Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
J Virol ; 97(2): e0144422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36688651

RESUMO

P1 is the first protein translated from the genomes of most viruses in the family Potyviridae, and it contains a C-terminal serine-protease domain that cis-cleaves the junction between P1 and HCPro in most cases. Intriguingly, P1 is the most divergent among all mature viral factors, and its roles during viral infection are still far from understood. In this study, we found that telosma mosaic virus (TelMV, genus Potyvirus) in passion fruit, unlike TelMV isolates present in other hosts, has two stretches at the P1 N terminus, named N1 and N2, with N1 harboring a Zn finger motif. Further analysis revealed that at least 14 different potyviruses, mostly belonging to the bean common mosaic virus subgroup, encode a domain equivalent to N1. Using the newly developed TelMV infectious cDNA clones from passion fruit, we demonstrated that N1, but not N2, is crucial for viral infection in both Nicotiana benthamiana and passion fruit. The regulatory effects of N1 domain on P1 cis cleavage, as well as the accumulation and RNA silencing suppression (RSS) activity of its cognate HCPro, were comprehensively investigated. We found that N1 deletion decreases HCPro abundance at the posttranslational level, likely by impairing P1 cis cleavage, thus reducing HCPro-mediated RSS activity. Remarkably, disruption of the Zn finger motif in N1 did not impair P1 cis cleavage and HCPro accumulation but severely debilitated TelMV fitness. Therefore, our results suggest that the Zn finger motif in P1s plays a critical role in viral infection that is independent of P1 protease activity and self-release, as well as HCPro accumulation and silencing suppression. IMPORTANCE Viruses belonging to the family Potyviridae represent the largest group of plant-infecting RNA viruses, including a variety of agriculturally and economically important viral pathogens. Like all picorna-like viruses, potyvirids employ polyprotein processing as the gene expression strategy. P1, the first protein translated from most potyvirid genomes, is the most variable viral factor and has attracted great scientific interest. Here, we defined a Zn finger motif-encompassing domain (N1) at the N terminus of P1 among diverse potyviruses phylogenetically related to bean common mosaic virus. Using TelMV as a model virus, we demonstrated that the N1 domain is key for viral infection, as it is involved both in regulating the abundance of its cognate HCPro and in an as-yet-undefined key function unrelated to protease processing and RNA silencing suppression. These results advance our knowledge of the hypervariable potyvirid P1s and highlight the importance for infection of a previously unstudied Zn finger domain at the P1 N terminus.


Assuntos
Especificidade de Hospedeiro , Peptídeo Hidrolases , Potyviridae , Proteínas Virais , Dedos de Zinco , Especificidade de Hospedeiro/genética , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Potyviridae/genética , Potyviridae/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Dedos de Zinco/genética
2.
Mol Plant Microbe Interact ; 36(6): 345-358, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36794975

RESUMO

East Asian passiflora virus (EAPV) seriously affects passionfruit production in Taiwan and Vietnam. In this study, an infectious clone of the EAPV Taiwan strain (EAPV-TW) was constructed, and EAPV-TWnss, with an nss tag attached to its helper component-protease (HC-Pro), was generated for monitoring the virus. Four conserved motifs of EAPV-TW HC-Pro were manipulated to create single mutations of F8I (simplified as I8), R181I (I181), F206L (L206), and E397N (N397) and double mutations of I8I181, I8L206, I8N397, I181L206, I181N397, and L206N397. Four mutants, EAPV I8I181, I8N397, I181L206, and I181N397, infected Nicotiana benthamiana and yellow passionfruit plants without conspicuous symptoms. Mutants EAPV I181N397 and I8N397 were stable after six passages in yellow passionfruit plants and expressed a zigzag pattern of accumulation dynamic, typical of beneficial protective viruses. An agroinfiltration assay indicated that the RNA silencing suppression capabilities of the four double mutated HC-Pros are significantly reduced. Mutant EAPV I181N397 accumulated the highest level of the small interfering RNA at 10 days postinoculation (dpi) in N. benthamiana plants, then dropped to background levels after 15 dpi. In both N. benthamiana and yellow passionfruit plants, EAPV I181N397 conferred complete cross protection (100%) against severe EAPV-TWnss, as defined by no severe symptoms and absence of the challenge virus, checked by Western blotting and reverse transcription PCR. Mutant EAPV I8N397 provided high degrees of complete protection against EAPV-TWnss in yellow passionfruit plants (90%) but not in N. benthamiana plants (0%). Both mutants showed complete protection (100%) against the Vietnam severe strain EAPV-GL1 in passionfruit plants. Thus, the mutants EAPV I181N397 and I8N397 have excellent potential for controlling EAPV in Taiwan and Vietnam. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteção Cruzada , Passiflora , Doenças das Plantas , Potyvirus , Passiflora/virologia , Potyvirus/genética , Interferência de RNA , Nicotiana , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia
3.
J Gen Virol ; 104(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37053090

RESUMO

Biotechnologies that use plant viruses as plant enhancement tools have shown great potential to flexibly engineer crop traits, but field applications of these technologies are still limited by efficient dissemination methods. Potyviruses can be rapidly inoculated into plants by aphid vectors due to the presence of the potyviral helper component proteinase (HC-Pro), which binds to the DAG motif of the coat protein (CP) of the virion. Previously it was determined that a naturally occurring DAG motif in the non-aphid-transmissible potexvirus, potato aucuba mosaic virus (PAMV), is functional when a potyviral HC-Pro is provided to aphids in plants. The DAG motif of PAMV was successfully transferred to the CP of another non-aphid-transmissible potexvirus, potato virus X, to convey aphid transmission capabilities in the presence of HC-Pro. Here, we demonstrate that DAG-containing segments of the CP from two different potyviruses (sugarcane mosaic virus and turnip mosaic virus), and from the previously used potexvirus, PAMV, can make the potexvirus, foxtail mosaic virus (FoMV), aphid-transmissible when fused with the FoMV CP. We show that DAG-containing FoMVs are transmissible by aphids that have prior access to HC-Pro through potyvirus-infected plants or ectopic expression of HC-Pro. The transmission efficiency of the DAG-containing FoMVs varied from less than 10 % to over 70 % depending on the length and composition of the surrounding amino acid sequences of the DAG-containing segment, as well as due to the recipient plant species. Finally, we show that the engineered aphid-transmissible FoMV is still functional as a plant enhancement resource, as endogenous host target genes were silenced in FoMV-infected plants after aphid transmission. These results suggest that aphid transmission could be engineered into non-aphid-transmissible plant enhancement viral resources to facilitate their field applications.


Assuntos
Afídeos , Vírus de Plantas , Potexvirus , Potyvirus , Animais , Potexvirus/metabolismo , Potyvirus/genética , Cisteína Endopeptidases/química , Plantas , Doenças das Plantas
4.
Virol J ; 20(1): 10, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650505

RESUMO

BACKGROUND: To investigate the mechanism of RNA silencing suppression, the genetic transformation of viral suppressors of RNA silencing (VSRs) in Arabidopsis integrates ectopic VSR expression at steady state, which overcomes the VSR variations caused by different virus infections or limitations of host range. Moreover, identifying the insertion of the transgenic VSR gene is necessary to establish a model transgenic plant for the functional study of VSR. METHODS: Developing an endogenous AGO1-based in vitro RNA-inducing silencing complex (RISC) assay prompts further investigation into VSR-mediated suppression. Three P1/HC-Pro plants from turnip mosaic virus (TuMV) (P1/HC-ProTu), zucchini yellow mosaic virus (ZYMV) (P1/HC-ProZy), and tobacco etch virus (TEV) (P1/HC-ProTe) were identified by T-DNA Finder and used as materials for investigations of the RISC cleavage efficiency. RESULTS: Our results indicated that the P1/HC-ProTu plant has slightly lower RISC activity than P1/HC-ProZy plants. In addition, the phenomena are consistent with those observed in TuMV-infected Arabidopsis plants, which implies that HC-ProTu could directly interfere with RISC activity. CONCLUSIONS: In this study, we demonstrated the application of various plant materials in an in vitro RISC assay of VSR-mediated RNA silencing suppression.


Assuntos
Arabidopsis , Potyvirus , Interferência de RNA , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Potyvirus/genética , Nicotiana , Doenças das Plantas
5.
Phytopathology ; 113(8): 1605-1614, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37019906

RESUMO

Passiflora mottle virus (PaMoV), an aphid-borne potyvirus, is the primary causal virus of devastating passionfruit woodiness disease in Vietnam. Here we generated a nonpathogenic, attenuated PaMoV strain for disease control by cross protection. A full-length genomic cDNA of PaMoV strain DN4 from Vietnam was constructed to generate an infectious clone. The green fluorescent protein was tagged at the N-terminal region of the coat protein gene to monitor in planta the severe PaMoV-DN4. Two amino acids within the conserved motifs of helper component protease (HC-Pro) of PaMoV-DN4 were mutated individually or in combination as K53E or/and R181I. Mutants PaMoV-E53 and PaMoV-I181 induced local lesions in Chenopodium quinoa plants, while PaMoV-E53I181 caused infection without apparent symptoms. In passionfruit (Passiflora edulis) plants, PaMoV-E53 elicited severe leaf mosaic and PaMoV-I181 induced leaf mottling, while PaMoV-E53I181 caused transient mottling followed by symptomless recovery. PaMoV-E53I181 was stable after six serial passages in yellow passionfruit (Passiflora edulis f. flavicarpa) plants. Its temporal accumulation levels were lower than those of the wild type, with a zigzag accumulation pattern, typical of a beneficial protective virus. An RNA silencing suppression (RSS) assay revealed that all three mutated HC-Pros are defective in RSS. Triplicated cross-protection experiments with a total of 45 plants showed that the attenuated mutant PaMoV-E53I181 provided a high protection rate (91%) against the homologous wild-type virus in passionfruit plants. This work revealed that PaMoV-E53I181 can be used as a protective virus to control PaMoV by cross protection.

6.
Phytopathology ; 113(6): 1103-1114, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36576401

RESUMO

The genomic 5'-terminal regions of viruses in the family Potyviridae (potyvirids) encode two types of leader proteases: serine-protease (P1) and cysteine-protease (HCPro), which differ greatly in the arrangement and sequence composition among inter-genus viruses. Most potyvirids have the same tandemly arranged P1 and HCPro, whereas viruses in the genus Macluravirus encode a single distinct leader protease, a truncated version of HCPro with yet-unknown functions. We investigated the RNA silencing suppression (RSS) activity and its underpinning mechanism of the distinct HCPro from alpinia oxyphylla mosaic macluravirus (aHCPro). Sequence analysis revealed that macluraviral HCPros have obvious truncations in the N-terminal and middle regions when aligned to their counterparts in potyviruses (well-characterized viral suppressors of RNA silencing). Nearly all defined elements essential for the RSS activity of potyviral counterparts are not distinguished in macluraviral HCPros. Here, we demonstrated that aHCPro exhibits a similar anti-silencing activity with the potyviral counterpart. However, aHCPro fails to block both the local and systemic spreading of RNA silencing. In line, aHCPro interferes with the dsRNA synthesis, an upstream step in the RNA silencing pathway. Affinity-purification and NanoLC-MS/MS analysis revealed that aHCPro has no association with core components or their potential interactors involving in dsRNA synthesis from the protein layer. Instead, the ectopic expression of aHCPro significantly reduces the transcript abundance of RDR2, RDR6, SGS3, and SDE5. This study represents the first report on the anti-silencing function of Macluravirus-encoded HCPro and the underlying molecular mechanism.


Assuntos
Alpinia , Potyviridae , Potyvirus , Vírus , Potyviridae/genética , Interferência de RNA , RNA de Cadeia Dupla/genética , Alpinia/genética , Alpinia/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Espectrometria de Massas em Tandem , Doenças das Plantas , Potyvirus/genética , Vírus/genética , Peptídeo Hidrolases/genética , Nicotiana
7.
Plant Dis ; 107(6): 1757-1768, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36401850

RESUMO

Cross protection application of HA5-1, an attenuated mutant of papaya ringspot virus (PRSV) HA strain from Hawaii, was withdrawn from Taiwan due to the narrow geographic strain specificity of HA5-1. Here, to overcome this problem, we created attenuated mutants of PRSV YK, a dominant severe strain from Taiwan, by mutating helper component protease (HC-Pro) at F7, R181, F206, and D397 residues critical for potyviral pathogenicity. PRSV YK HC-Pro R181I, F206L, and D397N single-mutant viruses induced mild symptoms, but their adverse effects on growth of papaya plants disqualified them as useful protective viruses. However, F7I single-mutant and F7I + F206L double-mutant viruses displayed mild symptoms followed by recovery, and they showed a zigzag pattern of accumulation in papaya plants, indicating their potential to trigger RNA silencing and retain partial antagonistic suppression of host defense. Although F7I + R181I and F7I + D397N double-mutant viruses caused symptomless infection, they accumulated barely above mock level and, thus, were not qualified as proper protective viruses. RNA silencing suppression (RSS) analysis by agroinfiltration in Nicotiana benthamiana plants revealed that the HC-Pro F7I and F7I + F206L mutant proteins were weaker in RSS ability than the wild-type protein. Under greenhouse conditions, F7I and F7I + F206L mutant viruses were genetically stable but not aphid transmissible. Compared with the HA5-1 mutant's low degree (10%) of protection to papaya plants, the F7I and F7I + F206L mutants provided complete (100%) protection to papaya and horn melon plants against strain YK. Thus, F7I and F7I + F206L mutants solve the problem of strain-specific protection and have great potential for control of PRSV in Taiwan.


Assuntos
Proteção Cruzada , Proteínas Virais , Proteínas Virais/genética , Proteínas Virais/metabolismo , Cisteína Endopeptidases/metabolismo
8.
New Phytol ; 233(5): 2266-2281, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34942019

RESUMO

Previous studies have found a correlation between the abilities of PVX vector-expressed HCPro variants to bind small RNAs (sRNAs), and to suppress silencing. Moreover, HCPro preferred to bind viral sRNAs of 21-22 nucleotides (nt) containing 5'-terminal adenines. This would require such viral sRNAs to have either different access to the suppressor than those of plant sequences, or different molecular properties. To investigate this preference further, we have used suppressor-competent or suppressor-deficient HCPro variants, expressed from either T-DNAs or potyvirus constructs. Then, the sRNAs generated in plants and associated with the purified HCPro variants were characterized. Marked differences were observed in the ratios of sRNAs of plant vs nonplant origin that bound to suppressor-competent HCPro, depending on the mode of its expression. Regardless of the means of expression, HCPro retained the same preference among the nonplant sRNAs of 21-22 nt for those with 5'-terminal adenines. Relative methylation levels of individual sRNAs were assessed, and the nonplant sRNAs were found to be significantly less methylated in the presence of the suppressor. Targeted binding of sRNAs based on size, 5'-terminal sequence and origin, together with affecting their methylation, could explain how HCPro counteracts silencing.


Assuntos
Nicotiana , Nucleotídeos , Adenina , Metilação , Nucleotídeos/metabolismo , Doenças das Plantas , Interferência de RNA , RNA Viral/genética , RNA Viral/metabolismo , Nicotiana/metabolismo , Proteínas Virais/metabolismo
9.
J Virol ; 95(1)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33055249

RESUMO

Potyviridae is the largest family of plant-infecting RNA viruses and includes many agriculturally and economically important viral pathogens. The viruses in the family, known as potyvirids, possess single-stranded, positive-sense RNA genomes with polyprotein processing as a gene expression strategy. The N-terminal regions of potyvirid polyproteins vary greatly in sequence. Previously, we identified a novel virus species within the family, Areca palm necrotic spindle-spot virus (ANSSV), which was predicted to encode two cysteine proteases, HCPro1 and HCPro2, in tandem at the N-terminal region. Here, we present evidence showing self-cleavage activity of these two proteins and define their cis-cleavage sites. We demonstrate that HCPro2 is a viral suppressor of RNA silencing (VSR), and both the variable N-terminal and conserved C-terminal (protease domain) moieties have antisilencing activity. Intriguingly, the N-terminal region of HCPro1 also has RNA silencing suppression activity, which is, however, suppressed by its C-terminal protease domain, leading to the functional divergence of HCPro1 and HCPro2 in RNA silencing suppression. Moreover, the deletion of HCPro1 or HCPro2 in a newly created infectious clone abolishes viral infection, and the deletion mutants cannot be rescued by addition of corresponding counterparts of a potyvirus. Altogether, these data suggest that the two closely related leader proteases of ANSSV have evolved differential and essential functions to concertedly maintain viral viability.IMPORTANCE The Potyviridae represent the largest group of known plant RNA viruses and account for more than half of the viral crop damage worldwide. The leader proteases of viruses within the family vary greatly in size and arrangement and play key roles during the infection. Here, we experimentally demonstrate the presence of a distinct pattern of leader proteases, HCPro1 and HCPro2 in tandem, in a newly identified member within the family. Moreover, HCPro1 and HCPro2, which are closely related and typically characterized with a short size, have evolved contrasting RNA silencing suppression activity and seem to function in a coordinated manner to maintain viral infectivity. Altogether, the new knowledge fills a missing piece in the evolutionary relationship history of potyvirids and improves our understanding of the diversification of potyvirid genomes.


Assuntos
Cisteína Proteases/metabolismo , Potyviridae/enzimologia , Interferência de RNA , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Cisteína Proteases/genética , Genes Supressores , Genoma Viral , Viabilidade Microbiana , Mutação , Filogenia , Doenças das Plantas/virologia , Poliproteínas , Potyviridae/genética , Domínios Proteicos , RNA Viral/genética , Proteínas Virais/genética
10.
J Virol ; 93(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31341041

RESUMO

One large open reading frame (ORF) encodes 10 potyviral proteins. We compared the accumulation of cylindrical inclusion (CI) protein from the middle, coat protein (CP) from the 3'end, and Renilla luciferase (RLUC) from two distinct locations in potato virus A (PVA) RNA. 5' RLUC was expressed from an rluc gene inserted between the P1 and helper component proteinase (HCPro) cistrons, and 3' RLUC was expressed from the gene inserted between the RNA polymerase and CP cistrons. Viral protein and RNA accumulation were quantitated (i) when expressed from PVA RNA in the presence of ectopically expressed genome-linked viral protein (VPg) and auxiliary proteins and (ii) at different time points during natural infection. The rate and timing of 3' RLUC and CP accumulation were found to be different from those of 5' RLUC and CI. Ectopic expression of VPg boosted PVA RNA, 3' RLUC, and, together with HCPro, CP accumulation, whereas 5' RLUC and CI accumulation remained unaffected regardless of the increased viral RNA amount. In natural infection, the rate of the noteworthy minute early accumulation of 3' RLUC accelerated toward the end of infection. 5' RLUC accumulation, which was already pronounced at 2 days postinfection, increased moderately and stabilized to a constant level by day 5, whereas PVA RNA and CP levels continued to increase throughout the infection. We propose that these observations connect with the mechanisms by which potyvirus infection limits CP accumulation during early infection and specifically supports its accumulation late in infection, but follow-up studies are required to understand the mechanism of how this occurs.IMPORTANCE The results of this study suggest that the dynamics of potyviral protein accumulation are regulated differentially from the 3' end of viral RNA than from the rest of the genome, the significance of which would be to satisfy the needs of replication early and particle assembly late in infection.


Assuntos
Regulação Viral da Expressão Gênica , Potyvirus/crescimento & desenvolvimento , Proteínas Virais/análise , Cinética , RNA Viral/análise , Fatores de Tempo , Nicotiana/virologia
11.
J Exp Bot ; 71(18): 5656-5668, 2020 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-32594157

RESUMO

Plant symptoms are derived from specific interactions between virus and host components. However, little is known about viral or host factors that participate in the establishment of systemic necrosis. Here, we showed that helper component proteinase (HCPro), encoded by Chilli veinal mottle virus (ChiVMV), could directly interact with catalase 1 (CAT1) and catalase 3 (CAT3) in the cytoplasm of tobacco (Nicotiana tabacum) plants to facilitate viral infection. In vitro, the activities of CAT1 and CAT3 were inhibited by the interaction between HCPro and CATs. The C-terminus of HCPro was essential for their interaction and was also required for the decrease of enzyme activities. Interestingly, the mRNA and protein level of CATs were up-regulated in tobacco plants in response to ChiVMV infection. Nicotiana tabacum plants with HCPro overexpression or CAT1 knockout were more susceptible to ChiVMV infection, which was similar to the case of H2O2-pre-treated plants, and the overexpression of CAT1 inhibited ChiVMV accumulation. Also, neither CAT1 nor CAT3 could affect the RNA silencing suppression (RSS) activity of HCPro. Our results showed that the interaction between HCPro and CATs promoted the development of plant systemic necrosis, revealing a novel role for HCPro in virus infection and pathogenicity.


Assuntos
Potyvirus , Viroses , Catalase/genética , Peróxido de Hidrogênio , Doenças das Plantas , Nicotiana
12.
Phytopathology ; 110(1): 187-193, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31516080

RESUMO

Potyviral helper component protease (HC-Pro), as a major determinant of symptom expression in susceptible plants, is a likely target candidate in the production of attenuated strains for cross-protection. In this study, single or double mutations of Lys (K) to Glu (E) in the Lys-Ile-Thr-Cys motif and Arg (R) to Ile (I) in the Phe-Arg-Asn-Lys motif of the HC-Pro from the severe papaya leaf distortion mosaic virus strain DF (PLDMV-DF) reduced symptom expression and virus accumulation in infected papaya (Carica papaya) plants. The papaya plants infected with the attenuated double mutant of PLDMV-EI presented as symptomless. PLDMV-EI provided effective protection against PLDMV-DF infection in three papaya cultivars and had no effect on plant growth and development. Our result showed that PLDMV-EI is a promising mild strain for the practical use of cross-protection in the field.


Assuntos
Motivos de Aminoácidos , Carica , Peptídeo Hidrolases , Potyvirus , Motivos de Aminoácidos/genética , Carica/virologia , Mutação/genética , Peptídeo Hidrolases/genética , Potyvirus/enzimologia , Potyvirus/genética
13.
Phytopathology ; 109(5): 887-894, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30133353

RESUMO

Areca palm (Areca catechu), one of the two most important commercial crops in Hainan, China, has been severely damaged by a variety of pathogens and insects. Here, we report a new disease, tentatively referred to as areca palm necrotic ringspot disease (ANRSD), which is highly epidemic in the main growing regions in Hainan. Transmission electron microscopy observation and small RNA deep sequencing revealed the existence of a viral agent of the family Potyviridae in a diseased areca palm plant (XC1). The virus was tentatively named areca palm necrotic ringspot virus (ANRSV). Subsequently, the positive-sense single-stranded genome of ANRSV isolate XC1 was completely determined. The genome annotation revealed the existence of two cysteine proteinases in tandem (HC-Pro1 and HC-Pro2) in the genomic 5' terminus of ANRSV. Sequence comparison and phylogenetic analysis suggested the taxonomic classification of ANRSV into the recently proposed genus Arepavirus in the family Potyviridae. Given the close relationship of ANRSV with another newly reported arepavirus (areca palm necrotic spindle-spot virus), the exact taxonomic status of ANRSV needs to be further investigated. In this study, a reverse transcription polymerase chain reaction assay for ANRSV-specific detection was developed and a close association between ANRSV and ANRSD was found.


Assuntos
Areca/virologia , Filogenia , Doenças das Plantas/virologia , Potyviridae/patogenicidade , China , Genoma Viral , Potyviridae/classificação , RNA Viral
14.
J Virol ; 91(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28381573

RESUMO

We have investigated short and small RNAs (sRNAs) that were bound to a biologically active hexahistidine-tagged Potato virus Y (PVY) HCPro suppressor of silencing, expressed from a heterologous virus vector in Nicotiana benthamiana plants, and purified under nondenaturing conditions. We found that RNAs in purified preparations were differentially enriched in 21-nucleotide (nt) and, to a much lesser extent, 22-nt sRNAs of viral sequences (viral sRNAs [vsRNAs]) compared to those found in a control plant protein background bound to nickel resin in the absence of HCPro or in a purified HCPro alanine substitution mutant (HCPro mutB) control that lacked suppressor-of-silencing activity. In both controls, sRNAs were composed almost entirely of molecules of plant sequence, indicating that the resin-bound protein background had no affinity for vsRNAs and also that HCPro mutB failed to bind to vsRNAs. Therefore, PVY HCPro suppressor activity correlated with its ability to bind to 21- and 22-nt vsRNAs. HCPro constituted at least 54% of the total protein content in purified preparations, and we were able to calculate its contribution to the 21- and the 22-nt pools of sRNAs present in the purified samples and its binding strength relative to the background. We also found that in the 21-nt vsRNAs of the HCPro preparation, 5'-terminal adenines were overrepresented relative to the controls, but this was not observed in vsRNAs of other sizes or of plant sequences.IMPORTANCE It was previously shown that HCPro can bind to long RNAs and small RNAs (sRNAs) in vitro and, in the case of Turnip mosaic virus HCPro, also in vivo in arabidopsis AGO2-deficient plants. Our data show that PVY HCPro binds in vivo to sRNAs during infection in wild-type Nicotiana benthamiana plants when expressed from a heterologous virus vector. Using a suppression-of-silencing-deficient HCPro mutant that can accumulate in this host when expressed from a virus vector, we also show that sRNA binding correlates with silencing suppression activity. We demonstrate that HCPro binds at least to sRNAs with viral sequences of 21 nucleotides (nt) and, to a much lesser extent, of 22 nt, which were are also differentially enriched in 5'-end adenines relative to the purified controls. Together, our results support the physical binding of HCPro to vsRNAs of 21 and 22 nt as a means to interfere with antiviral silencing.


Assuntos
Nicotiana/virologia , RNA Viral/metabolismo , Proteínas Virais/metabolismo , Inativação Gênica , Vetores Genéticos , Nucleotídeos , Doenças das Plantas/virologia , Potyvirus/genética , RNA Viral/química , RNA Viral/genética , RNA Viral/isolamento & purificação , Proteínas Virais/genética , Proteínas Virais/isolamento & purificação
15.
Plant J ; 85(1): 30-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26611351

RESUMO

Potyviral helper component proteinase (HCPro) is a well-characterized suppressor of antiviral RNA silencing, but its mechanism of action is not yet fully understood. In this study, we used affinity purification coupled with mass spectrometry to identify binding partners of HCPro in potyvirus-infected plant cells. This approach led to identification of various HCPro interactors, including two key enzymes of the methionine cycle, S-adenosyl-L-methionine synthase and S-adenosyl-L-homocysteine hydrolase. This finding, together with the results of enzymatic activity and gene knockdown experiments, suggests a mechanism in which HCPro complexes containing viral and host proteins act to suppress antiviral RNA silencing through local disruption of the methionine cycle. Another group of HCPro interactors identified in this study comprised ribosomal proteins. Immunoaffinity purification of ribosomes demonstrated that HCPro is associated with ribosomes in virus-infected cells. Furthermore, we show that HCPro and ARGONAUTE1 (AGO1), the core component of the RNA-induced silencing complex (RISC), interact with each other and are both associated with ribosomes in planta. These results, together with the fact that AGO1 association with ribosomes is a hallmark of RISC-mediated translational repression, suggest a second mechanism of HCPro action, whereby ribosome-associated multiprotein complexes containing HCPro relieve viral RNA translational repression through interaction with AGO1.


Assuntos
Cisteína Endopeptidases/metabolismo , Nicotiana/genética , Doenças das Plantas/virologia , Potyvirus/genética , Complexo de Inativação Induzido por RNA/metabolismo , Proteínas Virais/metabolismo , Cisteína Endopeptidases/genética , Técnicas de Silenciamento de Genes , Espectrometria de Massas , Metionina/metabolismo , Plantas Geneticamente Modificadas , Potyvirus/metabolismo , Modificação Traducional de Proteínas , Interferência de RNA , RNA Viral/genética , Complexo de Inativação Induzido por RNA/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Nicotiana/virologia , Proteínas Virais/genética
16.
Virus Genes ; 52(4): 592-6, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27059238

RESUMO

In 2014, we performed a nationwide survey in Korean radish fields to investigate the distribution and variability of Turnip mosaic virus (TuMV). Brassica rapa ssp. pekinensis sap-inoculated with three isolates of TuMV from infected radish tissue showed different symptom severities, whereas symptoms in Raphanus sativus were similar for each isolate. The helper component-protease (HC-Pro) genes of each isolate were sequenced, and phylogenetic analysis showed that the three Korean isolates were clustered into the basal-BR group. The HC-Pro proteins of these isolates were tested for their RNA silencing suppressor (VSR) activity and subcellular localization in Nicotiana benthamiana. A VSR assay by co-agroinfiltration of HC-Pro with soluble-modified GFP (smGFP) showed that HC-Pro of isolate R007 and R041 showed stronger VSR activity than R065. The HC-Pros showed 98.25 % amino acid identity, and weak VSR isolate (R065) has a single variant residue in the C-terminal domain associated with protease activity and self-interaction compared to isolates with strong VSR activity. Formation of large subcellular aggregates of GFP:HC-Pro fusion proteins in N. benthamiana was only observed for HC-Pro from isolates with strong VSR activity, suggesting that R065 'weak' HC-Pro may have diminished self-association; substitution of the variant C-terminal residue largely reversed the HC-Pro aggregation and silencing suppressor characteristics. The lack of correlation between VSR efficiency and induction of systemic necrosis (SN) suggests that differences in viral accumulation due to HC-Pro are not responsible for SN.


Assuntos
Peptídeo Hidrolases/genética , RNA Viral/genética , Tymovirus/genética , Tymovirus/isolamento & purificação , Brassica napus/virologia , Cisteína Endopeptidases/genética , Coreia (Geográfico) , Filogenia , Doenças das Plantas/virologia , Interferência de RNA/fisiologia , Proteínas Virais/genética
17.
Mol Plant Pathol ; 25(6): e13487, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877765

RESUMO

We had previously reported that a plum pox virus (PPV)-based chimera that had its P1-HCPro bi-cistron replaced by a modified one from potato virus Y (PVY) increased its virulence in some Nicotiana benthamiana plants, after mechanical passages. This correlated with the natural acquisition of amino acid substitutions in several proteins, including in HCPro at either position 352 (Ile→Thr) or 454 (Leu→Arg), or of mutations in non-coding regions. Thr in position 352 is not found among natural potyviruses, while Arg in 454 is a reversion to the native PVY HCPro amino acid. We show here that both mutations separately contributed to the increased virulence observed in the passaged chimeras that acquired them, and that Thr in position 352 is no intragenic suppressor to a Leu in position 454, because their combined effects were cumulative. We demonstrate that Arg in position 454 improved HCPro autocatalytic cleavage, while Thr in position 352 increased its accumulation and the silencing suppression of a reporter in agropatch assays. We assessed infection by four cloned chimera variants expressing HCPro with none of the two substitutions, one of them or both, in wild-type versus DCL2/4-silenced transgenic plants. We found that during infection, the transgenic context of altered small RNAs affected the accumulation of the four HCPro variants differently and hence, also infection virulence.


Assuntos
Substituição de Aminoácidos , Nicotiana , Potyvirus , Proteínas Virais , Virulência/genética , Nicotiana/virologia , Potyvirus/patogenicidade , Potyvirus/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Doenças das Plantas/virologia , Quimera , Vírus Eruptivo da Ameixa/patogenicidade , Vírus Eruptivo da Ameixa/genética , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética , Mutação/genética
18.
Pest Manag Sci ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895838

RESUMO

BACKGROUND: Telosma mosaic virus (TelMV, Potyvirus, Potyviridae) is an emerging viral pathogen that threatens passion fruit plantations worldwide. However, an efficient strategy for controlling such a virus is not yet available. Cross protection is a phenomenon in which pre-infection of a plant with one mild strain prevents or delays subsequent infection by the same or closely related virus. HC-Pro is the potyviral encoded multifunctional protein involved in several steps of viral infection, including multiplication, movement, transmission and RNA silencing suppression. In this study, we tested whether it is possible to generate attenuated viral strains capable of conferring protection against severe TelMV infection by manipulating the HC-Pro gene. RESULTS: By introducing point mutation into the conserved motif FRNK of HC-Pro that is essential for RNA silencing suppression, we have successfully obtained three attenuated mutants of TelMV (R181K, R181D, and R181E, respectively). These attenuated TelMV mutants could systemically infect passion fruit plants without noticeable symptoms. Pre-inoculation of one of these attenuated mutants confers efficient protection against subsequent infection by severe TelMV strain. Moreover, we demonstrated that the HC-Pros harbored by the attenuated mutants exhibit reduced RNA silencing suppression activity in Nicotiana benthamiana leaves. CONCLUSION: The attenuated TelMV mutants developed in this study that are suitable for cross protection offer a practical, powerful tool to fight against TelMV for sustainable passion fruit production. © 2024 Society of Chemical Industry.

19.
Viruses ; 16(8)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39205205

RESUMO

East Asian Passiflora virus (EAPV) causes passionfruit woodiness disease, a major threat limiting passionfruit production in eastern Asia, including Taiwan and Vietnam. In this study, an infectious cDNA clone of a Taiwanese severe isolate EAPV-TW was tagged with a green fluorescent protein (GFP) reporter to monitor the virus in plants. Nicotiana benthamiana and yellow passionfruit plants inoculated with the construct showed typical symptoms of EAPV-TW. Based on our previous studies on pathogenicity determinants of potyviral HC-Pros, a deletion of six amino acids (d6) alone and its association with a point mutation (F8I, simplified as I8) were conducted in the N-terminal region of the HC-Pro gene of EAPV-TW to generate mutants of EAPV-d6 and EAPV-d6I8, respectively. The mutant EAPV-d6I8 caused infection without conspicuous symptoms in N. benthamiana and yellow passionfruit plants, while EAPV-d6 still induced slight leaf mottling. EAPV-d6I8 was stable after six passages under greenhouse conditions and displayed a zigzag pattern of virus accumulation, typical of a beneficial protective virus. The cross-protection effectiveness of EAPV-d6I8 was evaluated in both N. benthamiana and yellow passionfruit plants under greenhouse conditions. EAPV-d6I8 conferred complete cross-protection (100%) against the wild-type EAPV-TW-GFP in both N. benthamiana and yellow passionfruit plants, as verified by no severe symptoms, no fluorescent signals, and PCR-negative status for GFP. Furthermore, EAPV-d6I8 also provided complete protection against Vietnam's severe strain EAPV-GL1 in yellow passionfruit plants. Our results indicate that the attenuated mutant EAPV-d6I8 has great potential to control EAPV in Taiwan and Vietnam via cross-protection.


Assuntos
Mutação , Doenças das Plantas , Potyvirus , Proteínas Virais , Doenças das Plantas/virologia , Doenças das Plantas/prevenção & controle , Proteínas Virais/genética , Proteínas Virais/metabolismo , Potyvirus/genética , Proteção Cruzada , Passiflora/virologia , Passiflora/genética , Nicotiana/virologia , Nicotiana/genética , Deleção de Sequência , Taiwan , Vietnã , População do Leste Asiático , Cisteína Endopeptidases
20.
Plants (Basel) ; 13(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732454

RESUMO

The best-characterized functional motifs of the potyviral Helper-Component protease (HC-Pro) responding for aphid transmission, RNA silencing suppression, movement, symptom development, and replication are gathered in this review. The potential cellular protein targets of plant virus proteases remain largely unknown despite their multifunctionality. The HC-Pro catalytic domain, as a cysteine protease, autoproteolytically cleaves the potyviral polyproteins in the sequence motif YXVG/G and is not expected to act on host targets; however, 146 plant proteins in the Viridiplantae clade containing this motif were searched in the UniProtKB database and are discussed. On the other hand, more than 20 interactions within the entire HC-Pro structure are known. Most of these interactions with host targets (such as the 20S proteasome, methyltransferase, transcription factor eIF4E, and microtubule-associated protein HIP2) modulate the cellular environments for the benefit of virus accumulation or contribute to symptom severity (interactions with MinD, Rubisco, ferredoxin) or participate in the suppression of RNA silencing (host protein VARICOSE, calmodulin-like protein). On the contrary, the interaction of HC-Pro with triacylglycerol lipase, calreticulin, and violaxanthin deepoxidase seems to be beneficial for the host plant. The strength of these interactions between HC-Pro and the corresponding host protein vary with the plant species. Therefore, these interactions may explain the species-specific sensitivity to potyviruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA