Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 365
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; : 107557, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002668

RESUMO

Glycosylphosphatidylinositol (GPI) anchor protein modification in Plasmodium species is well known and represents the principal form of glycosylation in these organisms. The structure and biosynthesis of GPI anchors of Plasmodium spp. has been primarily studied in the asexual blood stage of P. falciparum and is known to contain the typical conserved GPI structure of EtN-P-Man3GlcN-PI. Here, we have investigated the circumsporozoite protein (CSP) for the presence of a GPI-anchor. CSP is the major surface protein of Plasmodium sporozoites, the infective stage of the malaria parasite. While it is widely assumed that CSP is a GPI-anchored cell surface protein, compelling biochemical evidence for this supposition is absent. Here, we employed metabolic labeling and mass-spectrometry based approaches to confirm the presence of a GPI anchor in CSP. Biosynthetic radiolabeling of CSP with [3H]-palmitic acid and [3H]-ethanolamine, with the former being base-labile and therefore ester-linked, provided strong evidence for the presence of a GPI anchor on CSP, but these data alone were not definitive. To provide further evidence, immunoprecipitated CSP was analyzed for presence of myo-inositol (a characteristic component of GPI anchor) using strong acid hydrolysis and GC-MS for a highly sensitive and quantitative detection. The single ion monitoring (SIM) method for GC-MS analysis confirmed the presence of the myo-inositol component in CSP. Taken together, these data provide confidence that the long-assumed presence of a GPI anchor on this important parasite protein is correct.

2.
Subcell Biochem ; 104: 425-458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963495

RESUMO

Glycosylphosphatidylinositol (GPI) anchoring of proteins is a ubiquitous posttranslational modification in eukaryotic cells. GPI-anchored proteins (GPI-APs) play critical roles in enzymatic, signaling, regulatory, and adhesion processes. Over 20 enzymes are involved in GPI synthesis, attachment to client proteins, and remodeling after attachment. The GPI transamidase (GPI-T), a large complex located in the endoplasmic reticulum membrane, catalyzes the attachment step by replacing a C-terminal signal peptide of proproteins with GPI. In the last three decades, extensive research has been conducted on the mechanism of the transamidation reaction, the components of the GPI-T complex, the role of each subunit, and the substrate specificity. Two recent studies have reported the three-dimensional architecture of GPI-T, which represent the first structures of the pathway. The structures provide detailed mechanisms for assembly that rationalizes previous biochemical results and subunit-dependent stability data. While the structural data confirm the catalytic role of PIGK, which likely uses a caspase-like mechanism to cleave the proproteins, they suggest that unlike previously proposed, GPAA1 is not a catalytic subunit. The structures also reveal a shared cavity for GPI binding. Somewhat unexpectedly, PIGT, a single-pass membrane protein, plays a crucial role in GPI recognition. Consistent with the assembly mechanisms and the active site architecture, most of the disease mutations occur near the active site or the subunit interfaces. Finally, the catalytic dyad is located ~22 Å away from the membrane interface of the GPI-binding site, and this architecture may confer substrate specificity through topological matching between the substrates and the elongated active site. The research conducted thus far sheds light on the intricate processes involved in GPI anchoring and paves the way for further mechanistic studies of GPI-T.


Assuntos
Glicosilfosfatidilinositóis , Humanos , Glicosilfosfatidilinositóis/metabolismo , Glicosilfosfatidilinositóis/química , Animais , Especificidade por Substrato , Aminoaciltransferases/metabolismo , Aminoaciltransferases/química , Aminoaciltransferases/genética , Retículo Endoplasmático/metabolismo , Relação Estrutura-Atividade , Aciltransferases
3.
Proc Natl Acad Sci U S A ; 119(14): e2115083119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344438

RESUMO

SignificanceScramblases translocate lipids across the lipid bilayer without consumption of ATP, thereby regulating lipid distributions in cellular membranes. Cytosol-to-lumen translocation across the endoplasmic reticulum (ER) membrane is a common process among lipid glycoconjugates involved in posttranslational protein modifications in eukaryotes. These translocations are thought to be mediated by specific ER-resident scramblases, but the identity of these proteins and the underlying molecular mechanisms have been elusive. Here, we show that CLPTM1L, an integral membrane protein with eight putative transmembrane domains, is the major lipid scramblase involved in efficient glycosylphosphatidylinositol biosynthesis in the ER membrane. Our results validate the long-standing hypothesis that lipid scramblases ensure the efficient translocations of lipid glycoconjugates across the ER membrane for protein glycosylation pathways.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Glicosilfosfatidilinositóis , Retículo Endoplasmático/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Lipogênese , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
4.
J Biol Chem ; 299(8): 105016, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414151

RESUMO

The biosynthesis of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) in the parasitic protozoan Trypanosoma brucei involves fatty acid remodeling of the GPI precursor molecules before they are transferred to protein in the endoplasmic reticulum. The genes encoding the requisite phospholipase A2 and A1 activities for this remodeling have thus far been elusive. Here, we identify a gene, Tb927.7.6110, that encodes a protein that is both necessary and sufficient for GPI-phospholipase A2 (GPI-PLA2) activity in the procyclic form of the parasite. The predicted protein product belongs to the alkaline ceramidase, PAQR receptor, Per1, SID-1, and TMEM8 (CREST) superfamily of transmembrane hydrolase proteins and shows sequence similarity to Post-GPI-Attachment to Protein 6 (PGAP6), a GPI-PLA2 that acts after transfer of GPI precursors to protein in mammalian cells. We show the trypanosome Tb927.7.6110 GPI-PLA2 gene resides in a locus with two closely related genes Tb927.7.6150 and Tb927.7.6170, one of which (Tb927.7.6150) most likely encodes a catalytically inactive protein. The absence of GPI-PLA2 in the null mutant procyclic cells not only affected fatty acid remodeling but also reduced GPI anchor sidechain size on mature GPI-anchored procyclin glycoproteins. This reduction in GPI anchor sidechain size was reversed upon the re-addition of Tb927.7.6110 and of Tb927.7.6170, despite the latter not encoding GPI precursor GPI-PLA2 activity. Taken together, we conclude that Tb927.7.6110 encodes the GPI-PLA2 of GPI precursor fatty acid remodeling and that more work is required to assess the roles and essentiality of Tb927.7.6170 and the presumably enzymatically inactive Tb927.7.6150.


Assuntos
Glicosilfosfatidilinositóis , Trypanosoma brucei brucei , Animais , Glicosilfosfatidilinositóis/genética , Glicosilfosfatidilinositóis/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Proteínas de Membrana/metabolismo , Fosfolipases A2/metabolismo , Proteínas Ligadas por GPI/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Mamíferos/metabolismo
5.
J Biol Chem ; 299(5): 104638, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963497

RESUMO

Lipid rafts are membrane microdomains rich in cholesterol, sphingolipids, glycosylphosphatidylinositol-anchored proteins (GPI-APs), and receptors. These lipid raft components are localized at the plasma membrane and are essential for signal transmission and organogenesis. However, few reports have been published on the specific effects of lipid rafts on tooth development. Using microarray and single-cell RNA sequencing methods, we found that a GPI-AP, lymphocyte antigen-6/Plaur domain-containing 1 (Lypd1), was specifically expressed in preodontoblasts. Depletion of Lypd1 in tooth germ using an ex vivo organ culture system and in mouse dental pulp (mDP) cells resulted in the inhibition of odontoblast differentiation. Activation of bone morphogenetic protein (BMP) signaling by BMP2 treatment in mDP cells promoted odontoblast differentiation via phosphorylation of Smad1/5/8, while this BMP2-mediated odontoblast differentiation was inhibited by depletion of Lypd1. Furthermore, we created a deletion construct of the C terminus containing the omega site in LYPD1; this site is necessary for localizing GPI-APs to the plasma membrane and lipid rafts. We identified that this site is essential for odontoblast differentiation and morphological change of mDP cells. These findings demonstrated that LYPD1 is a novel marker of preodontoblasts in the developing tooth; in addition, they suggest that LYPD1 is important for tooth development and that it plays a pivotal role in odontoblast differentiation by regulating Smad1/5/8 phosphorylation through its effect as a GPI-AP in lipid rafts.


Assuntos
Diferenciação Celular , Proteínas Ligadas por GPI , Odontoblastos , Odontogênese , Animais , Camundongos , Proteínas Morfogenéticas Ósseas/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glicosilfosfatidilinositóis/metabolismo , Proteínas Ligadas por GPI/metabolismo , Microdomínios da Membrana/metabolismo , Odontoblastos/citologia , Odontoblastos/metabolismo , Domínios Proteicos
6.
Mol Genet Metab ; 142(1): 108476, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653092

RESUMO

We have identified 200 congenital disorders of glycosylation (CDG) caused by 189 different gene defects and have proposed a classification system for CDG based on the mode of action. This classification includes 8 categories: 1. Disorders of monosaccharide synthesis and interconversion, 2. Disorders of nucleotide sugar synthesis and transport, 3. Disorders of N-linked protein glycosylation, 4. Disorders of O-linked protein glycosylation, 5. Disorders of lipid glycosylation, 6. Disorders of vesicular trafficking, 7. Disorders of multiple glycosylation pathways and 8. Disorders of glycoprotein/glycan degradation. Additionally, using information from IEMbase, we have described the clinical involvement of 19 organs and systems, as well as essential laboratory investigations for each type of CDG. Neurological, dysmorphic, skeletal, and ocular manifestations were the most prevalent, occurring in 81%, 56%, 53%, and 46% of CDG, respectively. This was followed by digestive, cardiovascular, dermatological, endocrine, and hematological symptoms (17-34%). Immunological, genitourinary, respiratory, psychiatric, and renal symptoms were less frequently reported (8-12%), with hair and dental abnormalities present in only 4-7% of CDG. The information provided in this study, including our proposed classification system for CDG, may be beneficial for healthcare providers caring for individuals with metabolic conditions associated with CDG.


Assuntos
Defeitos Congênitos da Glicosilação , Humanos , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/classificação , Defeitos Congênitos da Glicosilação/patologia , Glicosilação
7.
Chemistry ; 30(8): e202303047, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37966101

RESUMO

Glycosylphosphatidylinositols (GPIs) need to interact with other components in the cell membrane to transduce transmembrane signals. A bifunctional GPI probe was employed for photoaffinity-based proximity labelling and identification of GPI-interacting proteins in the cell membrane. This probe contained the entire core structure of GPIs and was functionalized with photoreactive diazirine and clickable alkyne to facilitate its crosslinking with proteins and attachment of an affinity tag. It was disclosed that this probe was more selective than our previously reported probe containing only a part structure of the GPI core for cell membrane incorporation and an improved probe for studying GPI-cell membrane interaction. Eighty-eight unique membrane proteins, many of which are related to GPIs/GPI-anchored proteins, were identified utilizing this probe. The proteomics dataset is a valuable resource for further analyses and data mining to find new GPI-related proteins and signalling pathways. A comparison of these results with those of our previous probe provided direct evidence for the profound impact of GPI glycan structure on its interaction with the cell membrane.


Assuntos
Glicosilfosfatidilinositóis , Polissacarídeos , Glicosilfosfatidilinositóis/química , Membrana Celular/metabolismo , Polissacarídeos/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais
8.
Med Mycol ; 62(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38816207

RESUMO

Candida auris represents one of the most urgent threats to public health, although its ecology remains largely unknown. Because amphibians and reptiles may present favorable conditions for C. auris colonization, cloacal and blood samples (n = 68), from several snake species, were cultured and molecularly screened for C. auris using molecular amplification of glycosylphosphatidylinositol protein-encoding genes and ribosomal internal transcribed spacer sequencing. Candida auris was isolated from the cloacal swab of one Egyptian cobra (Naja haje legionis) and molecularly identified in its cloaca and blood. The isolation of C. auris from wild animals is herein reported for the first time, thus suggesting the role that these animals could play as reservoirs of this emerging pathogen. The occurrence of C. auris in blood requires further investigation, although the presence of cationic antimicrobial peptides in the plasma of reptiles could play a role in reducing the vitality of the fungus.


Candida auris represents one of the most urgent threats to public health. In this study, we reported for the first time the isolation of C. auris from snake thus suggesting the role of these animals as reservoirs of this emerging pathogen.


Assuntos
Candida , Candidíase , DNA Espaçador Ribossômico , Reservatórios de Doenças , Animais , Candida/genética , Candida/classificação , Candida/isolamento & purificação , Candida/efeitos dos fármacos , Reservatórios de Doenças/microbiologia , Candidíase/microbiologia , Candidíase/veterinária , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/química , Cloaca/microbiologia , Análise de Sequência de DNA , DNA Fúngico/genética , Sangue/microbiologia , Serpentes/microbiologia , Elapidae , Egito , Filogenia
9.
Neurol Sci ; 45(5): 2253-2260, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38055078

RESUMO

INTRODUCTION: PIGW-related glycosylphosphatidylinositol deficiency is a rare disease that manifests heterogeneous clinical phenotypes. METHODS: We describe a patient with PIGW deficiency and summarize the clinical characteristics of the case. In addition, we conducted a literature review of previously reported patients with pathogenic variants of PIGW. RESULTS: A Chinese girl presented with refractory epilepsy, severe intellectual disability, recurrent respiratory infections, and hyperphosphatasia. Seizures worsened during fever and infections, making her more susceptible to epileptic status. She was found to carry a heterozygous variant of PIGW and a deletion of chromosome 17q12 containing PIGW. Only six patients with homozygous or compound heterozygous pathogenic variants of PIGW have been identified in the literature thus far. Epileptic seizures were reported in all patients, and the most common types of seizures were epileptic spasms. Distinctive facial and physical features and recurrent respiratory infections are common in these patients with developmental delays. Serum alkaline phosphatase (ALP) levels were elevated in four of the six patients. CONCLUSIONS: PIGW-related glycosylphosphatidylinositol deficiency is characterized by developmental delay, epilepsy, distinctive facial features, and multiple organ anomalies. Genetic testing is an important method for diagnosing this disease, and flow cytometry and serum ALP level detection are crucial complements for genetic testing.


Assuntos
Anormalidades Múltiplas , Epilepsia , Glicosilfosfatidilinositóis/deficiência , Deficiência Intelectual , Infecções Respiratórias , Humanos , Feminino , Convulsões/genética , Epilepsia/genética , Epilepsia/diagnóstico , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Anormalidades Múltiplas/genética
10.
Traffic ; 22(8): 274-283, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34101314

RESUMO

African trypanosomes cause disease in humans and livestock, avoiding host immunity by changing the expression of variant surface glycoproteins (VSGs); the major glycosylphosphatidylinositol (GPI) anchored antigens coating the surface of the bloodstream stage. Proper trafficking of VSGs is therefore critical to pathogen survival. The valence model argues that GPI anchors regulate progression and fate in the secretory pathway and that, specifically, a valence of two (VSGs are dimers) is critical for stable cell surface association. However, recent reports that the MITat1.3 (M1.3) VSG N-terminal domain (NTD) behaves as a monomer in solution and in a crystal structure challenge this model. We now show that the behavior of intact M1.3 VSG in standard in vivo trafficking assays is consistent with an oligomer. Nevertheless, Blue Native Gel electrophoresis and size exclusion chromatography-multiangle light scattering chromatography of purified full length M1.3 VSG indicates a monomer in vitro. However, studies with additional VSGs show that multiple oligomeric states are possible, and that for some VSGs oligomerization is concentration dependent. These data argue that individual VSG monomers possess different propensities to self-oligomerize, but that when constrained at high density to the cell surface, oligomeric species predominate. These results resolve the apparent conflict between the valence hypothesis and the M1.3 NTD VSG crystal structure.


Assuntos
Trypanosoma brucei brucei , Glicoproteínas Variantes de Superfície de Trypanosoma , Membrana Celular , Glicosilfosfatidilinositóis , Glicoproteínas de Membrana , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
11.
J Proteome Res ; 22(3): 919-930, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36700487

RESUMO

Glycosylphosphatidylinositol (GPI) anchorage of cell surface proteins to the membrane is biologically important and ubiquitous in eukaryotes. However, GPIs do not contain long enough lipids to span the entire membrane bilayer. To transduce binding signals, GPIs must interact with other membrane components, but such interactions are difficult to define. Here, a new method was developed to explore GPI-interacting membrane proteins in live cell with a bifunctional analogue of the glucosaminylphosphatidylinositol motif conserved in all GPIs as a probe. This probe contained a diazirine functionality in the lipid and an alkynyl group on the glucosamine residue to respectively facilitate the cross-linkage of GPI-binding membrane proteins with the probe upon photoactivation and then the installation of biotin to the cross-linked proteins via a click reaction for affinity-based protein isolation and analysis. Profiling the proteins pulled down from the Hela cells revealed 94 unique and 18 overrepresented proteins compared to the control, and most of them are membrane proteins and many are GPI-related. The results have proved not only the concept of using the new bifunctional GPI probe to investigate GPI-binding membrane proteins but also the important role of inositol in the biological functions of GPI anchors and GPI-anchored proteins.


Assuntos
Glicosilfosfatidilinositóis , Proteínas de Membrana , Humanos , Glicosilfosfatidilinositóis/análise , Glicosilfosfatidilinositóis/química , Glicosilfosfatidilinositóis/metabolismo , Células HeLa , Membrana Celular/química , Proteínas de Membrana/metabolismo
12.
J Biol Chem ; 298(10): 102444, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36055406

RESUMO

Newly synthesized proteins in the secretory pathway, including glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs), need to be correctly targeted and imported into the endoplasmic reticulum (ER) lumen. GPI-APs are synthesized in the cytosol as preproproteins, which contain an N-terminal signal sequence (SS), mature protein part, and C-terminal GPI-attachment sequence (GPI-AS), and translocated into the ER lumen where SS and GPI-AS are removed, generating mature GPI-APs. However, how various GPI-APs are translocated into the ER lumen in mammalian cells is unclear. Here, we investigated the ER entry pathways of GPI-APs using a panel of KO cells defective in each signal recognition particle-independent ER entry pathway-namely, Sec62, GET, or SND pathway. We found GPI-AP CD59 largely depends on the SND pathway for ER entry, whereas prion protein (Prion) and LY6K depend on both Sec62 and GET pathways. Using chimeric Prion and LY6K constructs in which the N-terminal SS or C-terminal GPI-AS was replaced with that of CD59, we revealed that the hydrophobicity of the SSs and GPI-ASs contributes to the dependence on Sec62 and GET pathways, respectively. Moreover, the ER entry route of chimeric Prion constructs with the C-terminal GPI-ASs replaced with that of CD59 was changed to the SND pathway. Simultaneously, their GPI structures and which oligosaccharyltransferase isoforms modify the constructs were altered without any amino acid change in the mature protein part. Taking these findings together, this study revealed N- and C-terminal sequences of GPI-APs determine the selective ER entry route, which in turn regulates subsequent maturation processes of GPI-APs.


Assuntos
Retículo Endoplasmático , Proteínas Ligadas por GPI , Glicosilfosfatidilinositóis , Sinais Direcionadores de Proteínas , Humanos , Retículo Endoplasmático/metabolismo , Glicosilação , Glicosilfosfatidilinositóis/química , Glicosilfosfatidilinositóis/metabolismo , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Príons/química , Príons/metabolismo , Transporte Proteico
13.
J Biol Chem ; 298(12): 102640, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36309091

RESUMO

Extracellular hydrolysis of flavin-adenine dinucleotide (FAD) and flavin mononucleotide (FMN) to riboflavin is thought to be important for cellular uptake of vitamin B2 because FAD and FMN are hydrophilic and do not pass the plasma membrane. However, it is not clear whether FAD and FMN are hydrolyzed by cell surface enzymes for vitamin B2 uptake. Here, we show that in human cells, FAD, a major form of vitamin B2 in plasma, is hydrolyzed by CD73 (also called ecto-5' nucleotidase) to FMN. Then, FMN is hydrolyzed by alkaline phosphatase to riboflavin, which is efficiently imported into cells. We determined that this two-step hydrolysis process is impaired on the surface of glycosylphosphatidylinositol (GPI)-deficient cells due to the lack of these GPI-anchored enzymes. During culture of GPI-deficient cells with FAD or FMN, we found that hydrolysis of these forms of vitamin B2 was impaired, and intracellular levels of vitamin B2 were significantly decreased compared with those in GPI-restored cells, leading to decreased formation of vitamin B2-dependent pyridoxal 5'-phosphate and mitochondrial dysfunction. Collectively, these results suggest that inefficient uptake of vitamin B2 might account for mitochondrial dysfunction seen in some cases of inherited GPI deficiency.


Assuntos
Flavina-Adenina Dinucleotídeo , Riboflavina , Humanos , Flavina-Adenina Dinucleotídeo/metabolismo , Fosfatase Alcalina , 5'-Nucleotidase/genética , Mononucleotídeo de Flavina/metabolismo , Hidrólise , Vitaminas
14.
J Biol Chem ; 298(2): 101550, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973333

RESUMO

The malaria-causing parasite Plasmodium falciparum is responsible for over 200 million infections and 400,000 deaths per year. At multiple stages during its complex life cycle, P. falciparum expresses several essential proteins tethered to its surface by glycosylphosphatidylinositol (GPI) anchors, which are critical for biological processes such as parasite egress and reinvasion of host red blood cells. Targeting this pathway therapeutically has the potential to broadly impact parasite development across several life stages. Here, we characterize an upstream component of parasite GPI anchor biosynthesis, the putative phosphomannomutase (PMM) (EC 5.4.2.8), HAD5 (PF3D7_1017400). We confirmed the PMM and phosphoglucomutase activities of purified recombinant HAD5 by developing novel linked enzyme biochemical assays. By regulating the expression of HAD5 in transgenic parasites with a TetR-DOZI-inducible knockdown system, we demonstrated that HAD5 is required for malaria parasite egress and erythrocyte reinvasion, and we assessed the role of HAD5 in GPI anchor synthesis by autoradiography of radiolabeled glucosamine and thin layer chromatography. Finally, we determined the three-dimensional X-ray crystal structure of HAD5 and identified a substrate analog that specifically inhibits HAD5 compared to orthologous human PMMs in a time-dependent manner. These findings demonstrate that the GPI anchor biosynthesis pathway is exceptionally sensitive to inhibition in parasites and that HAD5 has potential as a specific, multistage antimalarial target.


Assuntos
Fosfotransferases (Fosfomutases) , Plasmodium falciparum , Proteínas de Protozoários , Animais , Eritrócitos/parasitologia , Glicosilfosfatidilinositóis/metabolismo , Humanos , Malária Falciparum/parasitologia , Fosfotransferases (Fosfomutases)/genética , Fosfotransferases (Fosfomutases)/metabolismo , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
15.
J Biol Chem ; 298(6): 102011, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35525268

RESUMO

Glycosylphosphatidylinositol (GPI)-anchored proteins play crucial roles in various enzyme activities, cell signaling and adhesion, and immune responses. While the molecular mechanism underlying GPI-anchored protein biosynthesis has been well studied, the role of zinc transport in this process has not yet been elucidated. Zn transporter (ZNT) proteins mobilize cytosolic zinc to the extracellular space and to intracellular compartments. Here, we report that the early secretory pathway ZNTs (ZNT5-ZNT6 heterodimers [ZNT5-6] and ZNT7-ZNT7 homodimers [ZNT7]), which supply zinc to the lumen of the early secretory pathway compartments are essential for GPI-anchored protein expression on the cell surface. We show, using overexpression and gene disruption/re-expression strategies in cultured human cells, that loss of ZNT5-6 and ZNT7 zinc transport functions results in significant reduction in GPI-anchored protein levels similar to that in mutant cells lacking phosphatidylinositol glycan anchor biosynthesis (PIG) genes. Furthermore, medaka fish with disrupted Znt5 and Znt7 genes show touch-insensitive phenotypes similar to zebrafish Pig mutants. These findings provide a previously unappreciated insight into the regulation of GPI-anchored protein expression and protein quality control in the early secretory pathway.


Assuntos
Proteínas de Transporte de Cátions , Proteínas Ligadas por GPI , Zinco , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Galinhas/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Glicosilfosfatidilinositóis/genética , Proteínas de Membrana/metabolismo , Peixe-Zebra/metabolismo , Zinco/metabolismo
16.
J Biol Chem ; 298(8): 102181, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35752366

RESUMO

The structures of prion protein (PrP)-based mammalian prions have long been elusive. However, cryo-EM has begun to reveal the near-atomic resolution structures of fully infectious ex vivo mammalian prion fibrils as well as relatively innocuous synthetic PrP amyloids. Comparisons of these various types of PrP fibrils are now providing initial clues to structural features that correlate with pathogenicity. As first indicated by electron paramagnetic resonance and solid-state NMR studies of synthetic amyloids, all sufficiently resolved PrP fibrils of any sort (n > 10) have parallel in-register intermolecular ß-stack architectures. Cryo-EM has shown that infectious brain-derived prion fibrils of the rodent-adapted 263K and RML scrapie strains have much larger ordered cores than the synthetic fibrils. These bona fide prion strains share major structural motifs, but the conformational details and the overall shape of the fibril cross sections differ markedly. Such motif variations, as well as differences in sequence within the ordered polypeptide cores, likely contribute to strain-dependent templating. When present, N-linked glycans and glycophosphatidylinositol (GPI) anchors project outward from the fibril surface. For the mouse RML strain, these posttranslational modifications have little effect on the core structure. In the GPI-anchored prion structures, a linear array of GPI anchors along the twisting fibril axis appears likely to bind membranes in vivo, and as such, may account for pathognomonic membrane distortions seen in prion diseases. In this review, we focus on these infectious prion structures and their implications regarding prion replication mechanisms, strains, transmission barriers, and molecular pathogenesis.


Assuntos
Doenças Priônicas , Príons , Scrapie , Amiloide/química , Animais , Biologia , Mamíferos/metabolismo , Camundongos , Doenças Priônicas/metabolismo , Proteínas Priônicas , Príons/metabolismo , Scrapie/metabolismo , Ovinos
17.
Mol Microbiol ; 117(2): 450-461, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34875117

RESUMO

Glycosylphosphatidylinositol (GPI)-anchored proteins are found in all eukaryotes and are especially abundant on the surface of protozoan parasites such as Trypanosoma brucei. GPI-mannosyltransferase-I (GPI-MT-I) catalyzes the addition of the first of three mannoses that make up the glycan core of GPI. Mammalian and yeast GPI-MT-I consist of two essential subunits, the catalytic subunit PIG-M/Gpi14 and the accessory subunit PIG-X/Pbn1(mammals/yeast). T. brucei GPI-MT-I has been highlighted as a potential antitrypanosome drug target but has not been fully characterized. Here, we show that T. brucei GPI-MT-I also has two subunits, TbGPI14 and TbPBN1. Using TbGPI14 deletion, and TbPBN1 RNAi-mediated depletion, we show that both proteins are essential for the mannosyltransferase activity needed for GPI synthesis and surface expression of GPI-anchored proteins. In addition, using native PAGE and co-immunoprecipitation analyses, we demonstrate that TbGPI14 and TbPBN1 interact to form a higher-order complex. Finally, we show that yeast Gpi14 does not restore GPI-MT-I function in TbGPI14 knockout trypanosomes, consistent with previously demonstrated species specificity within GPI-MT-I subunit associations. The identification of an essential trypanosome GPI-MT-I subcomponent indicates wide conservation of the heterodimeric architecture unusual for a glycosyltransferase, leaving open the question of the role of the noncatalytic TbPBN1 subunit in GPI-MT-I function.


Assuntos
Trypanosoma brucei brucei , Animais , Glicosilfosfatidilinositóis , Mamíferos/metabolismo , Manosiltransferases/genética , Manosiltransferases/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
18.
Am J Hum Genet ; 106(4): 484-495, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32220290

RESUMO

Glycosylphosphatidylinositol (GPI)-anchored proteins are critical for embryogenesis, neurogenesis, and cell signaling. Variants in several genes participating in GPI biosynthesis and processing lead to decreased cell surface presence of GPI-anchored proteins (GPI-APs) and cause inherited GPI deficiency disorders (IGDs). In this report, we describe 12 individuals from nine unrelated families with 10 different bi-allelic PIGK variants. PIGK encodes a component of the GPI transamidase complex, which attaches the GPI anchor to proteins. Clinical features found in most individuals include global developmental delay and/or intellectual disability, hypotonia, cerebellar ataxia, cerebellar atrophy, and facial dysmorphisms. The majority of the individuals have epilepsy. Two individuals have slightly decreased levels of serum alkaline phosphatase, while eight do not. Flow cytometric analysis of blood and fibroblasts from affected individuals showed decreased cell surface presence of GPI-APs. The overexpression of wild-type (WT) PIGK in fibroblasts rescued the levels of cell surface GPI-APs. In a knockout cell line, transfection with WT PIGK also rescued the GPI-AP levels, but transfection with the two tested mutant variants did not. Our study not only expands the clinical and known genetic spectrum of IGDs, but it also expands the genetic differential diagnosis for cerebellar atrophy. Given the fact that cerebellar atrophy is seen in other IGDs, flow cytometry for GPI-APs should be considered in the work-ups of individuals presenting this feature.


Assuntos
Aciltransferases/genética , Moléculas de Adesão Celular/genética , Doenças Cerebelares/genética , Epilepsia/genética , Variação Genética/genética , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/genética , Anormalidades Múltiplas/genética , Alelos , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Malformações do Sistema Nervoso/genética , Linhagem , Síndrome
19.
Biochem Biophys Res Commun ; 645: 103-109, 2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36682329

RESUMO

Glycosylphosphatidylinositol (GPI) anchorage is one of the most common mechanisms to attach proteins to the plasma membrane of eukaryotic cells. GPI-anchored proteins (GPI-APs) play a critical role in many biological processes but are difficult to study. Here, a new method was developed for the effective and selective metabolic engineering and labeling of cell surface GPI-APs with an azide-modified phosphatidylinositol (PI) as the biosynthetic precursor of GPIs. It was demonstrated that this azido-PI derivative was taken up by HeLa cells and incorporated into the biosynthetic pathway of GPIs to present azide-labeled GPI-APs on the live cell surface. The azido group was used as a molecular handle to install other labels through a biocompatible click reaction to enable various biological studies, e.g., fluorescent imaging and protein pull-down, which can help explore the functions of GPI-APs and discover new GPI-APs.


Assuntos
Glicosilfosfatidilinositóis , Proteínas de Membrana , Humanos , Proteínas de Membrana/metabolismo , Células HeLa , Azidas , Engenharia Metabólica , Membrana Celular/metabolismo
20.
Chembiochem ; 24(13): e202200761, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36935354

RESUMO

Glycosphingolipid (GSL) and glycosylphosphatidylinositol (GPI) are the two major glycolipids expressed by eukaryotic cells, and their metabolisms share the same machineries. Moreover, both GSLs and GPI-anchored proteins (GPI-APs) are localized in the cholesterol-rich regions, namely the lipid rafts, of the cell membrane, where many other signaling molecules are compartmentalized as well. Therefore, the interaction between GSLs and GPI-APs and their interactions with other molecules in the lipid rafts are inevitable. This review is focused on the influences of GSLs and GPI-APs on each other's biosynthesis, trafficking, cell membrane distribution, and biological functions, such as signal transduction.


Assuntos
Glicoesfingolipídeos , Glicosilfosfatidilinositóis , Glicoesfingolipídeos/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Membrana Celular/metabolismo , Proteínas/metabolismo , Microdomínios da Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA