium ions. The electrochemical probe performance of ABHOL was more efficient than the typical nitroxyl radical compound, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), and had similar efficiency to 9-azabicyclo[3.3.1]nonane N-oxyl (ABNO), which is activated by the bicyclic structure. The results demonstrated the advantages of ABHOL, which can be synthesized from inexpensive materials via simple methods.


Assuntos
Compostos Azabicíclicos , Etanol , Glucose , Humanos , Compostos Azabicíclicos/química
10.
Mikrochim Acta ; 191(8): 451, 2024 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970693

RESUMO

Ti3C2Tx MXene/CuxO composites were prepared by acid etching combined with electrochemical technique. The abundant active sites on the surface of MXene greatly increase the loading of CuxO nanoparticles, and the synergistic effect between the different components of the composite can accelerate the oxidation reaction of glucose. The results indicate that at the working potential of 0.55 V (vs. Ag/AgCl), the glucose sensor based on Ti3C2Tx MXene/CuxO composite presents large linear concentration ranges from 1 µM to 4.655 mM (sensitivity of 361 µA mM-1 cm-2) and from 5.155 mM to 16.155 mM (sensitivity of 133 µA mM-1 cm-2). The limit of detection is 0.065 µM. In addition, the sensor effectively avoids the oxidative interference of common interfering species such as ascorbic acid, dopamine and uric acid. The sensor has good reproducibility, stability and acceptable recoveries for the detection of glucose in human sweat sample (97.5-103.3%) with RSD values less than 4%. Based on these excellent properties it has great potential for the detection of glucose in real samples.


Assuntos
Cobre , Técnicas Eletroquímicas , Glucose , Limite de Detecção , Titânio , Cobre/química , Humanos , Titânio/química , Glucose/análise , Glucose/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Suor/química , Eletrodos , Oxirredução , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos , Nanocompostos/química
11.
Mikrochim Acta ; 191(5): 267, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627300

RESUMO

A ternary hierarchical hybrid Ni@CoxSy/poly(3,4-ethylenedioxythiophene)-reduced graphene oxide (Ni@CoxSy/PEDOT-rGO) is rationally designed and in situ facilely synthesized as electrocatalyst to construct a binder-free sensing platform for non-enzymatic glucose monitoring through traditional electrodeposition procedure. The as-prepared Ni@CoxSy/PEDOT-rGO presents unique hierarchical structure and multiple valence states as well as strong and robust adhesion between Ni@CoxSy/PEDOT-rGO and GCE. Profiting from the aforementioned merits, the sensing platform constructed under optimal conditions achieved a wide detection range (0.2 µM ~ 2.0 mM) with high sensitivity (1546.32 µA cm-2 mM-1), a rapid response time (5 s), an ultralow detection limit (0.094 µM), superior anti-interference performance, excellent reproducibility and considerable stability. Furthermore, the sensor demonstrates an acceptable accuracy and appreciable recoveries ranging from 90.0 to 102.0% with less than 3.98% RSD in human blood serum samples, indicating the prospect of the sensor for the real samples analysis. It will provide a strategy to rationally design and fabricate ternary hierarchical hybrid as nanozyme for glucose assay.


Assuntos
Glicemia , Compostos Bicíclicos Heterocíclicos com Pontes , Cobalto , Grafite , Níquel , Polímeros , Humanos , Níquel/química , Glicemia/análise , Reprodutibilidade dos Testes , Automonitorização da Glicemia , Glucose/análise
12.
Sensors (Basel) ; 24(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276375

RESUMO

Diabetes patients need to monitor blood glucose all year round. In this article, a novel scheme is proposed for blood glucose detection. The proposed sensor is based on a U-shaped microfiber prepared using hydrogen-oxygen flame-heating technology, and then 3-aminopropyltriethoxysilane (APTES) and glucose oxidase (GOD) are successively coated on the surface of the U-shaped microfiber via a coating technique. The glucose reacts with the GOD of the sensor surface to produce gluconic acid, which changes the effective refractive index and then shifts the interference wavelength. The structure and morphology of the sensor were characterized via scanning electron microscope (SEM) and confocal laser microscopy (CLM). The experimental results show that the sensitivity of the sensor is as high as 5.73 nm/(mg/mL). Compared with the glucose sensor composed of the same material, the sensitivity of the sensor increased by 329%. The proposed sensor has a broad application prospect in blood glucose detection of diabetic patients due to the advantages of miniaturization, high sensitivity, and good stability.


Assuntos
Técnicas Biossensoriais , Glicemia , Humanos , Glucose Oxidase/química , Técnicas Biossensoriais/métodos , Glucose/química , Fibras Ópticas
13.
Actas Dermosifiliogr ; 115(3): T280-T287, 2024 Mar.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-38242434

RESUMO

The development and commercialization of glucose sensors and insulin pumps has revolutionized the management of diabetes. These devices have been linked to multiple cases of contact dermatitis in recent years, however, giving rise to a growing interest in identifying the sensitizing allergens. Isobornyl acrylate was clearly identified as one of the main allergens responsible for contact dermatitis among users of the FreeStyle glucose sensor and was subsequently removed from the product ingredients. Remarkably, however, it is still used in most other sensors on the market. The common adhesive ingredients colophony and abietic acid derivatives have also been shown to be sensitizing agents. New components under study, such as dipropylene glycol diacrylate, N,N-dimethylacrylamide, and triethylene glycol methacrylate have recently been identified as allergens, though they are not commercially available for clinical testing. The benefits offered by glucose sensors and insulin pumps may be offset by sensitization to product ingredients, in some cases forcing discontinuation and diminishing quality of life. Dermatologists should play a role in this clinical and research scenario, offering case-by-case guidance to endocrinologists on skin care and possible alternatives for patients with glucose sensors and insulin pumps who develop contact dermatitis. They should also collaborate with the manufacturers developing these devices.


Assuntos
Dermatite Alérgica de Contato , Diabetes Mellitus , Insulinas , Humanos , Dermatite Alérgica de Contato/etiologia , Qualidade de Vida , Automonitorização da Glicemia , Diabetes Mellitus/tratamento farmacológico , Acrilatos/efeitos adversos , Alérgenos , Glucose , Testes do Emplastro
14.
J Biol Chem ; 298(2): 101593, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35051415

RESUMO

Invasive candidiasis poses a major healthcare threat. The human opportunistic fungal pathogen Candida glabrata, which causes mucosal and deep-seated infections, is armed with distinct virulence attributes, including a family of 11 glycosylphosphatidylinositol-linked aspartyl proteases, CgYapsins. Here, we have profiled total membrane proteomes of the C. glabrata wildtype and 11 proteases-deficient strain, Cgyps1-11Δ, by mass spectrometry analysis and uncovered a novel role for fungal yapsins in glucose sensing and homeostasis. Furthermore, through label-free quantitative membrane proteome analysis, we showed differential abundance of 42% of identified membrane proteins, with electron transport chain and glycolysis proteins displaying lower and higher abundance in Cgyps1-11Δ cells, compared with wildtype cells, respectively. We also demonstrated elevated glucose uptake and upregulation of genes that code for the low-glucose sensor CgSnf3, transcriptional regulators CgMig1 and CgRgt1, and hexose transporter CgHxt2/10 in the Cgyps1-11Δ mutant. We further elucidated a potential underlying mechanism through genetic and transcript measurement analysis under low- and high-glucose conditions and found CgSNF3 deletion to rescue high glucose uptake and attenuated growth of the Cgyps1-11Δ mutant in YPD medium, thereby linking CgYapsins with regulation of the CgSnf3-dependent low-glucose sensing pathway. Last, high ethanol production, diminished mitochondrial membrane potential, and elevated susceptibility to oxidative phosphorylation inhibitors point toward increased fermentative and decreased respiratory metabolism in the Cgyps1-11Δ mutant. Altogether, our findings revealed new possible glucose metabolism-regulatory roles for putative cell surface-associated CgYapsins and advanced our understanding of fungal carbohydrate homeostasis mechanisms.


Assuntos
Ácido Aspártico Proteases , Candidíase , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Candida glabrata , Candidíase/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Homeostase , Humanos
15.
Nanotechnology ; 35(6)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37918017

RESUMO

Non-enzymatic screen-printed chemiresistive interdigitated electrodes (SPCIE) were designed and fabricated using a low-cost screen-printing method for detection of the glucose. The interdigitated electrodes (IDE) pattern was printed using conductive graphene ink on the glossy surface of the photo paper. The proposed glossy photo paper-based SPCIE are functionalized with multi-walled carbon nanotubes-zinc oxide (MWCNTs-ZnO) nanofibers to create the chemiresistive matrix. Further, to bind these nanofibers with the graphene electrode surface, we have used the green synthesized silver nanoparticles (AgNPs) with banana flower stem fluid (BFSF) as a binder solution. AgNPs with BFSF form the conductive porous natural binder layer (CPNBL). It does not allow to increase the resistivity of the deposited material on graphene electrodes and also keeps the nanofibers intact with paper-based SPCIE. The synthesized material of MWCNT-ZnO nanofibers and green synthesized AgNPs with BFSF as a binder were characterized by Ultraviolet-visible spectroscopy (UV-vis), scanning electron microscope (SEM), x-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The amperometric measurements were performed on the proposed SPCIE sensor to detect the glucose sample directly. The innovative paper-based SPCIE glucose sensor exhibits a linear corelation between current measurements and glucose concentration in the range between 45.22µm and 20 mm, with a regression coefficient (R2) of 0.9902 and a lower limit of detection (LoD) of 45.22µm (n= 5). The sensitivity of the developed SPCIE sensor was 2178.57µAmM-1cm-2, and the sensor's response time determined was approximately equal to 18 s. The proposed sensor was also tested for real blood serum sample, and relative standard deviation (RSD) was found equal to 2.95%.

16.
J Fluoresc ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656303

RESUMO

A simple and low-cost green preparation method was used for BSA capped silver nanoclusters (BSA-Ag NCs) as turn on fluorescent probe for glucose. Non-enzymatic fast glucose detection assay with a widest concentration range was proposed which requires neither nanoclusters (NCs) modification nor complicated enzyme immobilization. The DLS analysis, HRTEM patterns, fluorescence and UV-visible measurement well supported the synthesis product. The advantages of the fabricated glucose sensor based on fluorescence increasing of probe compared to other established optical techniques was inspected and summarized as well. The glucose sensor exhibited a high sensitivity, fast response time (in seconds), satisfactory selectivity, well stability (at least two months), low detection limit (31 µmol L- 1) and a wide concentration response (three orders of magnitudes) to glucose between 0.1 and 92 mmol L- 1 as calibration plot. A theoretical model of the sensing mechanism based on the binding interaction of glucose to BSA-Ag NCs is proposed and data fitting demonstrated a good agreement between the experimental and theoretically calculated fluorescence data. The facile preparation and excellent sensing performance of BSA-Ag NCs in the real samples (plasma and juice) make sure that synthesized probe material is a promising candidate for advanced enzyme-free glucose sensing approach.

17.
Mikrochim Acta ; 190(10): 425, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37776360

RESUMO

The ability of shape-controlled octahedral Pt nanoparticles to act as nanozyme mimicking glucose oxidase enzyme is reported. Extended {111} particle surface facets coupled with a size comparable to natural enzymes and easy-to-remove citrate coating give high affinity for glucose, comparable to the enzyme as proven by the steady-state kinetics of glucose electrooxidation. The easy and thorough removal of the citrate coating, demonstrated by X-ray photoelectron spectroscopy analysis, allows a highly stable deposition of the nanozymes on the electrode. The glucose electrochemical detection (at -0.2 V vs SCE) shows a linear response between 0.36 and 17 mM with a limit of detection of 110 µM. A good reproducibility has been achieved, with an average relative standard deviation (RSD) value of 9.1% (n = 3). Similarly, a low intra-sensor variability has been observed, with a RSD of 6.6% (n = 3). Moreover, the sensor shows a long-term stability with reproducible performances for at least 2 months (RSD: 7.8%). Tests in saliva samples show the applicability of Pt nanozymes to commercial systems for non-invasive monitoring of hyperglycemia in saliva, with recoveries ranging from 92 to 98%.


Assuntos
Glucose Oxidase , Nanopartículas , Glucose Oxidase/química , Platina/química , Reprodutibilidade dos Testes , Nanopartículas/química , Glucose/análise
18.
Mikrochim Acta ; 190(10): 390, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700117

RESUMO

Zirconium copper oxide microflowers (Zr/CuO MF) based non-enzymatic sensor was developed for glucose detection in saliva, urine, and blood. An easy urea hydrolysis method was employed for the synthesis of the metal oxide and further calcined to improve the catalytic property. The flower-like morphology of the Zr/CuO was confirmed by SEM analysis and the presence of copper and zirconium was examined using energy dispersive X-ray analysis (EDAX). The Zr/CuO MF modified screen-printed electrodes exhibited excellent glucose sensing performance in 0.15 M NaOH medium and could quantify glucose in the range from 10 µM to 27 mM. A high sensitivity of 1.815 ± 0.003 mA mM-1 cm-2 was obtained for lower glucose concentration from 15 µM to 3 mM and 1.250 ± 0.006 mA mM-1 cm-2 for higher concentration glucose from 3 to 27 mM. The limit of detection of the fabricated sensor was found to be 0.8 µM. The sensor displayed high selectivity and stability towards glucose in different body fluids like saliva, urine, and blood serum at a working potential of 0.6 V (vs. Ag/AgCl). In saliva, urine, and serum samples, the sensor exhibited excellent recovery of 95-108, 92-108, and 93-101% in saliva, urine, and serum, respectively, with a relative standard deviation of less than 10%, demonstrating high accuracy and reliability of the sensor. The developed sensor is promising for developing an invasive and non-invasive point-of-care testing device for glucose detection.


Assuntos
Líquidos Corporais , Saliva , Soro , Cobre , Glucose , Zircônio , Reprodutibilidade dos Testes , Óxidos
19.
Sensors (Basel) ; 23(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36991701

RESUMO

In this study, we developed a glucose fiber sensor incorporating heterodyne interferometry to measure the phase difference produced by the chemical reaction between glucose and glucose oxidase (GOx). Both theoretical and experimental results showed that the amount of phase variation is inversely proportional to glucose concentration. The proposed method provided a linear measurement range of the glucose concentration from 10 mg/dL to 550 mg/dL. The experimental results indicated that the sensitivity is proportional to the length of the enzymatic glucose sensor, and the optimum resolution can be obtained at a sensor length of 3 cm. The optimum resolution of the proposed method is better than 0.6 mg/dL. Moreover, the proposed sensor demonstrates good repeatability and reliability. The average relative standard deviation (RSD) is better than 10% and satisfied the minimum requirement for point-of-care devices.


Assuntos
Glucose , Fibras Ópticas , Reprodutibilidade dos Testes , Interferometria , Glucose Oxidase
20.
Sensors (Basel) ; 23(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836858

RESUMO

A flexible, non-enzymatic glucose sensor was developed and tested on a polyethylene terephthalate (PET) substrate. The sensor's design involved printing Ag (silver) as the electrode and utilizing mixtures of either gold-copper oxide-modified reduced graphene oxide (Au-CuO-rGO) or gold-copper oxide-modified reduced graphene oxide-multi-walled carbon nanotubes (Au-CuO-rGO-MWCNTs) as the carrier materials. A one-pot synthesis method was employed to create a nanocomposite material, consisting of Au-CuO-rGO mixtures, which was then printed onto pre-prepared flexible electrodes. The impact of different weight ratios of MWCNTs (0~75 wt%) as a substitute for rGO was also investigated on the sensing characteristics of Au-CuO-rGO-MWCNTs glucose sensors. The fabricated electrodes underwent various material analyses, and their sensing properties for glucose in a glucose solution were measured using linear sweep voltammetry (LSV). The LSV measurement results showed that increasing the proportion of MWCNTs improved the sensor's sensitivity for detecting low concentrations of glucose. However, it also led to a significant decrease in the upper detection limit for high-glucose concentrations. Remarkably, the research findings revealed that the electrode containing 60 wt% MWCNTs demonstrated excellent sensitivity and stability in detecting low concentrations of glucose. At the lowest concentration of 0.1 µM glucose, the nanocomposites with 75 wt% MWCNTs showed the highest oxidation peak current, approximately 5.9 µA. On the other hand, the electrode without addition of MWCNTs displayed the highest detection limit (approximately 1 mM) and an oxidation peak current of about 8.1 µA at 1 mM of glucose concentration.


Assuntos
Grafite , Nanocompostos , Nanotubos de Carbono , Cobre/química , Nanotubos de Carbono/química , Glucose/análise , Grafite/química , Eletrodos , Nanocompostos/química , Ouro/química , Óxidos , Técnicas Eletroquímicas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA