RESUMO
Multiple myeloma (MM), the second most common haematological malignancy, is a clonal plasma B-cell neoplasm that forms within the bone marrow. Despite recent advancements in treatment, MM remains an incurable disease. Auranofin, a linear gold(I) phosphine compound, has previously been shown to exert a significant anti-myeloma activity by inhibiting thioredoxin reductase (TrxR) activity. A bis-chelated tetrahedral gold(I) phosphine complex [Au(d2pype)2]Cl (where d2pype is 1,2-bis(di-2-pyridylphosphino)ethane) was previously designed to improve the gold(I) compound selectivity towards selenol- and thiol-containing proteins, such as TrxR. In this study, we show that [Au(d2pype)2]Cl significantly inhibited TrxR activity in both bortezomib-sensitive and resistant myeloma cells, which led to a significant reduction in cell proliferation and induction of apoptosis, both of which were dependent on ROS. In clonogenic assays, treatment with [Au(d2pype)2]Cl completely abrogated the tumourigenic capacity of MM cells, whereas auranofin was less effective. We also show that [Au(d2pype)2]Cl exerted a significant anti-myeloma activity in vivo in human RPMI8226 xenograft model in immunocompromised NOD/SCID mice. The MYC oncogene, known to drive myeloma progression, was downregulated in both in vitro and in vivo models when treated with [Au(d2pype)2]Cl. This study highlights the "proof of concept" that improved gold(I)-based compounds could potentially be used to not only treat MM but as an alternative tool to understand the role of the Trx system in the pathogenesis of this blood disease.
Assuntos
Ouro/química , Mieloma Múltiplo/tratamento farmacológico , Fosfinas/administração & dosagem , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/genética , Fosfinas/química , Fosfinas/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Since the potential anticancer activity of auranofin was discovered, gold compounds have attracted interest with a view to developing anticancer agents that follow cytotoxic mechanisms other than cisplatin. Two benzimidazole gold(I) derivatives containing triphenylphosphine (Au(pben)(PPh3)) (1) or triethylphosphine (Au(pben)(PEt3)) (2) were prepared and characterized by standard techniques. X-ray crystal structures for 1 and 2 were solved. The cytotoxicity of 1 and 2 was tested in human neuroblastoma SH-SY5Y cells. Cells were incubated with compounds for 24 h with concentrations ranging from 10 µM to 1 nM, and the half-maximal inhibitory concentration (IC50) was determined. 1 and 2 showed an IC50 of 2.7 and 1.6 µM, respectively. In order to better understand the type of cell death induced by compounds, neuroblastoma cells were stained with Annexin-FITC and propidium iodide. The fluorescence analysis revealed that compounds were inducing apoptosis; however, pre-treatment with the caspase inhibitor Z-VAD did not reduce cell death. Analysis of compound effects on caspase-3 activity and reactive oxygen species (ROS) production in SH-SY5Y cells revealed an antiproliferative ability mediated through oxidative stress and both caspase-dependent and caspase-independent mechanisms.
RESUMO
The antiproliferative properties of a series of structurally-related gold(I) and silver(I) linear complexes inspired to the clinically established gold-based drug auranofin were investigated in A2780 ovarian cancer cells and in their auranofin (A2780/AF-R) and cisplatin (A2780/CDDP-R) resistant counterparts. In A2780 cells and in the cisplatin-resistant subline, gold-based analogues manifested a cytotoxicity profile comparable or superior to auranofin, while the silver-based analogues were less active; both gold and silver complexes overcame cisplatin resistance. Yet, a high degree of cross resistance toward gold analogues was noticed in A2780/AF-R cells. In the same cell line cross-resistance for silver analogues was also observed, though lower. All metal complexes were scrutinized for their ability to inhibit thioredoxin reductase (TrxR), the putative primary target for auranofin: overall, gold compounds were more potent TrxR inhibitors than the corresponding silver compounds, probably, as the consequence of the stronger binding of gold to the active site selenocysteine residue. These results highlight that the thiosugar ligand of auranofin is not essential for cytotoxicity while the nature of the metal center (gold/silver) plays a relevant role in its modulation. In addition, a rather clear correlation was found between cytotoxic potency of tested compounds and their ability to inhibit TrxR activity, being gold compounds more effective than silver analogues. However, the residual TrxR activity, measured in A2780 cells treated with the half-maximal inhibitory concentrations of various metal complexes, resulted far higher than expected. These results suggest that additional cytotoxic mechanisms must be operative. The implications of these results are discussed.
Assuntos
Antineoplásicos , Auranofina , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos , Proteínas de Neoplasias , Neoplasias Ovarianas , Tiorredoxina Dissulfeto Redutase , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Auranofina/análogos & derivados , Auranofina/síntese química , Auranofina/química , Auranofina/farmacologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Relação Estrutura-Atividade , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/metabolismoRESUMO
Phosphanegold(I) thiolates, Ph3PAu[SC(OR)=NPh], R=Me (1), Et (2) and iPr (3), were previously shown to be significantly cytotoxic toward HT-29 cancer cells and to induce cell death by both intrinsic and extrinsic apoptotic pathways whereby 1 activated the p73 gene, and each of 2 and 3 activated p53; 2 also caused apoptotic cell death via the c-Jun N-terminal kinase/mitogen-activated protein kinase pathway. Apoptosis pathways have been further evaluated by mitochondrial cytochrome c measurements and annexin V screening, confirming apoptotic pathways of cell death. Cell cycle analysis showed the majority of treated HT-29 cells were arrested at the G2/M checkpoint after 24h; results of both assays were confirmed by changes in populations of relevant genes (PCR array analysis). Cell invasion studies showed inhibition of metastasis through Matrigel™ matrix to 17-22% cf. untreated cells. LC50 values were determined in zebrafish (8.36, 8.17, and 7.64µM for 1-3). Finally, the zebrafish tolerated doses of 1 and 2 up to 0.625µM, and 3 was tolerated at even higher doses of up to 1.25µM.