Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cerebellum ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499814

RESUMO

In the cerebellum, granule cells make parallel fibre contact on (and excite) Golgi cells and Golgi cells inhibit granule cells, forming an open feedback loop. Parallel fibres excite Golgi cells synaptically, each making a single contact. Golgi cells inhibit granule cells in a structure called a glomerulus almost exclusively by GABA spillover acting through extrasynaptic GABAA receptors. Golgi cells are connected dendritically by gap junctions. It has long been suspected that feedback contributes to homeostatic regulation of parallel fibre signals activity, causing the fraction of the population that are active to be maintained at a low level. We present a detailed neurophysiological and computationally-rendered model of functionally grouped Golgi cells which can infer the density of parallel fibre signals activity and convert it into proportional modulation of inhibition of granule cells. The conversion is unlearned and not actively computed; rather, output is simply the computational effect of cell morphology and network architecture. Unexpectedly, the conversion becomes more precise at low density, suggesting that self-regulation is attracted to sparse code, because it is stable. A computational function of gap junctions may not be confined to the cerebellum.

2.
J Neurosci ; 41(15): 3307-3319, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33500277

RESUMO

Golgi cells, together with granule cells and mossy fibers, form a neuronal microcircuit regulating information transfer at the cerebellum input stage. Despite theoretical predictions, little was known about long-term synaptic plasticity at Golgi cell synapses. Here, we have used whole-cell patch-clamp recordings and calcium imaging to investigate long-term synaptic plasticity at excitatory synapses impinging on Golgi cells. In acute mouse cerebellar slices, mossy fiber theta-burst stimulation (TBS) could induce either long-term potentiation (LTP) or long-term depression (LTD) at mossy fiber-Golgi cell and granule cell-Golgi cell synapses. This synaptic plasticity showed a peculiar voltage dependence, with LTD or LTP being favored when TBS induction occurred at depolarized or hyperpolarized potentials, respectively. LTP required, in addition to NMDA channels, activation of T-type Ca2+ channels, while LTD required uniquely activation of L-type Ca2+ channels. Notably, the voltage dependence of plasticity at the mossy fiber-Golgi cell synapses was inverted with respect to pure NMDA receptor-dependent plasticity at the neighboring mossy fiber-granule cell synapse, implying that the mossy fiber presynaptic terminal can activate different induction mechanisms depending on the target cell. In aggregate, this result shows that Golgi cells show cell-specific forms of long-term plasticity at their excitatory synapses, that could play a crucial role in sculpting the response patterns of the cerebellar granular layer.SIGNIFICANCE STATEMENT This article shows for the first time a novel form of Ca2+ channel-dependent synaptic plasticity at the excitatory synapses impinging on cerebellar Golgi cells. This plasticity is bidirectional and inverted with respect to NMDA receptor-dependent paradigms, with long-term depression (LTD) and long-term potentiation (LTP) being favored at depolarized and hyperpolarized potentials, respectively. Furthermore, LTP and LTD induction requires differential involvement of T-type and L-type voltage-gated Ca2+ channels rather than the NMDA receptors alone. These results, along with recent computational predictions, support the idea that Golgi cell plasticity could play a crucial role in controlling information flow through the granular layer along with cerebellar learning and memory.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Células Cerebelares de Golgi/metabolismo , Potenciais Pós-Sinápticos Excitadores , Potenciação de Longa Duração , Animais , Células Cerebelares de Golgi/fisiologia , Feminino , Masculino , Camundongos , Fibras Nervosas/metabolismo , Fibras Nervosas/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia
3.
J Neurosci ; 40(14): 2882-2894, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32111698

RESUMO

Sensorimotor integration in the cerebellum is essential for refining motor output, and the first stage of this processing occurs in the granule cell layer. Recent evidence suggests that granule cell layer synaptic integration can be contextually modified, although the circuit mechanisms that could mediate such modulation remain largely unknown. Here we investigate the role of ACh in regulating granule cell layer synaptic integration in male rats and mice of both sexes. We find that Golgi cells, interneurons that provide the sole source of inhibition to the granule cell layer, express both nicotinic and muscarinic cholinergic receptors. While acute ACh application can modestly depolarize some Golgi cells, the net effect of longer, optogenetically induced ACh release is to strongly hyperpolarize Golgi cells. Golgi cell hyperpolarization by ACh leads to a significant reduction in both tonic and evoked granule cell synaptic inhibition. ACh also reduces glutamate release from mossy fibers by acting on presynaptic muscarinic receptors. Surprisingly, despite these consistent effects on Golgi cells and mossy fibers, ACh can either increase or decrease the spike probability of granule cells as measured by noninvasive cell-attached recordings. By constructing an integrate-and-fire model of granule cell layer population activity, we find that the direction of spike rate modulation can be accounted for predominately by the initial balance of excitation and inhibition onto individual granule cells. Together, these experiments demonstrate that ACh can modulate population-level granule cell responses by altering the ratios of excitation and inhibition at the first stage of cerebellar processing.SIGNIFICANCE STATEMENT The cerebellum plays a key role in motor control and motor learning. While it is known that behavioral context can modify motor learning, the circuit basis of such modulation has remained unclear. Here we find that a key neuromodulator, ACh, can alter the balance of excitation and inhibition at the first stage of cerebellar processing. These results suggest that ACh could play a key role in altering cerebellar learning by modifying how sensorimotor input is represented at the input layer of the cerebellum.


Assuntos
Acetilcolina/metabolismo , Cerebelo/metabolismo , Modelos Neurológicos , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Animais , Feminino , Masculino , Camundongos , Inibição Neural/fisiologia , Ratos , Ratos Sprague-Dawley
4.
J Neurophysiol ; 121(1): 105-114, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30281395

RESUMO

Understanding how afferent information is integrated by cortical structures requires identifying the factors shaping excitation and inhibition within their input layers. The input layer of the cerebellar cortex integrates diverse sensorimotor information to enable learned associations that refine the dynamics of movement. Specifically, mossy fiber afferents relay sensorimotor input into the cerebellum to excite granule cells, whose activity is regulated by inhibitory Golgi cells. To test how this integration can be modulated, we have used an acute brain slice preparation from young adult rats and found that encoding of mossy fiber input in the cerebellar granule cell layer can be regulated by serotonin (5-hydroxytryptamine, 5-HT) via a specific action on Golgi cells. We find that 5-HT depolarizes Golgi cells, likely by activating 5-HT2A receptors, but does not directly act on either granule cells or mossy fibers. As a result of Golgi cell depolarization, 5-HT significantly increases tonic inhibition onto both granule cells and Golgi cells. 5-HT-mediated Golgi cell depolarization is not sufficient, however, to alter the probability or timing of mossy fiber-evoked feed-forward inhibition onto granule cells. Together, increased granule cell tonic inhibition paired with normal feed-forward inhibition acts to reduce granule cell spike probability without altering spike timing. Hence, these data provide a circuit mechanism by which 5-HT can reduce granule cell activity without altering temporal representations of mossy fiber input. Such changes in network integration could enable flexible, state-specific suppression of cerebellar sensorimotor input that should not be learned or enable reversal learning for unwanted associations. NEW & NOTEWORTHY Serotonin (5-hydroxytryptamine, 5-HT) regulates synaptic integration at the input stage of cerebellar processing by increasing tonic inhibition of granule cells. This circuit mechanism reduces the probability of granule cell spiking without altering spike timing, thus suppressing cerebellar input without altering its temporal representation in the granule cell layer.


Assuntos
Cerebelo/metabolismo , Inibição Neural/fisiologia , Neurônios/metabolismo , Serotonina/metabolismo , Animais , Cerebelo/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Inibição Neural/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina/metabolismo , Serotonina/administração & dosagem , Serotoninérgicos/farmacologia , Técnicas de Cultura de Tecidos
5.
J Neurophysiol ; 115(1): 255-70, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26467515

RESUMO

A region of cerebellar lobules V and VI makes strong loop connections with the primary motor (M1) and premotor (PM) cortical areas and is assumed to play essential roles in limb motor control. To examine its functional role, we compared the activities of its input, intermediate, and output elements, i.e., mossy fibers (MFs), Golgi cells (GoCs), and Purkinje cells (PCs), in three monkeys performing wrist movements in two different forearm postures. The results revealed distinct steps of information processing. First, MF activities displayed temporal and directional properties that were remarkably similar to those of M1/PM neurons, suggesting that MFs relay near copies of outputs from these motor areas. Second, all GoCs had a stereotyped pattern of activity independent of movement direction or forearm posture. Instead, GoC activity resembled an average of all MF activities. Therefore, inhibitory GoCs appear to provide a filtering function that passes only prominently modulated MF inputs to granule cells. Third, PCs displayed highly complex spatiotemporal patterns of activity, with coordinate frames distinct from those of MF inputs and directional tuning that changed abruptly before movement onset. The complexity of PC activities may reflect rapidly changing properties of the peripheral motor apparatus during movement. Overall, the cerebellar cortex appears to transform a representation of outputs from M1/PM into different movement representations in a posture-dependent manner and could work as part of a forward model that predicts the state of the peripheral motor apparatus.


Assuntos
Córtex Cerebelar/fisiologia , Movimento , Fibras Nervosas/fisiologia , Células de Purkinje/fisiologia , Punho/fisiologia , Potenciais de Ação , Animais , Fenômenos Biomecânicos , Feminino , Macaca mulatta , Masculino , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia
6.
Cerebellum ; 15(2): 122-38, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25808751

RESUMO

The highly stereotyped, crystal-like architecture of the cerebellum has long served as a basis for hypotheses with regard to the function(s) that it subserves. Historically, most clinical observations and experimental work have focused on the involvement of the cerebellum in motor control, with particular emphasis on coordination and learning. Two main models have been suggested to account for cerebellar functioning. According to Llinás's theory, the cerebellum acts as a control machine that uses the rhythmic activity of the inferior olive to synchronize Purkinje cell populations for fine-tuning of coordination. In contrast, the Ito-Marr-Albus theory views the cerebellum as a motor learning machine that heuristically refines synaptic weights of the Purkinje cell based on error signals coming from the inferior olive. Here, we review the role of timing of neuronal events, oscillatory behavior, and synaptic and non-synaptic influences in functional plasticity that can be recorded in awake animals in various physiological and pathological models in a perspective that also includes non-motor aspects of cerebellar function. We discuss organizational levels from genes through intracellular signaling, synaptic network to system and behavior, as well as processes from signal production and processing to memory, delegation, and actual learning. We suggest an integrative concept for control and learning based on articulated oscillation templates.


Assuntos
Cerebelo/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Transdução de Sinais/fisiologia , Animais , Humanos , Modelos Neurológicos , Fatores de Tempo
7.
Cerebellum ; 14(5): 597-612, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26424151

RESUMO

Climbing and mossy fibers comprise two distinct afferent paths to the cerebellum. Climbing fibers directly evoke a large multispiked action potential in Purkinje cells termed a "complex spike" (CS). By logical exclusion, the other class of Purkinje cell action potential, termed "simple spike" (SS), has often been attributed to activity conveyed by mossy fibers and relayed to Purkinje cells through granule cells. Here, we investigate the relative importance of climbing and mossy fiber pathways in modulating neuronal activity by recording extracellularly from Purkinje cells, as well as from mossy fiber terminals and interneurons in folia 8-10. Sinusoidal roll-tilt vestibular stimulation vigorously modulates the discharge of climbing and mossy fiber afferents, Purkinje cells, and interneurons in folia 9-10 in anesthetized mice. Roll-tilt onto the side ipsilateral to the recording site increases the discharge of both climbing fibers (CSs) and mossy fibers. However, the discharges of SSs decrease during ipsilateral roll-tilt. Unilateral microlesions of the beta nucleus (ß-nucleus) of the inferior olive blocks vestibular modulation of both CSs and SSs in contralateral Purkinje cells. The blockage of SSs occurs even though primary and secondary vestibular mossy fibers remain intact. When mossy fiber afferents are damaged by a unilateral labyrinthectomy (UL), vestibular modulation of SSs in Purkinje cells ipsilateral to the UL remains intact. Two inhibitory interneurons, Golgi and stellate cells, could potentially contribute to climbing fiber-induced modulation of SSs. However, during sinusoidal roll-tilt, only stellate cells discharge appropriately out of phase with the discharge of SSs. Golgi cells discharge in phase with SSs. When the vestibularly modulated discharge is blocked by a microlesion of the inferior olive, the modulated discharge of CSs and SSs is also blocked. When the vestibular mossy fiber pathway is destroyed, vestibular modulation of ipsilateral CSs and SSs persists. We conclude that climbing fibers are primarily responsible for the vestibularly modulated discharge of both CSs and SSs. Modulation of the discharge of SSs is likely caused by climbing fiber-evoked stellate cell inhibition.


Assuntos
Potenciais de Ação/fisiologia , Vias Aferentes/fisiologia , Cerebelo/citologia , Células de Purkinje/fisiologia , Vestíbulo do Labirinto/fisiologia , Animais , Cerebelo/fisiologia , Estimulação Elétrica , Humanos , Interneurônios/classificação , Interneurônios/fisiologia , Camundongos , Rede Nervosa/fisiologia
8.
J Neurophysiol ; 110(10): 2257-74, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23966673

RESUMO

Cerebellar Purkinje cells are excited by two afferent pathways: climbing and mossy fibers. Climbing fibers evoke large "complex spikes" (CSs) that discharge at low frequencies. Mossy fibers synapse on granule cells whose parallel fibers excite Purkinje cells and may contribute to the genesis of "simple spikes" (SSs). Both afferent systems convey vestibular information to folia 9c-10. After making a unilateral labyrinthectomy (UL) in mice, we tested how the discharge of CSs and SSs was changed by the loss of primary vestibular afferent mossy fibers during sinusoidal roll tilt. We recorded from cells identified by juxtacellular neurobiotin labeling. The UL preferentially reduced vestibular modulation of CSs and SSs in folia 8-10 contralateral to the UL. The effects of a UL on Purkinje cell discharge were similar in folia 9c-10, to which vestibular primary afferents project, and in folia 8-9a, to which they do not project, suggesting that vestibular primary afferent mossy fibers were not responsible for the UL-induced alteration of SS discharge. UL also induced reduced vestibular modulation of stellate cell discharge contralateral to the UL. We attribute the decreased modulation to reduced vestibular modulation of climbing fibers. In summary, climbing fibers modulate CSs directly and SSs indirectly through activation of stellate cells. Whereas vestibular primary afferent mossy fibers cannot account for the modulated discharge of SSs or stellate cells, the nonspecific excitation of Purkinje cells by parallel fibers may set an operating point about which the discharges of SSs are sculpted by climbing fibers.


Assuntos
Cerebelo/citologia , Células de Purkinje/fisiologia , Nervo Vestibular/fisiologia , Vias Aferentes , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Nervosas/fisiologia
9.
Neuroscientist ; 28(3): 206-221, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33559532

RESUMO

Mossy fiber input to the cerebellum is received by granule cells where it is thought to be recoded into internal signals received by Purkinje cells, which alone carry the output of the cerebellar cortex. In any neural network, variables are contained in groups of signals as well as signals themselves-which cells are active and how many, for example, and statistical variables coded in rates, such as the mean and range, and which rates are strongly represented, in a defined population. We argue that the primary function of recoding is to confine translation to an effect of some variables and not others-both where input is recoded into internal signals and the translation downstream of internal signals into an effect on Purkinje cells. The cull of variables is harsh. Internal signaling is group coded. This allows coding to exploit statistics for a reliable and precise effect despite needing to work with high-dimensional input which is a highly unpredictably variable. An important effect is to normalize eclectic input signals, so that the basic, repeating cerebellar circuit, preserved across taxa, does not need to specialize (within regional variations). With this model, there is no need to slavishly conserve or compute data coded in single signals. If we are correct, a learning algorithm-for years, a mainstay of cerebellar modeling-would be redundant.


Assuntos
Cerebelo , Células de Purkinje , Córtex Cerebelar , Humanos , Aprendizado de Máquina , Neurônios
11.
Handb Clin Neurol ; 154: 85-108, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29903454

RESUMO

The cerebellum is a central brain structure deeply integrated into major loops with the cerebral cortex, brainstem, and spinal cord. The cerebellum shows a complex regional organization consisting of modules with sagittal orientation. The cerebellum takes part in motor control and its lesions cause a movement incoordination syndrome called ataxia. Recent observations also imply involvement of the cerebellum in cognition and executive control, with an impact on pathologies like dyslexia and autism. The cerebellum operates as a forward controller learning to predict the precise timing of correlated events. The physiologic mechanisms of cerebellar functioning are still the object of intense research. The signals entering the cerebellum through the mossy fibers are processed in the granular layer and transmitted to Purkinje cells, while a collateral pathway activates the deep cerebellar nuclei (DCN). Purkinje cells in turn inhibit DCN, so that the cerebellar cortex operates as a side loop controlling the DCN. Learning is now known to occur through synaptic plasticity at multiple synapses in the granular layer, molecular layer, and DCN, extending the original concept of the Motor Learning Theory that predicted a single form of plasticity at the synapse between parallel fibers and Purkinje cells under the supervision of climbing fibers deriving from the inferior olive. Coordination derives from the precise regulation of timing and gain in the different cerebellar modules. The investigation of cerebellar dynamics using advanced physiologic recordings and computational models is now providing new clues on how the cerebellar network performs its internal computations.


Assuntos
Cerebelo/fisiologia , Neurônios/fisiologia , Animais , Cerebelo/citologia , Cognição/fisiologia , Humanos , Aprendizagem/fisiologia , Atividade Motora , Vias Neurais/fisiologia , Desempenho Psicomotor
12.
Front Neuroinform ; 12: 88, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559658

RESUMO

Brain neurons exhibit complex electroresponsive properties - including intrinsic subthreshold oscillations and pacemaking, resonance and phase-reset - which are thought to play a critical role in controlling neural network dynamics. Although these properties emerge from detailed representations of molecular-level mechanisms in "realistic" models, they cannot usually be generated by simplified neuronal models (although these may show spike-frequency adaptation and bursting). We report here that this whole set of properties can be generated by the extended generalized leaky integrate-and-fire (E-GLIF) neuron model. E-GLIF derives from the GLIF model family and is therefore mono-compartmental, keeps the limited computational load typical of a linear low-dimensional system, admits analytical solutions and can be tuned through gradient-descent algorithms. Importantly, E-GLIF is designed to maintain a correspondence between model parameters and neuronal membrane mechanisms through a minimum set of equations. In order to test its potential, E-GLIF was used to model a specific neuron showing rich and complex electroresponsiveness, the cerebellar Golgi cell, and was validated against experimental electrophysiological data recorded from Golgi cells in acute cerebellar slices. During simulations, E-GLIF was activated by stimulus patterns, including current steps and synaptic inputs, identical to those used for the experiments. The results demonstrate that E-GLIF can reproduce the whole set of complex neuronal dynamics typical of these neurons - including intensity-frequency curves, spike-frequency adaptation, post-inhibitory rebound bursting, spontaneous subthreshold oscillations, resonance, and phase-reset - providing a new effective tool to investigate brain dynamics in large-scale simulations.

13.
Elife ; 62017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29028183

RESUMO

Golgi cells are the principal inhibitory neurons at the input stage of the cerebellum, providing feedforward and feedback inhibition through mossy fiber and parallel fiber synapses. In vivo studies have shown that Golgi cell activity is regulated by climbing fiber stimulation, yet there is little functional or anatomical evidence for synapses between climbing fibers and Golgi cells. Here, we show that glutamate released from climbing fibers activates ionotropic and metabotropic receptors on Golgi cells through spillover-mediated transmission. The interplay of excitatory and inhibitory conductances provides flexible control over Golgi cell spiking, allowing either excitation or a biphasic sequence of excitation and inhibition following single climbing fiber stimulation. Together with prior studies of spillover transmission to molecular layer interneurons, these results reveal that climbing fibers exert control over inhibition at both the input and output layers of the cerebellar cortex.


Assuntos
Cerebelo/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Potenciais de Ação , Animais , Ácido Glutâmico/metabolismo , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo
14.
Neuropharmacology ; 125: 166-180, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28712684

RESUMO

One of the key mechanisms for the stabilization of synaptic changes near the end of critical periods for experience-dependent plasticity is the formation of specific lattice extracellular matrix structures called perineuronal nets (PNNs). The formation of drug memories depends on local circuits in the cerebellum, but it is unclear to what extent it may also relate to changes in their PNN. Here, we investigated changes in the PNNs of the cerebellum following cocaine-induced preference conditioning. The formation of cocaine-related preference memories increased expression of PNN-related proteins surrounding Golgi inhibitory interneurons as well as that of cFos in granule cells at the apex of the cerebellar cortex. In contrast, the expression of PNNs surrounding projection neurons in the medial deep cerebellar nucleus (DCN) was reduced in all cocaine-treated groups, independently of whether animals expressed a preference for cocaine-related cues. Discriminant function analysis confirmed that stronger PNNs in Golgi neurons and higher cFos levels in granule cells of the apex might be considered as the cerebellar hallmarks of cocaine-induced preference conditioning. Blocking the output of cerebellar granule cells in α6Cre-Cacna1a mutant mice prevented re-acquisition, but not acquisition, of cocaine-induced preference conditioning. Interestingly, this impairment in consolidation was selectively accompanied by a reduction in the expression of PNN proteins around Golgi cells. Our data suggest that PNNs surrounding Golgi interneurons play a role in consolidating drug-related memories.


Assuntos
Cerebelo/efeitos dos fármacos , Cocaína/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Memória/efeitos dos fármacos , Nootrópicos/farmacologia , Animais , Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/metabolismo , Cerebelo/metabolismo , Cerebelo/patologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/patologia , Condicionamento Clássico/fisiologia , Inibidores da Captação de Dopamina/farmacologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Masculino , Memória/fisiologia , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-24567705

RESUMO

Golgi cells (GoCs) are specialized interneurons that provide inhibitory input to granule cells in the cerebellar cortex. GoCs are pacemaker neurons that spontaneously fire action potentials, triggering spontaneous inhibitory postsynaptic currents in granule cells and also contributing to the generation tonic GABAA receptor-mediated currents in granule cells. In turn, granule cell axons provide feedback glutamatergic input to GoCs. It has been shown that high frequency stimulation of granule cell axons induces a transient pause in GoC firing in a type 2-metabotropic glutamate receptor (mGluR2)-dependent manner. Here, we investigated the effect ethanol on the pause of GoC firing induced by high frequency stimulation of granule cell axons. GoC electrophysiological recordings were performed in parasagittal cerebellar vermis slices from postnatal day 23 to 26 rats. Loose-patch cell-attached recordings revealed that ethanol (40 mM) reversibly decreases the pause duration. An antagonist of mGluR2 reduced the pause duration but did not affect the effect of ethanol. Whole-cell voltage-clamp recordings showed that currents evoked by an mGluR2 agonist were not significantly affected by ethanol. Perforated-patch experiments in which hyperpolarizing and depolarizing currents were injected into GoCs demonstrated that there is an inverse relationship between spontaneous firing and pause duration. Slight inhibition of the Na(+)/K(+) pump mimicked the effect of ethanol on pause duration. In conclusion, ethanol reduces the granule cell axon-mediated feedback mechanism by reducing the input responsiveness of GoCs. This would result in a transient increase of GABAA receptor-mediated inhibition of granule cells, limiting information flow at the input stage of the cerebellar cortex.

16.
J Neurosci Methods ; 232: 173-80, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-24880047

RESUMO

BACKGROUND: We have extended our cerebellar cortical interneuron classification algorithm that uses statistics of spontaneous activity (Ruigrok et al., 2011) to include Purkinje cells. Purkinje cells were added because they do not always show a detectable complex spike, which is the accepted identification. The statistical measures used in the present study were obtained from morphologically identified interneurons and complex spike identified Purkinje cells, recorded from ketamine-xylazine anesthetized rats and rabbits, and from awake rabbits. NEW METHOD: The new algorithm has an added decision step that classifies Purkinje cells using a combination of the median absolute difference from the median interspike interval (MAD) and the mean of the relative differences of successive interspike intervals (CV2). These measures reflect the high firing rate and intermediate regularity of Purkinje cell simple spike activity. RESULTS: Of 86 juxtacellularly labeled interneurons and 110 complex spike-identified Purkinje cells, 61 interneurons and 95 Purkinje cells were correctly classified, 22 interneurons and 13 Purkinje cells were deemed unclassifiable, and 3 interneurons and 2 Purkinje cells were incorrectly classified. COMPARISON WITH EXISTING METHODS: The new algorithm improves on our previous algorithm because it includes Purkinje cells. This algorithm is the only one for the cerebellum that does not presume anatomical knowledge of whether the cells are in the molecular layer or the granular layer. CONCLUSIONS: These results strengthen the view that the new decision algorithm is useful for identifying neurons recorded at all cerebellar depths, particularly those neurons recorded in the rabbit vestibulocerebellum.


Assuntos
Potenciais de Ação/fisiologia , Células de Purkinje/fisiologia , Algoritmos , Animais , Córtex Cerebelar/citologia , Técnicas de Apoio para a Decisão , Feminino , Masculino , Coelhos , Ratos , Fatores de Tempo
17.
Artigo em Inglês | MEDLINE | ID: mdl-23730271

RESUMO

The cerebellar granular layer has been suggested to perform a complex spatiotemporal reconfiguration of incoming mossy fiber signals. Central to this role is the inhibitory action exerted by Golgi cells over granule cells: Golgi cells inhibit granule cells through both feedforward and feedback inhibitory loops and generate a broad lateral inhibition that extends beyond the afferent synaptic field. This characteristic connectivity has recently been investigated in great detail and been correlated with specific functional properties of these neurons. These include theta-frequency pacemaking, network entrainment into coherent oscillations and phase resetting. Important advances have also been made in terms of determining the membrane and synaptic properties of the neuron, and clarifying the mechanisms of activation by input bursts. Moreover, voltage sensitive dye imaging and multi-electrode array (MEA) recordings, combined with mathematical simulations based on realistic computational models, have improved our understanding of the impact of Golgi cell activity on granular layer circuit computations. These investigations have highlighted the critical role of Golgi cells in: generating dense clusters of granule cell activity organized in center-surround structures, implementing combinatorial operations on multiple mossy fiber inputs, regulating transmission gain, and cut-off frequency, controlling spike timing and burst transmission, and determining the sign, intensity and duration of long-term synaptic plasticity at the mossy fiber-granule cell relay. This review considers recent advances in the field, highlighting the functional implications of Golgi cells for granular layer network computation and indicating new challenges for cerebellar research.


Assuntos
Cerebelo/citologia , Cerebelo/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Humanos , Sinapses/fisiologia , Fatores de Tempo
18.
Front Neural Circuits ; 6: 123, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23346049

RESUMO

The Purkinje cells (PC's) of the cerebellar cortex are subdivided into multiple different molecular phenotypes that form an elaborate array of parasagittal stripes. This array serves as a scaffold around which afferent topography is organized. The ways in which cerebellar interneurons may be restricted by this scaffolding are less well-understood. This review begins with a brief survey of cerebellar topography. Next, it reviews the development of stripes in the cerebellum with a particular emphasis on the embryological origins of cerebellar interneurons. These data serve as a foundation to discuss the hypothesis that cerebellar compartment boundaries also restrict cerebellar interneurons, both excitatory [granule cells, unipolar brush cells (UBCs)] and inhibitory (e.g., Golgi cells, basket cells). Finally, it is proposed that the same PC scaffold that restricts afferent terminal fields to stripes may also act to organize cerebellar interneurons.

19.
Front Neurosci ; 2(1): 35-46, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18982105

RESUMO

The discovery of the Golgi cell is bound to the foundation of the Neuron Doctrine. Recently, the excitable mechanisms of this inhibitory interneuron have been investigated with modern experimental and computational techniques raising renewed interest for the implications it might have for cerebellar circuit functions. Golgi cells are pacemakers with preferential response frequency and phase-reset in the theta-frequency band and can therefore impose specific temporal dynamics to granule cell responses. Moreover, through their connectivity, Golgi cells determine the spatio-temporal organization of cerebellar activity. Finally, Golgi cells, by controlling granule cell depolarization and NMDA channel unblock, regulate the induction of long-term synaptic plasticity at the mossy fiber - granule cell synapse. Thus, the Golgi cells can exert an extensive control on spatio-temporal signal organization and information storage in the granular layer playing a critical role for cerebellar computation.

20.
Front Cell Neurosci ; 1: 2, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18946520

RESUMO

The Golgi cells have been recently shown to beat regularly in vitro (Forti et al., 2006. J. Physiol. 574, 711-729). Four main currents were shown to be involved, namely a persistent sodium current (I(Na-p)), an h current (I(h)), an SK-type calcium-dependent potassium current (I(K-AHP)), and a slow M-like potassium current (I(K-slow)). These ionic currents could take part, together with others, also to different aspects of neuronal excitability like responses to depolarizing and hyperpolarizing current injection. However, the ionic mechanisms and their interactions remained largely hypothetical. In this work, we have investigated the mechanisms of Golgi cell excitability by developing a computational model. The model predicts that pacemaking is sustained by subthreshold oscillations tightly coupled to spikes. I(Na-p) and I(K-slow) emerged as the critical determinants of oscillations. I(h) also played a role by setting the oscillatory mechanism into the appropriate membrane potential range. I(K-AHP), though taking part to the oscillation, appeared primarily involved in regulating the ISI following spikes. The combination with other currents, in particular a resurgent sodium current (I(Na-r)) and an A-current (I(K-A)), allowed a precise regulation of response frequency and delay. These results provide a coherent reconstruction of the ionic mechanisms determining Golgi cell intrinsic electroresponsiveness and suggests important implications for cerebellar signal processing, which will be fully developed in a companion paper (Solinas et al., 2008. Front. Neurosci. 2:4).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA