Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Fluoresc ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976089

RESUMO

The diagnosis of prostate cancer has been evolving in the current decade, with expected mortality rates of 499,000 death by the year 2030. Apalutamide (APL) has been approved in 2018 as the first drug for the controlling of prostate cancer. APL significant success warrantied its high global sales, which are expected to surpass 58% of segment market sales (together with another drug; enzalutamide). Therefore, new, fast and environmentally friendly analytical methods are required for its determination for the quality control and biological monitoring purposes. The proposed research designs and evaluates the first fluorimetric approach based on novel porous green boron-doped carbon quantum dots (B@CDs) for the determination of APL in biopharmaceutical matrices. The synthetic approach has high quantum yield (31.15%). B@CDs were characterized using several tools, including transmission electron microscopy (TEM), dynamic light scattering (DLS), FTIR and Energy dispersive X-ray spectroscopy (EDX) which proved their improved surface properties with an average nano-diameter of 3.0 nm. The interaction between B@CDs and APL led to enhancement their fluorescence at 441 nm (excitation at 372 nm). The approach was validated for the determination of APL within concentration range of 15.0-700.0 ng mL- 1 with quantification limit LOQ 4.37 ng mL- 1 and detection limit LOD 1.44 ng mL- 1. The approach was successfully applied for the determination of APL in human plasma and pharmaceutical monitoring of its marketed tablet form. Then, the approach was assessed for its environmental impact using different metrics and proved its ecological greenness.

2.
J Fluoresc ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150458

RESUMO

Remdesivir and acetyl salicylic acid are often co-administered medications in the treatment of COVID-19, specifically targeting the viral infection and thromboembolism associated with the condition. Hence, it is essential to establish a technique that enables the concurrent quantification of these pharmaceutical compounds in plasma while also keeping environmentally friendly methods. Accordingly, the aim of this work is to simultaneously determine remdesivir and acetyl salicylic acid through a bioanalytical validated synchronous spectrofluorimetric method with applying principles of green chemistry. Since, the two drugs showed severe overlap after excitation at 242.0 nm, 284.0 nm for remdesivir and acetyl salicylic acid, respectively. The overlap was effectively overcome by using synchronous mode with a wavelength difference (Δλ) of 160.0 nm for remdesivir and 100.0 nm for acetyl salicylic acid. Different parameters have been optimized such as Δλ, solvent, pH and surfactant. A linear calibration was obtained over the concentration range 0.01-4.00 µg/mL for remdesivir and 0.01-3.00 µg/mL for acetyl salicylic acid and the method was precise and accurate. The method was successfully used for the investigation of pharmaceutical formulation and the quantification of the maximum plasma concentration (Cmax) of the two drugs. The method has been evaluated as an excellent green analytical method based on three greenness assessment tools.

3.
Luminescence ; 39(5): e4766, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38785095

RESUMO

In this work, two validated approaches were used for estimating hydroxyzine HCl for the first time using resonance Rayleigh scattering (RRS) and spectrofluorimetric techniques. The suggested approaches relied on forming an association complex between hydroxyzine HCl and 2,4,5,7-tetraiodofluorescein (erythrosin B) reagent in an acidic media. The quenching in the fluorescence intensity of 2,4,5,7-tetraiodofluorescein by hydroxyzine at 551.5 nm (excitation = 527.5 nm) was used for determining the studied drug by the spectrofluorimetric technique. The RRS approach is based on amplifying the RRS spectrum at 348 nm upon the interaction of hydroxyzine HCl with 2,4,5,7-tetraiodofluorescein. The spectrofluorimetric methodology and the RRS methodology produced linear results within ranges of 0.15-1.5 µg ml-1 and 0.1-1.2 µg ml-1, respectively. LOD values for these methods were determined to be 0.047 µg ml-1 and 0.033 µg ml-1, respectively. The content of hydroxyzine HCl in its pharmaceutical tablet was estimated using the developed procedures with acceptable recoveries. Additionally, the application of four greenness and whiteness algorithms shows that they are superior to the previously reported method in terms of sustainability, economics, analytical performance, and practicality.


Assuntos
Algoritmos , Hidroxizina , Espectrometria de Fluorescência , Hidroxizina/análise , Hidroxizina/química , Antagonistas dos Receptores Histamínicos/análise , Antagonistas dos Receptores Histamínicos/química , Espalhamento de Radiação , Eritrosina/química , Eritrosina/análise
4.
Luminescence ; 39(9): e4889, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39223967

RESUMO

Based on novel phosphorus-doped carbon dots (PCDs), a simple, quick, and accurate fluorescence probe for sarecycline (SAR) determination has been created. The PCDs were prepared in just five minutes using green, straightforward one-step microwave pyrolysis. To create the PCD probe, sodium phosphate monobasic was utilized as a phosphorus dopant and citric acid as a carbon supply. The proposed synthesis method was energy efficient and yielded CDs with a narrow particle size distribution. Based on inner-filter effect mechanism, the generated PCDs were used as nano-probe for SAR determination. The fluorescence quenching intensity showed a strong linear relationship with SAR concentration in the 3-90-µM range with a detection limit of 0.88 µM. Because there is no surface alteration of the CDs or creation of a covalent bond between SAR and PCDs, the developed approach is quick, easy, inexpensive, and requires less time. The new probe's enhanced sensitivity, broad linear range, and acceptable selectivity made it suitable for SAR measurement in pharmaceutical formulations and spiked human plasma. Most importantly, the Green Analytical Procedure Index (GAPI) and Analytical GREEnness (AGREE) assessments showed that the suggested method was environmentally friendly.


Assuntos
Carbono , Fósforo , Pontos Quânticos , Carbono/química , Humanos , Fósforo/química , Pontos Quânticos/química , Corantes Fluorescentes/química , Tetraciclinas/análise , Tetraciclinas/sangue , Espectrometria de Fluorescência , Tamanho da Partícula , Formas de Dosagem , Limite de Detecção
5.
Arch Pharm (Weinheim) ; 357(2): e2300509, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37939289

RESUMO

This study introduces a new method for analyzing rifampicin, moxifloxacin, and metronidazole using a green micellar High Performance Liquid Chromatography-Ultraviolet method in bulk drugs, different commercial formulations, and spiked human plasma. The combined therapy of these three broad-spectrum antibiotics is used to cure refractory hidradenitis suppurativa (HS), an inflammatory condition affecting the skin. The sustainable separation was attained on a reversed-phase C18 Kinetex® column maintained at ambient temperature in less than 5 min. The mobile phase comprises 0.1 M sodium dodecyl sulfate (SDS) in water, pH 3.5, adjusted using o-phosphoric acid, and 10% n-butanol. The flow rate was 1 mL/min, with 10 µL injection volume and UV detection at 230 nm. The impact of three key significant variables, SDS concentration, n-butanol percentage, and the mobile phase pH, on suitability parameters was studied. ICH and FDA guidelines were committed to when validating the technique. The results showed linear calibration graphs with high precision and accuracy, in both pure and spiked plasma. The method is efficient, easy to use, and has a high sample throughput, making it suitable for routine analysis in the quality control department and therapeutic monitoring. It is also evaluated as a green-and-white substitute for traditional reported methods.


Assuntos
Hidradenite Supurativa , Micelas , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Hidradenite Supurativa/tratamento farmacológico , 1-Butanol , Relação Estrutura-Atividade
6.
J Fluoresc ; 33(3): 945-954, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36538143

RESUMO

This work demonstrates a simple and reliable HPLC method with fluorimetric detection for simultaneous estimation of domperidone (DOM) and naproxen (NAP). Successful chromatographic separation was accomplished using Inertsil ODS C18 column (5 µm, 4.6 × 150 mm) with gradient elution of the mobile phase consisting of 0.01 M phosphate buffer (pH 5.5) solution and acetonitrile. The gradient elution started with 25% acetonitrile increased linearly to 65% in 5 min, then kept at this percentage till the end of the run. The mobile phase was pumped at a flow rate of 1.0 mL/min. The excitation wavelength at 284 nm was found suitable for both DOM and NAP since it corresponds to a maximum for the minor component DOM and measurable excitation for NAP, while using 316 and 355 nm as emission wavelengths for DOM and NAP, respectively. Peaks eluted with excellent resolution at retention times 4.4 and 6.3 min for DOM and NAP, respectively. Performance of the proposed method was tested according to ICH guidelines in regard to linearity, ranges, precision, accuracy, robustness, detection and quantitation limits. Calibration curves were linear in the ranges of 0.8-3.6 and 1.0-2.5 µg/mL for DOM and NAP respectively with correlation coefficients not less than 0.9996. The validated method was successfully applied to the analysis of DOM and NAP in their laboratory prepared tablets resembling the commercial dosage form, and assay results were favorably compared with a published reference HPLC method. The method's greenness was assessed using the Analytical Eco-Scale and the novel Analytical Greenness metric (AGREE).


Assuntos
Domperidona , Naproxeno , Domperidona/análise , Domperidona/química , Cromatografia Líquida de Alta Pressão/métodos , Comprimidos
7.
J Fluoresc ; 33(4): 1661-1671, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36809413

RESUMO

Lower back pain is a universal dilemma leaving a negative effect on both health and life quality. It was found that a fixed dose combination of chlorzoxazone and ibuprofen gave a higher efficiency than analgesic alone in treatment of acute lower back pain. Based on the significant benefit of that combination, a green, sensitive, rapid, direct, and cost-effective method is created for concurrent determination of ibuprofen and chlorzoxazone in presence of 2-amino para chlorophenol (a synthetic precursor and potential impurity of chlorzoxazone) adopting the synchronous spectrofluorimetric technique. Synchronous spectrofluorimetric technique is adopted to avoid the highly overlapped native spectra of both drugs. The synchronous spectrofluorometric method was applied at Δλ = 50 nm, ibuprofen was measured at 227 nm while chlorzoxazone was measured at 282 nm with no hindering from one to another. The various experimental variables affecting the performance of the suggested technique were explored and adjusted. The suggested technique showed good linearity from 0.02 to 0.6 and 0.1 to 5.0 µg/mL for ibuprofen and chlorzoxazone, respectively. The produced detection limits were 0.27 × 10-3 and 0.03, while the quantitation limits were 0.82 × 10-3 and 0.09 µg/mL for ibuprofen and chlorzoxazone, respectively. The suggested approach was successfully applied for the analysis of the studied drugs in the synthetic mixture, different pharmaceutical preparations, and spiked human plasma. The suggested technique was validated with respect to the International Council of Harmonization (ICH) recommendations. The suggested technique was found to be simpler and greener with lower cost compared to the earlier reported methods which required complicated techniques, longer time of analysis, and less safe solvents and reagents. Green profile assessment for the developed method compared with the reported spectrofluorometric method was performed using four assessment tools. These tools confirmed that the recommended technique attained the most possible green parameters, so it could be used as a greener option in routine quality control for analyzing the two drugs in genuine form and pharmaceutical preparations.


Assuntos
Ibuprofeno , Dor Lombar , Humanos , Clorzoxazona/análise , Fluorescência , Preparações Farmacêuticas , Espectrometria de Fluorescência/métodos
8.
J Fluoresc ; 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566219

RESUMO

Herein, a turn "Off/On" fluorescence probe based on ZnO quantum dots (ZnO-QDs) has been proposed and successfully utilized for the determination of Ara-C (cytarabine) using ceric ions (Ce4+) as quencher and ethylenediamine (ED) as a linker. The probe is based initially on the quenching effect of Ce4+ ions on the strong native fluorescence of ZnO-QDs forming the Turn Off system (Ce@ZnO-QDs) that believed to occur due to the aggregation-induced quenching (AIQ) mechanism. The second step is the addition of Ara-C in the presence of ethylenediamine (ED) that encourages the formation of Ara-C/ED/Ce4+ as well as the release of the free ZnO-QDs, leading to the recovery of the fluorescence intensity. The developed sensing platform shows a linear response towards Ara-C over the range of 10 to 1000 ng mL-1 giving a limit of detection (LOD) and limit of quantitation (LOQ) of 1.22 ng mL-1 and 3.70 ng mL-1, respectively. A dispersive magnetic solid phase micro-extraction (dMSPE) method was developed and optimized for the extraction of Ara-C in spiked human plasma using thiol-modified magnetite nanoparticles (S-MNPs). The proposed platform exhibits good sensitivity toward Ara-C in the presence of different interfering substances. Excellent recoveries are obtained after spiking different concentrations of Ara-C into rabbit plasma samples. The validated experimental parameters have been successfully applied to monitor the pharmacokinetic profile of Ara-C in rabbit plasma. A detailed adsorption kinetics study has been carried out to provide a deep insight into the adsorption behavior of Ara-C on the thiol-doped-magnetite nanoparticles. The greenness assessment of the proposed method was achieved and compared with other reported methods using two tools of greenness; the green analytical procedure index (GAPI) and the analytical greenness calculator AGREE.

9.
J Sep Sci ; 46(21): e2300216, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37654046

RESUMO

This work describes the innovative experimental design-assisted development of a green gradient chromatographic method for concomitant analysis of metronidazole (MTR) and spiramycin (SPR). Two different designs including fractional factorial and Box-Behnken designs were implemented for screening and optimization steps, respectively. The optimum chromatographic conditions involved a mobile phase consisting of ethanol and 20 mM sodium dihydrogen phosphate solution (pH adjusted to 2.5) in the ratio 2:98 (v/v) for 2 min then the ratio changed to 30:70 (v/v). The flow rate was 1.3 mL/minute. Separation and analysis were performed on X-bridge C18 (150 mm × 4.6 mm × 3.5 µm) column with diode array detector set at 230 nm. Column oven temperature was 40°C. A linear response was acquired over the range of 5-125 µg/mL for both drugs. Detection and quantitation limits were 0.86 and 2.62 µg/mL for MTR and 0.92 and 2.83 µg/mL for SPR, respectively. The method was implemented for determination of both drugs in three tablet formulations. The method was proved to be green as evaluated by three assessment tools. The application of experimental designs assists in development of a robust green chromatographic method in gradient elution mode for determination of both drugs within reasonable time.


Assuntos
Metronidazol , Espiramicina , Espiramicina/análise , Projetos de Pesquisa , Cromatografia Líquida de Alta Pressão/métodos , Comprimidos
10.
J Sep Sci ; 46(1): e2200695, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36285376

RESUMO

Nowadays, Green Analytical Chemistry is widely applied to provide various analytical methods with eco-friendly procedures employing the least toxic, harmful reagents on humans and the environment without affecting the efficacy of the determination. Accordingly, two eco-friendly, accurate, and reliable high-performance thin-layer chromatography-densitometry and high-performance liquid chromatographic methods were established for the determination and separation of two antispasmodic drugs, namely phloroglucinol and trimethylphloroglucinol in their pure, combined dosage form along with phloroglucinol toxic impurity, 3,5-dichloroaniline. For high-performance thin-layer chromatography-densitometry, efficient separation was developed via utilizing the stationary phase of high-performance thin-layer chromatography silica gel 60 F254 plates and developing a system comprising of ethyl acetate-butanol-ammonia in the ratio of 8.0:2.0:0.2, by volume and scanning of the developed bands at 210.0 nm. The subsequent method is isocratic high-performance liquid chromatography with diode array detection in which separation was successively attained using XTerra RP-C18 (250 × 4.6 mm, 5 µm) column as stationary phase and methanol-10.0 mM phosphate buffer, pH 3.7 ± 0.1 as mobile phase in the ratio of 75.0:25.0, v/v at flow rate 1.0 ml/min and scanning at 220.0 nm. The developed liquid chromatography methods were validated according to the International Council for Harmonization guidelines, and all results acknowledged their efficacy. Additionally, the proposed methods worked well for assessing the cited drugs in binary combined commercially available pharmaceutical formulation. The greenness profile of the present methods was assessed and estimated using various assessment tools, namely; Green Analytical Procedure Index, analytical eco-scale method, National Environmental Method Index in addition to Analytical GREEnness tool to evaluate the greenness of the provided methods with a statistical comparison between them to assess the more green ones.


Assuntos
Parassimpatolíticos , Humanos , Reprodutibilidade dos Testes , Cromatografia em Camada Fina/métodos , Cromatografia Líquida de Alta Pressão/métodos , Preparações Farmacêuticas
11.
Molecules ; 28(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36903432

RESUMO

Four eco-friendly, cost-effective, and fast stability-indicating UV-VIS spectrophotometric methods were validated for cefotaxime sodium (CFX) determination either in the presence of its acidic or alkaline degradation products. The applied methods used multivariate chemometry, namely, classical least square (CLS), principal component regression (PCR), partial least square (PLS), and genetic algorithm-partial least square (GA-PLS), to resolve the analytes' spectral overlap. The spectral zone for the studied mixtures was within the range from 220 to 320 nm at a 1 nm interval. The selected region showed severe overlap in the UV spectra of cefotaxime sodium and its acidic or alkaline degradation products. Seventeen mixtures were used for the models' construction, and eight were used as an external validation set. For the PLS and GA-PLS models, a number of latent factors were determined as a pre-step before the models' construction and found to be three for the (CFX/acidic degradants) mixture and two for the (CFX/alkaline degradants) mixture. For GA-PLS, spectral points were minimized to around 45% of the PLS models. The root mean square errors of prediction were found to be (0.19, 0.29, 0.47, and 0.20) for the (CFX/acidic degradants) mixture and (0.21, 0.21, 0.21, and 0.22) for the (CFX/alkaline degradants) mixture for CLS, PCR, PLS, and GA-PLS, respectively, indicating the excellent accuracy and precision of the developed models. The linear concentration range was studied within 12-20 µg mL-1 for CFX in both mixtures. The validity of the developed models was also judged using other different calculated tools such as root mean square error of cross validation, percentage recoveries, standard deviations, and correlation coefficients, which indicated excellent results. The developed methods were also applied to the determination of cefotaxime sodium in marketed vials, with satisfactory results. The results were statistically compared to the reported method, revealing no significant differences. Furthermore, the greenness profiles of the proposed methods were assessed using the GAPI and AGREE metrics.


Assuntos
Cefotaxima , Quimiometria , Espectrofotometria/métodos , Análise dos Mínimos Quadrados
12.
Biomed Chromatogr ; 36(5): e5343, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35062043

RESUMO

Recently, prednisolone has been used in treating many medical conditions, such as autoimmune diseases and cancer. It is also prescribed to mitigate the respiratory complications caused by COVID-19 infection. It can cause some health complications, such as GIT ulcers, so it should be co-administered with proton-pump inhibitors, such as esomeprazole, to prevent the risk of ulcers. This work aims to develop an ecofriendly and sensitive TLC method for simultaneous determination of esomeprazole and prednisolone in their binary mixtures and spiked human plasma. Separation was performed using a mixture of ethyl acetate, methanol, and ammonia (9.5:0.5:0.1, v/v/v) as an eluting system with UV scanning at 245 nm. Dapoxetine was used as an internal standard to correct the variation during sampling. The resulting Rf values for plasma, esomeprazole, prednisolone, and dapoxetine were 0.03, 0.51, 0.72 and 0.85, respectively. Four greenness assessment tools-national environmental method index, eco-scale assessments, analytical greenness metric approach (AGREE), and green analytical procedure index (GAPI)-were used to evaluate the greenness characteristics of the proposed method to the environment, and the results were acceptable and satisfactory. Validation parameters were checked according to the US FDA guidelines to achieve the international requirements for bioanalytical method validation, and the results were within the accepted ranges.


Assuntos
COVID-19 , Esomeprazol , Cromatografia em Camada Fina/métodos , Humanos , Prednisolona , Reprodutibilidade dos Testes , Úlcera
13.
Phytochem Anal ; 33(2): 184-193, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34227167

RESUMO

INTRODUCTION: Thymoquinone (TQ) is a naturally derived bioactive compound with several therapeutic effects. OBJECTIVE: The highly sensitive, rapid and green normal-phase (NP)/reversed-phase (RP) high-performance thin-layer chromatography (HPTLC) densitometry technique was developed for the determination of TQ in various plant extracts of different geographical regions, commercial capsules, creams and essential oils. METHODOLOGY: The NP densitometry estimation of TQ was performed using a cyclohexane-ethyl acetate (90:10, v/v) green solvent system, while, the RP-densitometry estimation of TQ was performed using an ethanol-water (80:20, v/v) green solvent system. The estimation of TQ was conducted at 259 nm. RESULTS: The NP and RP densitometry techniques were observed linear in the range of 25-1000 and 50-600 ng/band, respectively. All validation parameters such as accuracy, precision, robustness and sensitivity of NP/RP densitometry were observed within the limit of regulatory requirements and hence found to be suitable for the determination of TQ. The TQ contents were found to be highest in the Saudi Arabian extract followed by the Syrian extract, Indian extract, commercial capsules, commercial creams, Jordanian extract, Egyptian extract, Palestinian extract and commercial essential oils using NP densitometry. The TQ contents were found in same order using RP densitometry, but they were much lower than those recorded using NP densitometry. The Analytical GREEnness (AGREE) scores of NP and RP densitometry were found to be 0.82 and 0.84, respectively, suggesting an excellent greenness profile. CONCLUSIONS: Based on these results, NP/RP densitometry was found to be suitable for the pharmaceutical assay of TQ.


Assuntos
Benzoquinonas , Cromatografia de Fase Reversa , Cromatografia em Camada Fina/métodos , Densitometria/métodos , Reprodutibilidade dos Testes , Arábia Saudita
14.
Molecules ; 27(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35056687

RESUMO

Foods with medical value have been proven to be beneficial, and they are extensively employed since they integrate two essential elements: food and medication. Accordingly, diabetic patients can benefit from papaya because the fruit is low in sugar and high in antioxidants. An RP-HPLC method was designed for studying the pharmacokinetics of metformin (MET) when concurrently administered with papaya extract. A mobile phase of 0.5 mM of KH2PO4 solution and methanol (65:35, v/v), pH = 5 ± 0.2 using aqueous phosphoric acid and NaOH, and guaifenesin (GUF) were used as an internal standard. To perform non-compartmental pharmacokinetic analysis, the Pharmacokinetic program (PK Solver) was used. The method's greenness was analyzed using two tools: the Analytical GREEnness calculator and the RGB additive color model. Taking papaya with MET improved the rate of absorption substantially (time for reaching maximum concentration (Tmax) significantly decreased by 75% while maximum plasma concentration (Cmax) increased by 7.33%). The extent of absorption reduced by 22.90%. Furthermore, the amount of medication distributed increased (30.83 L for MET concurrently used with papaya extract versus 24.25 L for MET used alone) and the clearance rate rose by roughly 13.50%. The results of the greenness assessment indicated that the method is environmentally friendly. Taking papaya with MET changed the pharmacokinetics of the drug dramatically. Hence, this combination will be particularly effective in maintaining quick blood glucose control.


Assuntos
Metformina
15.
Molecules ; 26(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572524

RESUMO

Due to unavailability of sustainable analytical techniques for the quantitation of piperine (PPN) in food and pharmaceutical samples, there was a need to develop a rapid and sensitive sustainable analytical technique for the quantitation of PPN. Therefore, the current research presents a fast and highly sensitive normal/reversed-phase high-performance thin-layer chromatography (HPTLC) technique with classical univariate calibration for the quantitation of PPN in various food spices of black pepper with traditional (TE) and ultrasound-assisted extracts (UBE) of various food spices of Piper nigrum L. under green analytical chemistry viewpoint. The amount of PPN in TE of four different spices of black pepper-namely BPMH, BPLU, BPSH, and BPPA-was found to be 309.53, 304.97, 282.82, and 232.73 mg g-1, respectively using a sustainable normal-phase HPTLC technique. However, the amount of PPN in UBE of BPMH, BPLU, BPSH, and BPPA was recorded as 318.52, 314.60, 292.41, and 241.82 mg g-1, respectively using a sustainable normal phase HPTLC technique. The greenness of normal/reversed-phase HPTLC technique was predicted using AGREE metric approach. The eco-scale was found to be 0.90, suggested excellent greenness of normal/reversed-phase technique. UBE of PPN was also found to be superior over TE of PPN. Overall, the results of this research suggested that the proposed normal/reversed-phase densitometry technique could be effectively used for the quantitation of PPN in food and pharmaceutical samples.


Assuntos
Fracionamento Químico/métodos , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Piper nigrum/química , Especiarias/análise , Ondas Ultrassônicas , Calibragem , Química Verde
16.
Molecules ; 25(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202856

RESUMO

Implementing green analytical methodologies has been one of the main objectives of the analytical chemistry community for the past two decades. Sample preparation and extraction procedures are two parts of analytical method development that can be best adapted to meet the principles of green analytical chemistry. The goal of transitioning to green analytical chemistry is to establish new methods that perform comparably-or superiorly-to traditional methods. The use of assessment tools to provide an objective and concise evaluation of the analytical methods' adherence to the principles of green analytical chemistry is critical to achieving this goal. In this review, we describe various sample preparation and extraction methods that can be used to increase the greenness of a given analytical method. We gave special emphasis to modern microextraction technologies and their important contributions to the development of new green analytical methods. Several manuscripts in which the greenness of a solid-phase microextraction (SPME) technique was compared to other sample preparation strategies using the Green Analytical Procedure Index (GAPI), a green assessment tool, were reviewed.


Assuntos
Química Verde/métodos , Microextração em Fase Sólida/métodos , Animais , Galinhas , Análise de Alimentos , Contaminação de Alimentos , Frutas , Cromatografia Gasosa-Espectrometria de Massas , Micro-Ondas , Carne Vermelha , Triazóis/química
17.
Ecotoxicol Environ Saf ; 147: 292-298, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28850812

RESUMO

The study presents the result of the application of chemometric tools for selection of physicochemical parameters of solvents for predicting missing variables - bioconcentration factors, water-octanol and octanol-air partitioning constants. EPI Suite software was successfully applied to predict missing values for solvents commonly considered as "green". Values for logBCF, logKOW and logKOA were modelled for 43 rather nonpolar solvents and 69 polar ones. Application of multivariate statistics was also proved to be useful in the assessment of the obtained modelling results. The presented approach can be one of the first steps and support tools in the assessment of chemicals in terms of their greenness.


Assuntos
Química Verde/métodos , Modelos Químicos , Solventes/química , Solventes/classificação , Fenômenos Químicos , Análise por Conglomerados , Química Verde/estatística & dados numéricos , Análise Multivariada , Octanóis/química , Água/química
18.
Anal Bioanal Chem ; 408(14): 3833-41, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27038058

RESUMO

This study presents an application of the Hasse diagram technique (HDT) as the assessment tool to select the most appropriate analytical procedures according to their greenness or the best analytical performance. The dataset consists of analytical procedures for benzo[a]pyrene determination in sediment samples, which were described by 11 variables concerning their greenness and analytical performance. Two analyses with the HDT were performed-the first one with metrological variables and the second one with "green" variables as input data. Both HDT analyses ranked different analytical procedures as the most valuable, suggesting that green analytical chemistry is not in accordance with metrology when benzo[a]pyrene in sediment samples is determined. The HDT can be used as a good decision support tool to choose the proper analytical procedure concerning green analytical chemistry principles and analytical performance merits.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124470, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38761476

RESUMO

Recently, nanomaterials have attracted a lot of attention due to their potential as effective fluorescent nano-sensor probes. They were distinguishing substitutes for other luminescent techniques, such as fluorescent dyes and luminous derivatization, because of their affordability, environmental friendliness, and special photocatalytic properties. In the suggested work, a straightforward method was used to create boron and nitrogen carbon dots (B@CDs) with a good quantum yield value of 31.15 % utilizing boric acid and di-sodium EDTA. For the purpose of characterizing QDs, a variety of instruments were employed, such as transmission electron microscopy, fluorescence spectroscopy, X-ray FTIR, and UV-VIS spectroscopy. Nebivolol (NEB) is a cardiovascular medication used globally to treat congestive heart failure and hypertension, is in the meantime. For this reason, a brand-new, environmentally friendly analytical technique was created to determine the amount of human plasma, uniformity test, and commercial nebivolol (NEB) tablets. After gradually adding NEB, the response of B@CQDs was enhanced at 438 nm (excitation at 371 nm). The calibration graph ranged between 20 and 500 ng mL-1 with a quantification limit (LOQ) of 2.50 ng mL-1 and a detection limit (LOD) of 0.82 ng mL-1.


Assuntos
Boro , Carbono , Nebivolol , Pontos Quânticos , Nebivolol/sangue , Nebivolol/análise , Humanos , Carbono/química , Pontos Quânticos/química , Boro/química , Química Verde/métodos , Espectrometria de Fluorescência/métodos , Limite de Detecção , Espectroscopia de Infravermelho com Transformada de Fourier , Comprimidos , Espectrofotometria Ultravioleta
20.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675455

RESUMO

Florfenicol (FF) is a broad-spectrum antibiotic used to treat gastrointestinal and respiratory infections in domestic animals. Considering FF's rapid elimination via urine after drug treatment, its use increases concerns about environmental contamination. The objective of the study was to establish a sustainable chromatographic method for simple analysis of FF in pig urine to investigate the urinary excretion of FF after a single intramuscular administration of 20 mg FF/kg body weight. The urine sample was prepared using a centrifuge and regenerated cellulose filter, and the diluted sample was analyzed. The method was validated in terms of linearity, the limit of detection (0.005 µg/mL) and quantitation (0.016 µg/mL), repeatability and matrix effect (%RSD ranged up to 2.5), accuracy (varied between 98% and 102%), and stability. The concentration-time profile of pig urine samples collected within 48 h post-drug administration showed that 63% of FF's dose was excreted. The developed method and previously published methods used to qualify FF in the urine of animal origin were evaluated by the National Environmental Method Index (NEMI), Green Analytical Procedure Index (GAPI) and Analytical GREENness Metric Approach (AGREE). The greenness profiles of published methods revealed problems with high solvents and energy consumption, while the established method was shown to be more environmentally friendly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA