Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293131

RESUMO

The potential of chitosan and carboxymethyl chitosan (CMC) cryogels cross-linked with diglycidyl ether of 1,4-butandiol (BDDGE) and poly(ethylene glycol) (PEGDGE) have been compared in terms of 3D culturing HEK-293T cell line and preventing the bacterial colonization of the scaffolds. The first attempts to apply cryogels for the 3D co-culturing of bacteria and human cells have been undertaken toward the development of new models of host-pathogen interactions and bioimplant-associated infections. Using a combination of scanning electron microscopy, confocal laser scanning microscopy, and flow cytometry, we have demonstrated that CMC cryogels provided microenvironment stimulating cell-cell interactions and the growth of tightly packed multicellular spheroids, while cell-substrate interactions dominated in both chitosan cryogels, despite a significant difference in swelling capacities and Young's modulus of BDDGE- and PEGDGE-cross-linked scaffolds. Chitosan cryogels demonstrated only mild antimicrobial properties against Pseudomonas fluorescence, and could not prevent the formation of Staphylococcus aureus biofilm in DMEM media. CMC cryogels were more efficient in preventing the adhesion and colonization of both P. fluorescence and S. aureus on the surface, demonstrating antifouling properties rather than the ability to kill bacteria. The application of CMC cryogels to 3D co-culture HEK-293T spheroids with P. fluorescence revealed a higher resistance of human cells to bacterial toxins than in the 2D co-culture.


Assuntos
Quitosana , Criogéis , Humanos , Criogéis/farmacologia , Criogéis/química , Quitosana/farmacologia , Quitosana/química , Técnicas de Cocultura , Células HEK293 , Staphylococcus aureus , Polietilenoglicóis , Rim , Éteres
2.
Arch Virol ; 162(9): 2553-2563, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28474223

RESUMO

The ORF3 accessory protein has been shown to impede reverse genetics of cell-culture-adapted porcine epidemic diarrhea virus (PEDV). Its absence or truncated variants are also associated with viral attenuation in vivo. Here, three ORF3 variants (ORF3NP12, ORF3NP14 and ORF3RB14) and their truncated counterparts were investigated for their regulatory role in recovery of cell-adapted PEDV in vitro. We demonstrate that ORF3NP12, but not the truncated form, can inhibit recovery of reverse-genetics-derived PEDV when expressed in trans. When testing with other RNA viruses, ORF3 was found to inhibit rescue of porcine respiratory and reproductive syndrome virus (PRRSV), but not of influenza virus. Interestingly, results from mutagenesis of ORF3NP12 suggest that F81 and M167 are responsible for impairing PEDV rescue in vitro. By changing specific residues of ORF3, the recombinant PEDV bearing the modified ORF3NP12 can be productively propagated in VeroE6-APN cells. These results may provide mechanistic insights into ORF3-mediated inhibition of PEDV replication in new host cells.


Assuntos
Vírus da Diarreia Epidêmica Suína/fisiologia , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Regulação Viral da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Mutação Puntual , Suínos , Doenças dos Suínos/virologia , Células Vero , Proteínas Virais/genética
3.
Int J Med Sci ; 14(11): 1072-1079, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104460

RESUMO

Background: Zika virus (ZIKV) infection has become a major public health problem all around the world. Early diagnosis of Zika infection is important for better management of the disease. Non-structural protein 1 (NS1) is a potential biomarker for ZIKV infections. The purpose of this study was to produce the ZIKV NS1 protein for establishing serological diagnostic methods for ZIKV. Methods: The cDNA fragment encoding a chimeric protein composed of murine Igκ signal peptide, NS1 and histidine tag was synthesized and cloned into the lentiviral expression vector pLV-eGFP. The resulting expression vector pLV-eGFP-ZIKV-NS1 was packaged and transduced into human embryonic kidney (HEK) 293T cells and clonal cell lines with NS1 gene were generated from the tranduced cells by limiting dilution. Over expressed recombination NS1 (rNS1) fusion protein was purified by nickel affinity chromatography. Mice immunization and enzyme-linked immunosorbent assay (ELISA) were carried out to evaluate the immunogenicity of rNS1. Results: Western blot analysis revealed that the reconstituted cells stably expressed and secreted high levels of approximately 45-kDa NS1, and no significant changes were observed in green fluorescent protein (GFP) fluorescence ratio and fluorescence intensity. The scanned gels showed that the purity of the purified rNS1 was 99.42%. BALB/c mice were then immunized with purified rNS1 and a high level of antibodies against NS1 was elicited in the mice. Conclusion: Overall, recombinant NS1 proteins were successfully purified and their antigenicity was assessed. Immunization of mice with recombinant proteins demonstrated the immunogenicity of the NS1 protein. Thus, the generated recombinant NS1 can be potentially used in the development of serological diagnostic methods for ZIKV.


Assuntos
Proteínas não Estruturais Virais/metabolismo , Zika virus/genética , Animais , Ensaio de Imunoadsorção Enzimática , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Lentivirus/genética , Camundongos Endogâmicos BALB C , Mosquitos Vetores/genética , Proteínas não Estruturais Virais/genética , Zika virus/fisiologia
4.
J Biol Chem ; 290(26): 16168-76, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25931121

RESUMO

Voltage-dependent calcium channels (Cav) of the T-type family (Cav3.1, Cav3.2, and Cav3.3) are activated by low threshold membrane depolarization and contribute greatly to neuronal network excitability. Enhanced T-type channel activity, especially Cav3.2, contributes to disease states, including absence epilepsy. Interestingly, the intracellular loop connecting domains I and II (I-II loop) of Cav3.2 channels is implicated in the control of both surface expression and channel gating, indicating that this I-II loop plays an important regulatory role in T-type current. Here we describe that co-expression of this I-II loop or its proximal region (Δ1-Cav3.2; Ser(423)-Pro(542)) together with recombinant full-length Cav3.2 channel inhibited T-type current without affecting channel expression and membrane incorporation. Similar T-type current inhibition was obtained in NG 108-15 neuroblastoma cells that constitutively express Cav3.2 channels. Of interest, Δ1-Cav3.2 inhibited both Cav3.2 and Cav3.1 but not Cav3.3 currents. Efficacy of Δ1-Cav3.2 to inhibit native T-type channels was assessed in thalamic neurons using viral transduction. We describe that T-type current was significantly inhibited in the ventrobasal neurons that express Cav3.1, whereas in nucleus reticularis thalami neurons that express Cav3.2 and Cav3.3 channels, only the fast inactivating T-type current (Cav3.2 component) was significantly inhibited. Altogether, these data describe a new strategy to differentially inhibit Cav3 isoforms of the T-type calcium channels.


Assuntos
Canais de Cálcio Tipo T/química , Canais de Cálcio Tipo T/metabolismo , Animais , Encéfalo/metabolismo , Canais de Cálcio Tipo T/genética , Humanos , Neurônios/metabolismo , Estrutura Secundária de Proteína , Ratos , Ratos Wistar
5.
Bio Protoc ; 14(14): e5034, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39100594

RESUMO

Overexpression of proteins in transiently transfected cells is a simple way to study basic transport mechanisms and the underlying protein-protein interactions. While expression systems have obvious drawbacks compared to in vivo experiments, they allow a quick assessment of more conserved functions, for instance, ER export or sorting of proteins in the Golgi. In a previous study, our group described the formation of ER-derived removal vesicles for the gap junction protein Cx36 in transfected HEK293T cells. These removal vesicles, termed "whorls" because of their concentric structure, were formed by Cx36 channels that failed to escape the ER. In this article, we describe an imaging protocol that can be used to determine these ER retention defects for Cx36 expressed in cultured cells. The protocol we provide here employs regular confocal microscopy, which allows for sufficient resolution to reveal the characteristic shape of ER whorls.

6.
Orphanet J Rare Dis ; 19(1): 363, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358794

RESUMO

BACKGROUND: Gaucher disease (GD) is one of the most common types of lysosomal storage diseases (LSDs) caused by pathogenic variants of lysosomal ß-glucocerebrosidase gene (GBA1), resulting in the impairment of Glucocerebrosidase (GCase) enzyme function and the accumulation of a glycolipid substrate, glucosylceramide (GlcCer) within lysosomes. Current therapeutic approaches such as enzyme replacement therapy and substrate reduction therapy cannot fully rescue GD pathologies, especially neurological symptoms. Meanwhile, delivery of lysosomal enzymes to the endocytic compartment of affected human cells is a promising strategy for treating neuropathic LSDs. RESULT: Here, we describe a novel approach to restore GCase enzyme in cells from neuropathic GD patients by producing extracellular vesicle (EVs)-containing GCase from cells overexpressing GBA1 gene. Lentiviral vectors containing modified GBA1 were introduced into HEK293T cells to produce a stable cell line that provides a sustainable source of functional GCase enzyme. The GBA1-overexpressing cells released EV-containing GCase enzyme, that is capable of entering into and localizing in the endocytic compartment of recipient cells, including THP-1 macrophage, SH-SY5Y neuroblastoma, and macrophages and neurons derived from induced pluripotent stem cells (iPSCs) of neuropathic GD patients. Importantly, the recipient cells exhibit higher GCase enzyme activity. CONCLUSION: This study presents a promising therapeutic strategy to treat severe types of LSDs. It involves delivering lysosomal enzymes to the endocytic compartment of human cells affected by conditions such as GDs with neurological symptoms, as well as potentially other neurological disorders impacting lysosomes.


Assuntos
Vesículas Extracelulares , Doença de Gaucher , Glucosilceramidase , Humanos , Doença de Gaucher/metabolismo , Doença de Gaucher/genética , Doença de Gaucher/patologia , Glucosilceramidase/metabolismo , Glucosilceramidase/genética , Vesículas Extracelulares/metabolismo , Células HEK293 , Terapia de Reposição de Enzimas/métodos , Lisossomos/metabolismo
7.
Int J Biol Macromol ; 272(Pt 1): 132798, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838896

RESUMO

The emergence of various variants of concern (VOCs) necessitates the development of more efficient vaccines for COVID-19. In this study, we established a rapid and robust production platform for a novel subunit vaccine candidate based on eukaryotic HEK-293 T cells. The immunogenicity of the vaccine candidate was evaluated in pigs. The results demonstrated that the pseudovirus neutralizing antibody (pNAb) titers reached 7751 and 306 for the SARS-CoV-2 Delta and Omicron variants, respectively, after the first boost. Subsequently, pNAb titers further increased to 10,201 and 1350, respectively, after the second boost. Additionally, ELISPOT analysis revealed a robust T-cell response characterized by IFN-γ (171 SFCs/106 cells) and IL-2 (101 SFCs/106 cells) production. Our study demonstrates that a vaccine candidate based on the Delta variant spike protein may provide strong and broad protection against the prototype SARS-CoV-2 and VOCs. Moreover, the strategy for the efficient and stable expression of recombinant proteins utilizing HEK-293 T cells can be employed as a universal platform for future vaccine development.


Assuntos
Anticorpos Neutralizantes , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de Subunidades Antigênicas , Animais , Humanos , Células HEK293 , Vacinas contra COVID-19/imunologia , Vacinas de Subunidades Antigênicas/imunologia , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/imunologia , Suínos , COVID-19/prevenção & controle , COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Antivirais/imunologia , Linfócitos T/imunologia , Imunogenicidade da Vacina
8.
In Vivo ; 38(2): 567-573, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38418159

RESUMO

BACKGROUND/AIM: Fabry disease (FD) is caused by α-galactosidase A (AGA) deficiency, which ultimately leads to the intracellular accumulation of globotriaosylceramide (Gb3). Exosomes play a role in maintaining cellular homeostasis by clearing damaged or toxic materials, including proteins. In the process of excessive accumulation of intracellular Gb3 in Fabry disease, it may be suggested that exosomal secretion of Gb3 increases to preserve cell homeostasis. This study sought to determine how exosomal secretion and cell signaling change in an FD cell model produced by gene silencing. MATERIALS AND METHODS: HEK293T cells were transfected with plasmids carrying shRNA against the GLA gene to produce the FD cell model. A recombinant AGA, agalsidase-beta, was used to evaluate the effect of enzyme replacement therapy (ERT) on exosomal secretion and cell signaling. RESULTS: Exosome secretion was significantly increased in the Fabry disease cell model compared to the control vector cell model, and significantly decreased after agalsidase-beta treatment. The FD cell model showed higher reactive oxygen species (ROS) production and p53 protein expression compared to the control vector cell model. CONCLUSION: Increased exosomal secretion in Fabry disease may be a cellular mechanism to avoid excessive and cytotoxic accumulation of Gb3 in lysosomes through intracellular signaling, including increased p53 expression.


Assuntos
Exossomos , Doença de Fabry , Humanos , Doença de Fabry/genética , Doença de Fabry/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Exossomos/genética , Exossomos/metabolismo , Células HEK293 , Inativação Gênica
9.
Vaccines (Basel) ; 12(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38675759

RESUMO

BACKGROUND: COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has now become endemic and is currently one of the important respiratory virus infections regularly affecting mankind. The assessment of immunity against SARS-CoV-2 and its variants is important for guiding active and passive immunization and SARS-CoV-2-specific treatment strategies. METHODS: We here devised a novel flow cytometry-based diagnostic platform for the assessment of immunity against cell-bound virus antigens. This platform is based on a collection of HEK-293T cell lines which, as exemplified in our study, stably express the receptor-binding domains (RBDs) of the SARS-CoV-2 S-proteins of eight major SARS-CoV-2 variants, ranging from Wuhan-Hu-1 to Omicron. RESULTS: RBD-expressing cell lines stably display comparable levels of RBD on the surface of HEK-293T cells, as shown with anti-FLAG-tag antibodies directed against a N-terminally introduced 3x-FLAG sequence while the functionality of RBD was proven by ACE2 binding. We exemplify the usefulness and specificity of the cell-based test by direct binding of IgG and IgA antibodies of SARS-CoV-2-exposed and/or vaccinated individuals in which the assay shows a wide linear performance range both at very low and very high serum antibody concentrations. In another application, i.e., antibody adsorption studies, the test proved to be a powerful tool for measuring the ratios of individual variant-specific antibodies. CONCLUSION: We have established a toolbox for measuring SARS-CoV-2-specific immunity against cell-bound virus antigens, which may be considered as an important addition to the armamentarium of SARS-CoV-2-specific diagnostic tests, allowing flexible and quick adaptation to new variants of concern.

10.
ACS Appl Bio Mater ; 6(2): 566-577, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36739562

RESUMO

Bicelles are discoidal lipid nanoparticles (LNPs) in which the planar bilayer and curved rim are, respectively, composed of long- and short-chain lipids. Bicellar LNPs have a hydrophobic core, allowing hydrophobic molecules and large molecular complexes such as quantum dots (QDs) to be encapsulated. In this study, CdSe/ZnS QDs were encapsulated in bicelles made of dipalmitoyl phosphatidylcholine, dihexanoyl phosphatidylcholine, dipalmitoyl phosphatidylglycerol, and distearoyl phosphatidylethanolamine conjugated with polyethylene glycerol amine 2000 to form a well-defined bicelle-QD nanocomplex (known as NANO2-QD or bicelle-QD). The bicelle-QD was then incubated with Hek293t cells and HeLa cells for different periods of time to determine changes in their cellular localization. Bicelle-QDs readily penetrated Hek293t cell membranes within 15 min of incubation, localized to the cytoplasm, and associated with mitochondria and intracellular vesicles. After 1 h, the bicelle-QDs enter the cell nucleus. Large aggregates form throughout the cell after 2 h and QDs are nearly absent from the nucleus by 4 h. Previous reports have demonstrated that CdSe/ZnS QDs can be toxic to cells, and we have found that encapsulating QDs in bicelles can attenuate but did not eliminate cytotoxicity. The present research outcome demonstrates the time-resolved pathway of bicelle-encapsulated QDs in Hek293t cells, morphological evolution in cells over time, and cytotoxicity of the bicelle-QDs, providing important insight into the potential application of the nanocomplex for cellular imaging.


Assuntos
Nanocompostos , Pontos Quânticos , Humanos , Células HeLa , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Células HEK293 , Nanocompostos/toxicidade
11.
Vaccine ; 41(9): 1573-1583, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36725430

RESUMO

Large quantities of antigens are required since protective antigens, such as classical swine fever virus (CSFV) E2 protein, are widely used in diagnostic reagents and subunit vaccines. Compared to clonal cell lines and transient gene expression, stable cell pools provide a potential alternative platform to rapidly produce large amounts of antigens. In this work, firstly, Human embryonic kidney 293 T (HEK293T) cell pools expressing E2 protein were developed by transduction of lentiviral vectors. On the one hand, the SP7 was selected from 7 well-performing signal peptides to remarkably increase the production of E2 protein. On the other hand, it was found that high MOI could improve the expression of E2 protein by increasing gene copy numbers. Moreover, the HEK293T cell pools were evaluated for stability by passages and batch cultures, demonstrating that the cell pools were stable for at least 90 days. And then, the performance of the cell pools in batch, fed-batch, and semi-perfusion was studied. Among them, the titer of E2 protein was up to 2 g/L in semi-perfusion, which is currently the highest to the authors' knowledge. Finally, the aggregations and immunogenicity of the E2 protein were analyzed by SDS-PAGE and immunization of mice, respectively. There was no significant difference in aggregations and antibody titers of E2 protein in three culture methods. These results suggest that stable HEK293T cell pools are a promising and robust platform for rapid and efficient production of recombinant proteins.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Vacinas Virais , Suínos , Humanos , Animais , Camundongos , Células HEK293 , Proteínas do Envelope Viral , Proteínas Recombinantes , Imunização , Rim , Peste Suína Clássica/prevenção & controle , Anticorpos Antivirais
12.
Front Cell Infect Microbiol ; 12: 960938, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268226

RESUMO

Coronavirus disease 2019 (COVID-19) is an extremely contagious illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Early disease recognition of COVID-19 is crucial not only for prompt diagnosis and treatment of the patients, but also for effective public health surveillance and response. The reverse transcription-polymerase chain reaction (RT-PCR) is the most common method for the detection of SARS-CoV-2 viral mRNA and is regarded as the gold standard test for COVID-19. However, this test and those for antibodies (IgM and IgG) and antigens have certain limitations (e.g., by yielding false-negative and false-positive results). We have developed an RNA fluorescence in situ hybridization (FISH) method for high-sensitivity detection of SARS-CoV-2 mRNAs in HEK 293T cell cultures as a model. After transfection of HEK 293T cells with plasmids, Spike (S)/envelope (E) proteins and their mRNAs were clearly detected inside the cells. In addition, hybridization time could be reduced to 2 hours for faster detection when probe concentration was increased. Our approach might thus significantly improve the sensitivity and specificity of SARS-CoV-2 detection and be widely applied for the high-sensitivity single-molecular detection of other RNA viruses (e.g., Middle East respiratory syndrome coronavirus (MERS-CoV), Hepatitis A virus, all influenza viruses, and human immunodeficiency virus (HIV)) in various types of samples including tissue, body fluid, blood, and water. RNA FISH can also be utilized for the detection of DNA viruses (e.g., Monkeypox virus, human papillomavirus (HPV), and cytomegalovirus (CMV)) by detection of their mRNAs inside cells or body fluid.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , RNA Mensageiro/genética , Hibridização in Situ Fluorescente , Células HEK293 , Imunoglobulina M , Imunoglobulina G , Água
13.
FEBS Open Bio ; 12(1): 250-257, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34787962

RESUMO

Acetylcholine (ACh), an excitatory neurotransmitter, is biosynthesized from choline in cholinergic neurons. Import from the extracellular space to the intracellular environment through the high-affinity choline transporter is currently regarded to be the only source of choline for ACh synthesis. We recently demonstrated that the P2X2 receptor, through which large cations permeate, functions as an alternative pathway for choline transport in the mouse retina. In the present study, we investigated whether choline entering cells through P2X2 receptors is used for ACh synthesis using a recombinant system. When P2X2 receptors expressed on HEK293 cell lines were stimulated with ATP, intracellular ACh concentrations increased. These results suggest that P2X2 receptors function in a novel pathway that supplies choline for ACh synthesis.


Assuntos
Acetilcolina , Colina , Acetilcolina/metabolismo , Animais , Colina/metabolismo , Células HEK293 , Humanos , Camundongos
14.
Toxins (Basel) ; 12(9)2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859010

RESUMO

Antioxidant compounds from cyanobacteria may constitute a natural alternative to current synthetic antioxidants, which contain preservatives and suspected toxicity. In this work, we evaluate the antioxidant potential of cyanobacterial strains of distinct species/genus isolated from freshwater (n = 6), soil (n = 1) and wastewater (n = 1) environments. Lyophilized biomass obtained from in-vitro cultures of those strains was extracted with ethanol and methanol. The antioxidant potential was evaluated by chemical (DPPH scavenging method, ß-carotene bleaching assay, determination of total phenolic and total flavonoid compounds) and biological (H2O2-exposed HEK293T cell line model) approach. Some strains showed high yields of antioxidant activity by the DPPH assay (up to 10.7% IP/20.7 TE µg/mL) and by the ß-carotene bleaching assay (up to 828.94 AAC), as well as significant content in phenolic (123.16 mg EAG/g DW) and flavonoid (900.60 mg EQR/g DW) compounds. Normalization of data in a "per cell" or "per cell volume" base might facilitate the comparison between strains. Additionally, most of the cyanobacterial extracts conferred some degree of protection to HEK293T cells against the H2O2-induced cytotoxicity. Freshwater Aphanizomenon gracile (LMECYA 009) and Aphanizomenon flos-aquae (LMECYA 088), terrestrial Nostoc (LMECYA 291) and wastewater Planktothrix mougeotii (LEGE 06224) seem to be promising strains for further investigation on cyanobacteria antioxidant potential.


Assuntos
Antioxidantes/metabolismo , Biotecnologia/tendências , Cianobactérias/metabolismo , Citoproteção/fisiologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Citoproteção/efeitos dos fármacos , Células HEK293 , Humanos , Peróxido de Hidrogênio/farmacologia
15.
Res Pharm Sci ; 15(3): 291-299, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33088329

RESUMO

BACKGROUND AND PURPOSE: Aspartyl/asparaginyl ß-hydroxylase (ASPH) is abundantly expressed in malignant neoplastic cells. The establishment of a human cell line overexpressing ASPH could provide the native-like recombinant protein needed for developing theranostic probes. In the process of transfection, the obtained cells normally contain a range of cells expressing the different levels of the target of interest. In this paper, we report on our simple innovative approach in the selection of best-transfected cells with the highest expression of ASPH using subclone selection, quantitative real-time polymerase chain reaction, and gradual increment of hygromycin concentration. EXPERIMENTAL APPROACH: To achieve this goal, human embryonic kidney (HEK 293T) cells were transfected with an ASPH-bearing pcDNA3.1/Hygro(+) vector. During antibiotic selection, single accumulations of the resistant cells were separately cultured and the ASPH mRNA levels of each flask were evaluated. The best subclones were treated with a gradually increasing amount of hygromycin. The ASPH protein expression of the obtained cells was finally evaluated using flow cytometry and immunocytochemistry. FINDINGS / RESULTS: The results showed that different selected subclones expressed different levels of ASPH. Furthermore, the gradual increment of hygromycin (up to 400mg/mL) improved the expression of ASPH. The best relative fold change in mRNA levels was 57.59 ± 4.11. Approximately 90.2% of HEKASPH cells overexpressed ASPH on their surface. CONCLUSION AND IMPLICATIONS: The experiments indicated that we have successfully constructed and evaluated a recombinant human cell line overexpressing ASPH on the surface. Moreover, our innovative selection approach provided an effective procedure for enriching highly expressing recombinant cells.

16.
Biochimie ; 177: 68-77, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32798643

RESUMO

The balance of ribosomal proteins is important for the assembly of ribosomal subunits and cell viability. The synthesis of ribosomal proteins in a eukaryotic cell is controlled by various mechanisms, including autoregulation, which so far has been revealed for only a few of these proteins. We applied the photoactivatable 4-thiouridine-enhanced cross-linking and immunoprecipitation assay to HEK293T cells overproducing FLAG-labeled human ribosomal protein eL29 (eL29FLAG) to determine which RNAs other than rRNA interact with eL29. We demonstrated that eL29FLAG was incorporated into 60S subunits, and that ribosomes with those containing eL29FLAG were competent in translation. Analysis of the next generation sequencing data obtained from a DNA library derived from RNA fragments with covalently attached eL29FLAG peptide residues showed that the protein was cross-linked to the mRNA of the eL29-coding gene, which turned out to be its only major RNA target. The eL29FLAG cross-linking sites were located in the 3' part of the mRNA coding sequence (CDS). A specific helix that mimics the eL29 binding site on 28S rRNA was proposed as a site that is recognized by the protein upon its binding to the cognate mRNA. In addition, it was found that both eL29FLAG mRNA and eL29 mRNA, unlike those of other ribosomal proteins, were co-immunoprecipitated with eL29FLAG from the ribosome-depleted cell lysate, and recombinant eL29 inhibited the translation of the eL29 mRNA CDS transcript in a cell-free system. All this suggests that human eL29 regulates its own synthesis via a feedback mechanism by binding to the cognate mRNA, preventing its translation.


Assuntos
RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Sítios de Ligação , Regulação da Expressão Gênica , Biblioteca Gênica , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoprecipitação , Modelos Moleculares , Fases de Leitura Aberta , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/química , RNA Ribossômico/metabolismo , RNA Ribossômico 28S/metabolismo , Proteínas de Ligação a RNA/química , Proteínas Ribossômicas/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/metabolismo
17.
Elife ; 82019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31361218

RESUMO

The CRISPR-associated endonuclease Cas9 from Streptococcus pyogenes (SpyCas9), along with a programmable single-guide RNA (sgRNA), has been exploited as a significant genome-editing tool. Despite the recent advances in determining the SpyCas9 structures and DNA cleavage mechanism, the cleavage-competent conformation of the catalytic HNH nuclease domain of SpyCas9 remains largely elusive and debatable. By integrating computational and experimental approaches, we unveiled and validated the activated Cas9-sgRNA-DNA ternary complex in which the HNH domain is neatly poised for cleaving the target DNA strand. In this catalysis model, the HNH employs the catalytic triad of D839-H840-N863 for cleavage catalysis, rather than previously implicated D839-H840-D861, D837-D839-H840, or D839-H840-D861-N863. Our study contributes critical information to defining the catalytic conformation of the HNH domain and advances the knowledge about the conformational activation underlying Cas9-mediated DNA cleavage.


Assuntos
Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/metabolismo , DNA/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Streptococcus pyogenes/enzimologia , Domínio Catalítico , DNA/química , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , RNA Guia de Cinetoplastídeos/química
18.
Virology ; 530: 65-74, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30782564

RESUMO

The eukaryotic translation elongation factor 1A (eEF1A) has two cell-type specific paralogs, eEF1A1 and eEF1A2. Both paralogs undertake a canonical function in delivering aminoacyl-tRNA to the ribosome for translation, but differences in other functions are emerging. eEF1A1 has been reported to be important for the replication of many viruses, but no study has specifically linked the eEF1A2 paralog. We have previously demonstrated that eEF1A1 directly interacts with HIV-1 RT and supports efficient reverse transcription. Here, we showed that RT interacted more strongly with eEF1A1 than with eEF1A2 in immunoprecipitation assay. Biolayer interferometry using eEF1A paralogs showed different association and dissociation rates with RT. Over expressed eEF1A1, but not eEF1A2, was able to restore HIV-1 reverse transcription efficiency in HEK293T cells with endogenous eEF1A knocked-down and HIV-1 reverse transcription efficiency correlated with the level of eEF1A1 mRNA, but not to eEF1A2 mRNA in both HEK293T and primary human skeletal muscle cells.


Assuntos
Transcriptase Reversa do HIV/metabolismo , HIV-1/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Fator 1 de Elongação de Peptídeos/metabolismo , Transcrição Reversa , Células HEK293 , Humanos , Imunoprecipitação , Células Musculares , Ligação Proteica
19.
Res Pharm Sci ; 11(5): 366-373, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27920818

RESUMO

Hepatitis B virus (HBV) is considered as a global health concern and hepatitis B surface antigen (HBsAg) is the most immunogenic protein of HBV. The purpose of this study was to evaluate the expression of HBsAg on the cell surface of human embryonic kidney cell line (HEK293T). After transformation of expression vector pcDNA/HBsAg to E.coli TOP10F', plasmid was extracted and digested with BglII. Afterwards, the linearized vector was transfected to cells and treated with hygromycin B for 5 weeks to expand the resulted clonies. The permanent expression of HBsAg followed by flow cytometry uptill now about one year. Genomic DNA was extracted from transfected cells and the existence of HBsAg gene was assessed by PCR. Real-time RT-PCR was utilized to measure the expression at the RNA level and flow cytometery was carried out to assess protein expression. Insertion of HBsAg cDNA in HEK293T genome was confirmed by PCR. The results of real-time RT-PCR illustrated that each cell expresses 2275 copies of mRNA molecule. Flow cytometry showed that compared with negative control cells, 99.9% of transfected cells express HBsAg on their surface. In conclusion, stable expression of hepatitis B surface antigen on the membrane of HEK293T provides an accurate post-translational modification, proper structure, and native folding in contrast with purified protein from prokaryotic expression systems. Therefore, these exposing HBsAg cells are practical in therapeutic, pharmaceutical, and biological sets of research.

20.
Methods Mol Biol ; 1469: 147-55, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27557692

RESUMO

The pentatricopeptide repeat (PPR) motif is a sequence-specific RNA/DNA-binding module. Elucidation of the RNA/DNA recognition mechanism has enabled engineering of PPR motifs as new RNA/DNA manipulation tools in living cells, including for genome editing. However, the biochemical characteristics of PPR proteins remain unknown, mostly due to the instability and/or unfolding propensities of PPR proteins in heterologous expression systems such as bacteria and yeast. To overcome this issue, we constructed reporter systems using animal cultured cells. The cell-based system has highly attractive features for PPR engineering: robust eukaryotic gene expression; availability of various vectors, reagents, and antibodies; highly efficient DNA delivery ratio (>80 %); and rapid, high-throughput data production. In this chapter, we introduce an example of such reporter systems: a PPR-based sequence-specific translational activation system. The cell-based reporter system can be applied to characterize plant genes of interested and to PPR engineering.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Engenharia Genética/métodos , Proteínas Recombinantes de Fusão/genética , Regiões 5' não Traduzidas , Animais , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Proteínas de Transporte/metabolismo , Células Cultivadas , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Vetores Genéticos , Células HEK293 , Humanos , Proteínas Recombinantes de Fusão/metabolismo , Sequências Repetitivas de Aminoácidos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA