Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722626

RESUMO

While most species of butterflies and moths (Lepidoptera) have entirely terrestrial life histories, ∼0.5% of the described species are known to have an aquatic larval stage. Larvae of aquatic Lepidoptera are similar to caddisflies (Trichoptera) in that they use silk to anchor themselves to underwater substrates or to build protective cases. However, the physical properties and genetic elements of silks in aquatic Lepidoptera remain unstudied, as most research on lepidopteran silk has focused on the commercially important silkworm, Bombyx mori. Here, we provide high-quality PacBio HiFi genome assemblies of two distantly-related aquatic Lepidoptera species (Elophila obliteralis (Pyraloidea: Crambidae) and Hyposmocoma kahamanoa (Gelechioidea: Cosmopterigidae)). As a step toward understanding the evolution of underwater silk in aquatic Lepidoptera, we used our two genome assemblies and compared them to published genetic data of aquatic and terrestrial Lepidoptera. Sequences of the primary silk protein, h-fibroin in aquatic moths have conserved termini and share a basic motif structure with terrestrial Lepidoptera. However, these sequences were similar to aquatic Trichoptera in that the percentage of positively and negatively charged amino acids was much higher than in terrestrial Lepidoptera, indicating a possible adaptation of silks to aquatic environments.

2.
Zoological Lett ; 7(1): 11, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34311769

RESUMO

Protein-based materials are considered versatile biomaterials, and their biodegradability is an advantage for sustainable development. Bagworm produces strong silk for use in unique situations throughout its life stages. Rigorous molecular analyses of Eumeta variegata suggested that the particular mechanical properties of its silk are due to the coexistence of poly-A and GA motifs. However, little molecular information on closely related species is available, and it is not understood how these properties were acquired evolutionarily or whether the motif combination is a conserved trait in other bagworms. Here, we performed a transcriptome analysis of two other bagworm species (Canephora pungelerii and Bambalina sp.) belonging to the family Psychidae to elucidate the relationship between the fibroin gene and silk properties. The obtained transcriptome assemblies and tensile tests indicated that the motif combination and silk properties were conserved among the bagworms. Furthermore, our analysis showed that C. pungelerii produces extraordinarily strong silk (breaking strength of 1.4 GPa) and indicated that the cause may be the C. pungelerii -specific balance of crystalline/amorphous regions in the H-fibroin repetitive domain. This particular H-fibroin architecture may have been evolutionarily acquired to produce strong thread to maintain bag stability during the relatively long development period of Canephora species relative to other bagworms.

3.
Philos Trans R Soc Lond B Biol Sci ; 374(1784): 20190206, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31495307

RESUMO

Caddisfly (Trichoptera) larvae assemble a variety of underwater structures using bioadhesive silk. The order is divided into two primary sub-orders distinguished by how the larvae deploy their silk. Foraging Integripalpia larvae construct portable tube cases. Annulipalpia larvae construct stationary retreats, some with suspended nets to capture food. To identify silk molecular adaptations that may have contributed to caddisfly diversification, we report initial characterization of silk from a net-spinner genus, Parapsyche, for comparison with the silk of a tube case-maker genus, Hesperophylax. Overall, general features of silk structure and processing are conserved across the sub-orders despite approximately 200 Ma of divergence: the H-fibroin proteins comprise repeating phosphoserine-rich motifs, naturally spun silk fibres contain approximately 1 : 1 molar ratios of divalent metal ions to phosphate, silk fibre precursors are stored as complex fluids of at least two types of complexes, and silk gland proteins contain only traces of divalent metal ions, suggesting metal ions that solidify the fibres are absorbed from the aqueous environment after silk extrusion. However, the number and arrangement of the repeating phosphoserine blocks differ between genera, suggesting molecular adaptation of H-fibroin through duplication and shuffling of conserved structural modules may correspond with the radiation of caddisflies into diverse environments. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.


Assuntos
Insetos/química , Seda/química , Animais , Insetos/crescimento & desenvolvimento , Larva/química , Larva/crescimento & desenvolvimento , Especificidade da Espécie
4.
Neotrop Entomol ; 43(3): 252-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27193621

RESUMO

The domesticated silkworm Bombyx mori L. is currently found only in germplasm banks. Therefore, characterization and conservation of this genetic resource is crucial. Based on previous studies that revealed nucleotide differences in silkworm strains, the intron of the fibroin heavy chain gene (H-fib) can be used for molecular silkworm characterization. The H-fib gene has two exons and a unique intron, and encodes the principal component of the silk fiber, the fibroin heavy chain. Therefore, this study aimed to identify the genetic variability of the unique intron of H-fib gene of 20 silkworm strains maintained at the Universidade Estadual de Maringá Brazilian Germplasm Bank (UBGB) by conformation-sensitive gel electrophoresis (CSGE) and nucleotide sequencing. Genomic DNA extracted from silkworm moths was PCR amplified. CSGE revealed that most of the analyzed silkworm strains had only homoduplex molecules. However, DNA from the Japanese strains B106, B82, and M12-2 had two extra DNA fragments produced by heteroduplex molecules, revealing variation between alleles. Sequencing of the H-fib intron was used to confirm the variation previously detected by CSGE and detected a significant polymorphism characterized by a 17-base pair (bp) deletion, a 2-bp insertion, and eight nucleotide substitutions. Although genetic and allelic variability was detected in some silkworm strains, the intron of the H-fib gene revealed not to be the best molecular marker for the characterization of B. mori strains from UBGB.


Assuntos
Bombyx/genética , Genes de Insetos , Alelos , Animais , Brasil , Fibroínas , Íntrons , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA