Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105624, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176651

RESUMO

The glycosylation of proteins and lipids is known to be closely related to the mechanisms of various diseases such as influenza, cancer, and muscular dystrophy. Therefore, it has become clear that the analysis of post-translational modifications of proteins, including glycosylation, is important to accurately understand the functions of each protein molecule and the interactions among them. In order to conduct large-scale analyses more efficiently, it is essential to promote the accumulation, sharing, and reuse of experimental and analytical data in accordance with the FAIR (Findability, Accessibility, Interoperability, and Re-usability) data principles. However, a FAIR data repository for storing and sharing glycoconjugate information, including glycopeptides and glycoproteins, in a standardized format did not exist. Therefore, we have developed GlyComb (https://glycomb.glycosmos.org) as a new standardized data repository for glycoconjugate data. Currently, GlyComb can assign a unique identifier to a set of glycosylation information associated with a specific peptide sequence or UniProt ID. By standardizing glycoconjugate data via GlyComb identifiers and coordinating with existing web resources such as GlyTouCan and GlycoPOST, a comprehensive system for data submission and data sharing among researchers can be established. Here we introduce how GlyComb is able to integrate the variety of glycoconjugate data already registered in existing data repositories to obtain a better understanding of the available glycopeptides and glycoproteins, and their glycosylation patterns. We also explain how this system can serve as a foundation for a better understanding of glycan function.


Assuntos
Bases de Dados de Compostos Químicos , Glicômica , Proteômica , Glicopeptídeos/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Polissacarídeos/metabolismo , Bases de Dados Genéticas
2.
J Biol Chem ; 299(10): 105194, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633332

RESUMO

Complex glycans serve essential functions in all living systems. Many of these intricate and byzantine biomolecules are assembled employing biosynthetic pathways wherein the constituent enzymes are membrane-associated. A signature feature of the stepwise assembly processes is the essentiality of unusual linear long-chain polyprenol phosphate-linked substrates of specific isoprene unit geometry, such as undecaprenol phosphate (UndP) in bacteria. How these enzymes and substrates interact within a lipid bilayer needs further investigation. Here, we focus on a small enzyme, PglC from Campylobacter, structurally characterized for the first time in 2018 as a detergent-solubilized construct. PglC is a monotopic phosphoglycosyl transferase that embodies the functional core structure of the entire enzyme superfamily and catalyzes the first membrane-committed step in a glycoprotein assembly pathway. The size of the enzyme is significant as it enables high-level computation and relatively facile, for a membrane protein, experimental analysis. Our ensemble computational and experimental results provided a high-level view of the membrane-embedded PglC/UndP complex. The findings suggested that it is advantageous for the polyprenol phosphate to adopt a conformation in the same leaflet where the monotopic membrane protein resides as opposed to additionally disrupting the opposing leaflet of the bilayer. Further, the analysis showed that electrostatic steering acts as a major driving force contributing to the recognition and binding of both UndP and the soluble nucleotide sugar substrate. Iterative computational and experimental mutagenesis support a specific interaction of UndP with phosphoglycosyl transferase cationic residues and suggest a role for critical conformational transitions in substrate binding and specificity.


Assuntos
Membrana Celular , Poliprenois , Transferases , Ligantes , Proteínas de Membrana , Fosfatos , Poliprenois/metabolismo , Transferases/química , Fosfatos de Poli-Isoprenil/química , Membrana Celular/química , Bactérias/química , Bactérias/citologia
3.
J Mol Recognit ; 37(1): e3065, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37864321

RESUMO

Molecular recognition remains one of the most desirable means of cellular communication. Each cell offers a unique surface pattern of biomolecules that makes it very specific about the nature of molecules that interact with the cell. Protein-glycan interaction has been one of the most common forms of cell signaling. Glycans expressed on the cell surface interact with an exogenous protein, and in many cases lead to a physiological response. These carbohydrate-binding proteins, commonly known as lectins, are very specific to the glycan they bind to. An exogenous lectin interacting with an animal cell surface glycan is generally studied using the classical hemagglutination assay. However, this method presents certain challenges that make it imperative to design and develop novel methods that are more specific and efficient in their interaction. In the last decade, a few methods have been developed to analyze more diverse reactions and use a lesser amount of sample. In some cases, the processing of the sample is also reduced. This review discusses how the methods have evolved over the decades and how they have reduced error while becoming more efficient.


Assuntos
Carboidratos , Polissacarídeos , Animais , Polissacarídeos/química , Lectinas/metabolismo
4.
Cells Tissues Organs ; 213(2): 147-160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36599327

RESUMO

The vomeronasal organ (VNO) is a tubular pheromone-sensing organ in which the lumen is covered with sensory and non-sensory epithelia. This study used immunohistochemistry and lectin histochemistry techniques to evaluate developmental changes, specifically of the glycoconjugate profile, in the horse VNO epithelium. Immunostaining analysis revealed PGP9.5 expression in some vomeronasal non-sensory epithelium (VNSE) cells and in the vomeronasal receptor cells of the vomeronasal sensory epithelium (VSE) in fetuses, young foals, and adult horses. Olfactory marker protein expression was exclusively localized in receptor cells of the VSE in fetuses, young foals, and adult horses and absent in VNSE. To identify the glycoconjugate type, lectin histochemistry was performed using 21 lectins. Semi-quantitative analysis revealed that the intensities of glycoconjugates labeled with WGA, DSL, LEL, and RCA120 were significantly higher in adult horse VSE than those in foal VSE, whereas the intensities of glycoconjugates labeled with LCA and PSA were significantly lower in adult horse VSE. The intensities of glycoconjugates labeled with s-WGA, WGA, BSL-II, DSL, LEL, STL, ConA, LCA, PSA, DBA, SBA, SJA, RCA120, jacalin, and ECL were significantly higher in adult horse VNSE than those in foal VNSE, whereas the intensity of glycoconjugates labeled with UEA-I was lower in adult horse VNSE. Histochemical analysis of each lectin revealed that various glycoconjugates in the VSE were present in the receptor, supporting, and basal cells of foals and adult horses. A similar pattern of lectin histochemistry was also observed in the VNSE of foals and adult horses. In conclusion, these results suggest that there is an increase in the level of N-acetylglucosamine (labeled by WGA, DSL, LEL) and galactose (labeled by RCA120) in horse VSE during postnatal development, implying that they may influence the function of VNO in adult horses.


Assuntos
Órgão Vomeronasal , Masculino , Humanos , Cavalos , Animais , Órgão Vomeronasal/metabolismo , Antígeno Prostático Específico/metabolismo , Epitélio/metabolismo , Lectinas/metabolismo , Glicoconjugados/análise , Glicoconjugados/metabolismo
5.
J Appl Microbiol ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38211971

RESUMO

AIM: The primary objective of this study was to elucidate the putative cell wall-associated targets of compound 6i, a glycoconjugate of eugenol, in Aspergillus fumigatus, while also evaluating its toxicity and assessing histopathologic alterations in the liver, heart, and kidney of compound 6i-treated embryos using an in ovo model. METHOD: To achieve this aim, compound 6i was synthesized, and a series of biochemical assays were performed to determine its impact on the fungal cell wall. Additionally, qRT-PCR and LC-MS/MS analyses were conducted to investigate changes in gene and protein expression profiles associated with melanin biosynthesis, conidiation, siderophore production, transcriptional regulation of ß-glucan biosynthesis, and calcineurin activity in A. fumigatus. RESULTS: The experimental findings revealed that compound 6i exhibited notable antifungal activity against A. fumigatus by perturbing cell wall integrity, hindering ergosterol, glucan, and chitin biosynthesis, and inhibiting catalase production. Moreover, relative gene expression and proteomic analyses demonstrated that compound 6i exerted both down-regulatory and up-regulatory effects on several crucial genes and proteins involved in the aforementioned fungal processes. Furthermore, increased expression of oxidative stress-related proteins was observed in the presence of compound 6i. Notably, the glycoconjugate of eugenol did not elicit cytotoxicity in the liver, heart, and kidney of chick embryos. CONCLUSION: The current investigation elucidated the multifaceted mechanisms by which compound 6i exerts its antifungal effects against A. fumigatus, primarily through targeting cell wall components and signaling pathways. These findings underscore the potential of the eugenol glycoconjugate as a promising antifungal candidate, warranting further exploration and development for combating A. fumigatus infections.

6.
Chem Pharm Bull (Tokyo) ; 72(1): 127-134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296515

RESUMO

Although curcumin and its analogs exhibit anticancer activity, they are still not used as anticancer drugs because of their water insolubility and extremely poor bioavailability. This study describes the development of water-soluble prodrugs of GO-Y030, a potent antitumor C5-curcuminoid, in an attempt to enhance its bioavailability. These prodrugs release the parent compound via a retro-thia-Michael reaction. To endow sufficient hydrophilicity onto GO-Y030 via a single thia-Michael reaction of an aqueous entity, we used a modified glycoconjugate with a thiol group. The water-solubilizing motif was installed on GO-Y030 by the thia-Michael reaction of propargyl-polyethylene glycol (PEG)-thiol and subsequent click chemistry (CuAAC) reaction with 1-glycosyl azide. Turbidity measurements revealed a significantly improved water solubility of the prodrugs, demonstrating that disaccharide conjugates were completely dissolved in water at 100 µM. Their cytotoxicity was comparable to that of the parent compound GO-Y030, indicating the gradual in situ release of GO-Y030. The release of GO-Y030 from GO-Y199 via the retro-thia-Michael reaction was demonstrated through a degradation study in water. Our retro-thia-Michael reaction-based prodrug system can be used for targeting cancer cells.


Assuntos
Derivados de Benzeno , Cetonas , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Diarileptanoides , Água , Compostos de Sulfidrila , Solubilidade
7.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791523

RESUMO

Glucose transporters GLUT1 belong to the major facilitator superfamily and are essential to human glucose uptake. The overexpression of GLUT1 in tumor cells designates it as a pivotal target for glycoconjugate anticancer drugs. However, the interaction mechanism of glycoconjugate drugs with GLUT1 remains largely unknown. Here, we employed all-atom molecular dynamics simulations, coupled to steered and umbrella sampling techniques, to examine the thermodynamics governing the transport of glucose and two glycoconjugate drugs (i.e., 6-D-glucose-conjugated methane sulfonate and 6-D-glucose chlorambucil) by GLUT1. We characterized the specific interactions between GLUT1 and substrates at different transport stages, including substrate recognition, transport, and releasing, and identified the key residues involved in these procedures. Importantly, our results described, for the first time, the free energy profiles of GLUT1-transporting glycoconjugate drugs, and demonstrated that H160 and W388 served as important gates to regulate their transport via GLUT1. These findings provide novel atomic-scale insights for understanding the transport mechanism of GLUT1, facilitating the discovery and rational design of GLUT1-targeted anticancer drugs.


Assuntos
Transportador de Glucose Tipo 1 , Glicoconjugados , Simulação de Dinâmica Molecular , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/química , Glicoconjugados/metabolismo , Glicoconjugados/química , Humanos , Glucose/metabolismo , Transporte Biológico , Termodinâmica
8.
Angew Chem Int Ed Engl ; : e202411009, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39275921

RESUMO

Glycopeptides derived from the glycoprotein mucin-1 (MUC1) have shown potential as tumor-associated antigens for cancer vaccine development. However, their low immunogenicity and non-selective conjugation to carriers present significant challenges for the clinical efficacy of MUC1-based vaccines. Here, we introduce a novel vaccine candidate based on a structure-guided design of an artificial antigen derived from MUC1 glycopeptide. This engineered antigen contains two non-natural amino acids and has an α-S-glycosidic bond, where sulfur replaces the conventional oxygen atom linking the peptide backbone to the sugar N-acetylgalactosamine. The glycopeptide is then specifically conjugated to the immunogenic protein carrier CRM197 (Cross-Reactive Material 197), a protein approved for human use. Conjugation involves selective reduction and re-bridging of a disulfide in CRM197, allowing the attachment of a single copy of MUC1. This strategy results in a chemically defined vaccine while maintaining both the structural integrity and immunogenicity of the protein carrier. The vaccine elicits a robust Th1-like immune response in mice and generates antibodies capable of recognizing human cancer cells expressing tumor-associated MUC1. When tested in mouse models of colon adenocarcinoma and pancreatic cancer, the vaccine is effective both as a prophylactic and therapeutic use, significantly delaying tumor growth. In therapeutic applications, improved outcomes were….

9.
J Biol Chem ; 298(3): 101755, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35202656

RESUMO

For the preparation of glycoconjugate vaccines, polysaccharide antigens can usually be chemically modified to generate reactive functional groups (e.g., the formation of aldehyde groups by periodate oxidation of adjacent diols) for covalent coupling with proteins. In a recent issue of JBC, Duke et al. showed that an alternative agent, galactose oxidase (GOase) isolated from the fungus Fusarium sp. can generate aldehyde groups in a unique chemoenzymatic approach to prepare a conjugate vaccine against Streptococcus pneumoniae. These findings introduce a new strategy for the design and development of glycoconjugate vaccines.


Assuntos
Glicoconjugados , Polissacarídeos , Streptococcus pneumoniae , Vacinas Conjugadas , Aldeídos , Glicoconjugados/química , Polissacarídeos/química , Polissacarídeos Bacterianos , Vacinas Conjugadas/química
10.
J Biol Chem ; 298(1): 101453, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838818

RESUMO

In the preparation of commercial conjugate vaccines, capsular polysaccharides (CPSs) must undergo chemical modification to generate the reactive groups necessary for covalent attachment to a protein carrier. One of the most common approaches employed for this derivatization is sodium periodate (NaIO4) oxidation of vicinal diols found within CPS structures. This procedure is largely random and structurally damaging, potentially resulting in significant changes in the CPS structure and therefore its antigenicity. Additionally, periodate activation of CPS often gives rise to heterogeneous conjugate vaccine products with variable efficacy. Here, we explore the use of an alternative agent, galactose oxidase (GOase) isolated from Fusarium sp. in a chemoenzymatic approach to generate a conjugate vaccine against Streptococcus pneumoniae. Using a colorimetric assay and NMR spectroscopy, we found that GOase generated aldehyde motifs on the CPS of S. pneumoniae serotype 14 (Pn14p) in a site-specific and reversible fashion. Direct comparison of Pn14p derivatized by either GOase or NaIO4 illustrates the functionally deleterious role chemical oxidation can have on CPS structures. Immunization with the conjugate synthesized using GOase provided a markedly improved humoral response over the traditional periodate-oxidized group. Further, functional protection was validated in vitro by measure of opsonophagocytic killing and in vivo through a lethality challenge in mice. Overall, this work introduces a strategy for glycoconjugate development that overcomes limitations previously known to play a role in the current approach of vaccine design.


Assuntos
Galactose Oxidase , Vacinas Pneumocócicas , Polissacarídeos Bacterianos , Streptococcus pneumoniae , Animais , Anticorpos Antibacterianos/química , Anticorpos Antibacterianos/imunologia , Galactose Oxidase/química , Galactose Oxidase/imunologia , Galactose Oxidase/metabolismo , Glicoconjugados , Camundongos , Vacinas Pneumocócicas/química , Vacinas Pneumocócicas/imunologia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/imunologia , Sorogrupo , Streptococcus pneumoniae/química , Streptococcus pneumoniae/imunologia , Vacinas Conjugadas
11.
J Biol Chem ; 298(11): 102520, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36152747

RESUMO

Vi antigen is an extracellular polysaccharide produced by Salmonella enterica Typhi, Citrobacter freundii, and some soil bacteria belonging to the Burkholderiales. In Salmonella Typhi, Vi-antigen capsule protects the bacterium against host defenses, and the glycan is used in a current glycoconjugate vaccine to protect against typhoid. Vi antigen is a glycolipid assembled in the cytoplasm and translocated to the cell surface by an export complex driven by an ABC transporter. In Salmonella Typhi, efficient export and cell-surface retention of the capsule layer depend on a reducing terminal acylated-HexNAc moiety. Although the precise structure and biosynthesis of the acylated terminus has not been resolved, it distinguishes Vi antigen from other known glycolipid substrates for bacterial ABC transporters. The genetic locus for Vi antigen-biosynthesis encodes a single acyltransferase candidate (VexE), which is implicated in the acylation process. Here, we determined the structure of the VexE in vitro reaction product by mass spectrometry and NMR spectroscopy to reveal that VexE catalyzes ß-hydroxyacyl-ACP dependent acylation of the activated sugar precursor, uridine-5'-diphospho-GlcNAc, at C-6 to form UDP-6-O-[ß-hydroxymyristoyl]-α-d-GlcNAc. VexE belongs to the lysophosphatidyl acyltransferase family, and comparison of an Alphafold VexE model to solved lysophosphatidyl acyltransferase structures, together with modeling enzyme:substrate complexes, led us to predict an enzyme mechanism. This study provides new insight into Vi terminal structure, offers a new model substrate to investigate the mechanism of glycolipid ABC transporters, and adds biochemical understanding for a novel reaction used in the synthesis of an important bacterial virulence factor.


Assuntos
Febre Tifoide , Humanos , Febre Tifoide/microbiologia , Febre Tifoide/prevenção & controle , Glicolipídeos/metabolismo , Polissacarídeos Bacterianos/metabolismo , Salmonella typhi/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo
12.
Glycobiology ; 33(2): 138-149, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36637423

RESUMO

Glycoengineering of recombinant glycans and glycoconjugates is a rapidly evolving field. However, the production and exploitation of glycans has lagged behind that of proteins and nucleic acids. Biosynthetic glycoconjugate production requires the coordinated cooperation of three key components within a bacterial cell: a substrate protein, a coupling oligosaccharyltransferase, and a glycan biosynthesis locus. While the acceptor protein and oligosaccharyltransferase are the products of single genes, the glycan is a product of a multigene metabolic pathway. Typically, the glycan biosynthesis locus is cloned and transferred en bloc from the native organism to a suitable Escherichia coli strain. However, gene expression within these pathways has been optimized by natural selection in the native host and is unlikely to be optimal for heterologous production in an unrelated organism. In recent years, synthetic biology has addressed the challenges in heterologous expression of multigene systems by deconstructing these pathways and rebuilding them from the bottom up. The use of DNA assembly methods allows the convenient assembly of such pathways by combining defined parts with the requisite coding sequences in a single step. In this study, we apply combinatorial assembly to the heterologous biosynthesis of the Campylobacter jejuni  N-glycosylation (pgl) pathway in E. coli. We engineered reconstructed biosynthesis clusters that faithfully reproduced the C. jejuni heptasaccharide glycan. Furthermore, following a single round of combinatorial assembly and screening, we identified pathway clones that outperform glycan and glycoconjugate production of the native unmodified pgl cluster. This platform offers a flexible method for optimal engineering of glycan structures in E. coli.


Assuntos
Campylobacter jejuni , Escherichia coli , Escherichia coli/genética , DNA , Glicosilação , Campylobacter jejuni/genética , Polissacarídeos
13.
Mass Spectrom Rev ; : e21801, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36005212

RESUMO

Glycans, carbohydrates, and glycoconjugates are involved in many crucial biological processes, such as disease development, immune responses, and cell-cell recognition. Glycans and carbohydrates are known for the large number of isomeric features associated with their structures, making analysis challenging compared with other biomolecules. Mass spectrometry has become the primary method of structural characterization for carbohydrates, glycans, and glycoconjugates. Metal adduction is especially important for the mass spectrometric analysis of carbohydrates and glycans. Metal-ion adduction to carbohydrates and glycoconjugates affects ion formation and the three-dimensional, gas-phase structures. Herein, we discuss how metal-ion adduction impacts ionization, ion mobility, ion activation and dissociation, and hydrogen/deuterium exchange for carbohydrates and glycoconjugates. We also compare the use of different metals for these various techniques and highlight the value in using metals as charge carriers for these analyses. Finally, we provide recommendations for selecting a metal for analysis of carbohydrate adducts and describe areas for continued research.

14.
Chemistry ; 29(25): e202203408, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36662447

RESUMO

There is an urgent need for new treatment options for carbapenem-resistant Klebsiella pneumoniae (K. pneumoniae), which is a common cause of life-threatening hospital- and community-acquired infections. Prophylactic or therapeutic vaccination may offer an approach to control these infections, however, none has yet been approved for human use. Here, we report the chemical synthesis of an outer core tetra- and pentasaccharide derived from the lipopolysaccharide of K. pneumoniae. The oligosaccharides were equipped with an aminopentyl linker, which facilitated conjugation to the carrier proteins CRM197 and BSA. Mice immunized with the glycoconjugate vaccine candidates elicited antibodies that recognized isolated LPS as well as various strains of K. pneumoniae. The successful preparation of the oligosaccharides relied on the selection of monosaccharide building blocks equipped with orthogonal hydroxyl and amino protecting groups. It allowed the differentiation of three types of amines of the target compounds and the installation of a crowded 4,5-branched Kdo moiety.


Assuntos
Lipopolissacarídeos , Pneumonia , Humanos , Animais , Camundongos , Klebsiella pneumoniae , Glicoconjugados , Oligossacarídeos
15.
Chemistry ; 29(16): e202203672, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36562295

RESUMO

Infecting the stomach of almost 50 % of people, Helicobacter pylori is a causative agent of gastritis, peptic ulcers and stomach cancers. Interactions between bacterial membrane-bound lectin, Blood group Antigen Binding Adhesin (BabA), and human blood group antigens are key in the initiation of infection. Herein, the synthesis of a B-antigen hexasaccharide (B6) and a B-Lewis b heptasaccharide (BLeb7) and Bovine Serum Albumin glycoconjugates thereof is reported to assess the binding properties and preferences of BabA from different strains. From a previously reported trisaccharide acceptor a versatile key Lacto-N-tetraose tetrasaccharide intermediate was synthesized, which allowed us to explore various routes to the final targets, either via initial introduction of fucosyl residues followed by introduction of the B-determinant or vice versa. The first approach proved unsuccessful, whereas the second afforded the target structures in good yields. Protein conjugation using isothiocyanate methodology allowed us to reach high glycan loadings (up to 23 per protein) to mimic multivalent displays encountered in Nature. Protein glycoconjugate inhibition binding studies were performed with H. pylori strains displaying high or low affinity for Lewis b hexasaccharide structures showing that the binding to the high affinity strain was reduced due to the presence of the B-determinant in the Bleb7-conjugates and further reduced by the absence of the Lewis fucose residue in the B6-conjugate.


Assuntos
Antígenos de Grupos Sanguíneos , Infecções por Helicobacter , Helicobacter pylori , Humanos , Adesinas Bacterianas/química , Estômago/microbiologia , Antígenos de Grupos Sanguíneos/metabolismo , Glicoconjugados/química , Infecções por Helicobacter/microbiologia
16.
Chemistry ; 29(15): e202203497, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36533568

RESUMO

In cellulo site-specific unnatural amino acid incorporation based on amber stop codon reassignment is a powerful tool to modify proteins at defined positions. This technique is herein applied to the selective functionalization of the Pneumococcal surface adhesin A protein at three distinct positions. Nϵ -propargyloxycarbonyl-l-lysine residues were incorporated and their alkyne groups reacted using click-chemistry with a synthetic azido-functionalized tetrasaccharide representative of one repeat unit of the Streptococcus pneumoniae serotype 14 capsular polysaccharide. Anti-PsaA antibody response induced in mice by the trivalent glycoconjugate was determined in comparison with corresponding monovalent and randomly functionalized conjugates. Our results suggest that controlled was superior to random conjugation for preserving antigenicity. In definitive, the reported strategy offers a unique opportunity to study the impact of carbohydrate antigen-carrier protein connectivity on immunogenicity.


Assuntos
Aminoácidos , Açúcares , Animais , Camundongos , Streptococcus pneumoniae , Vacinas Pneumocócicas , Glicoconjugados/química
17.
Chemistry ; 29(54): e202301632, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37518839

RESUMO

Selective linear 1,3-dienylations are essential transformations, and numerous synthetic efforts have been documented. However, a general method enabling access to electron-rich, -poor, and biologically relevant dienyl molecules is in high demand. Hence, we report a straightforward method of manganese(I)-catalyzed C-H dienylation of arenes by using iso-pentadienyl carbonate as a five carbon synthon. This is a highly unprecedented report for selective linear 1,3-dienylation using manganese C-H activation catalysis. Our method facilitates the synthesis of varieties of dienes, including those suitable for normal or inverse electron demand Diels-Alder reactions, dienyl glycoconjugates, and unnatural amino acids. Extensive mechanistic studies, including isolation of C-H activated organo-manganese complex and isotopic analyses, have supported the proposed mechanism of this dienylation. The synthetic applicability of this method eased to deliver a 6/6/5-fused tricyclic nagilactone scaffold.

18.
Glycoconj J ; 40(3): 295-303, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37052731

RESUMO

Sialylation is an important terminal modification of glycoconjugates that mediate diverse functions in physiology and disease. In this review we focus on how altered cell surface sialylation status is sensed by cytosolic galectins when the integrity of intracellular vesicles or organelles is compromised to expose luminal glycans to the cytosolic milieu, and how this impacts galectin-mediated cellular responses. In addition, we discuss the roles of mammalian sialidases on the cell surface, in the organelle lumen and cytosol, and raise the possibility that intracellular glycan processing may be critical in controlling various galectin-mediated responses when cells encounter stress.


Assuntos
Galectinas , Polissacarídeos , Animais , Galectinas/metabolismo , Citosol/metabolismo , Polissacarídeos/metabolismo , Glicoconjugados/metabolismo , Organelas , Mamíferos/metabolismo
19.
Biotechnol Bioeng ; 120(5): 1316-1322, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36726046

RESUMO

Glycoconjugate vaccines consisting of multiple serotypes of the bacterial capsular polysaccharide can provide strong protection against infection by significant pathogens. Previous studies of the sterile filtration behavior of these glycoconjugates have been limited to experiments with individual serotypes even though the formulated vaccines contain several different serotypes to provide broad immunization. The objective of this study was to explore the fouling behavior of a glycoconjugate vaccine drug product consisting of four different polysaccharide serotypes. Sterile filtration data were obtained with 0.22 µm Durapore® membranes at both constant flux and constant pressure for both the individual serotypes and the drug product containing multiple serotypes. Fouled membranes were examined by confocal microscopy, demonstrating that all four serotypes deposit in a narrow band near the filter inlet. The different ionic composition of the formulation buffer (compared to the buffers used with the drug substance) had a large effect on the fouling behavior. In addition, the fouling resistance associated with the drug product was greater than the sum of the resistances of the individual serotypes. These results provide important insights into the sterile filtration behavior of these multivalent glycoconjugate vaccines.


Assuntos
Anticorpos Antibacterianos , Polissacarídeos Bacterianos , Vacinas Conjugadas , Sorogrupo , Glicoconjugados
20.
Protein Expr Purif ; 207: 106273, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37068720

RESUMO

Phosphoglycosyl transferases (PGTs) are among the first membrane-bound enzymes involved in the biosynthesis of bacterial glycoconjugates. Robust expression and purification protocols for an abundant subfamily of PGTs remains lacking. Recent advancements in detergent-free methods for membrane protein solubilization open the door for purification of difficult membrane proteins directly from cell membranes into native-like liponanoparticles. By leveraging autoinduction, in vivo SUMO tag cleavage, styrene maleic acid co-polymer liponanoparticles (SMALPs), and Strep-Tag purification, we have established a robust workflow for expression and purification of previously unobtainable PGTs. The material generated from this workflow is extremely pure and can be directly visualized by Cryogenic Electron Microscopy (CryoEM). The methods presented here promise to be generalizable to additional membrane proteins recombinantly expressed in E. coli and should be of interest to the greater membrane proteomics community.


Assuntos
Escherichia coli , Transferases , Transferases/genética , Escherichia coli/genética , Membrana Celular/genética , Proteínas de Membrana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA