Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 101: 129651, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38342391

RESUMO

A novel kind of potent HIV-1 protease inhibitors, containing diverse hydroxyphenylacetic acids as the P2-ligands and 4-substituted phenyl sulfonamides as the P2' ligands, were designed, synthesized and evaluated in this work. Majority of the target compounds exhibited good to excellent activity against HIV-1 protease with IC50 values below 200 nM. In particular, compound 18d with a 2-(3,4-dihydroxyphenyl) acetamide as the P2 ligand and a 4- methoxybenzene sulfonamide P2' ligand exhibited inhibitory activity IC50 value of 0.54 nM, which was better than that of the positive control darunavir (DRV). More importantly, no significant decline of the potency against HIV-1DRVRS (DRV-resistant mutation) and HIV-1NL4_3 variant (wild type) for 18d was detected. The molecular docking study of 18d with HIV-1 protease (PDB-ID: 1T3R, www.rcsb.org) revealed possible binding mode with the HIV-1 protease. These results suggested the validity of introducing phenol-derived moieties into the P2 ligand and deserve further optimization which was of great value for future discovery of novel HIV-1 protease.


Assuntos
Benzenoacetamidas , Inibidores da Protease de HIV , HIV-1 , Darunavir/metabolismo , Darunavir/farmacologia , HIV-1/genética , Simulação de Acoplamento Molecular , Ligantes , Protease de HIV/metabolismo , Sulfonamidas/química , Desenho de Fármacos , Cristalografia por Raios X , Relação Estrutura-Atividade
2.
Tetrahedron Lett ; 1402024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38586565

RESUMO

We describe a stereoselective synthesis of an optically active (1R, 3aS, 5R, 6S, 7aR)-octahydro-1,6-epoxy-isobenzo-furan-5-ol derivative. This stereochemically defined heterocycle serves as a high-affinity ligand for a variety of HIV-1 protease inhibitors. The key synthetic steps involve a highly enantioselective enzymatic desymmetrization of meso-1,2(dihydroxymethyl)cyclohex-4-ene and conversion of the resulting optically active alcohol to a methoxy hexahydroisobenzofuran derivative. A substrate controlled stereoselective dihydroxylation afforded syn-1,2-diols. Oxidation of diol provided the substituted 1,2-diketone and L-Selectride reduction provided the corresponding inverted syn-1,2-diols. Acid catalyzed cyclization furnished the ligand alcohol in optically active form.

3.
J Comput Chem ; 44(10): 1016-1030, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36533526

RESUMO

Efficacy and safety are among the most desirable characteristics of an ideal drug. The tremendous increase in computing power and the entry of artificial intelligence into the field of computational drug design are accelerating the process of identifying, developing, and optimizing potential drugs. Here, we present novel approach to design new molecules with desired properties. We combined various neural networks and linear regression algorithms to build models for cytotoxicity and anti-HIV activity based on Continual Molecular Interior analysis (CoMIn) and Cinderella's Shoe (CiS) derived molecular descriptors. After validating the reliability of the models, a genetic algorithm was coupled with the Des-Pot Grid algorithm to generate new molecules from a predefined pool of molecular fragments and predict their bioactivity and cytotoxicity. This combination led to the proposal of 16 hit molecules with high anti-HIV activity and low cytotoxicity. The anti-SARS-CoV-2 activity of the hits was predicted.


Assuntos
Inteligência Artificial , COVID-19 , Humanos , Reprodutibilidade dos Testes , Relação Quantitativa Estrutura-Atividade , Algoritmos , Simulação de Acoplamento Molecular
4.
J Virol ; 96(9): e0219821, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35438536

RESUMO

HIV-1 encodes a viral protease that is essential for the maturation of infectious viral particles. While protease inhibitors are effective antiretroviral agents, recent studies have shown that prematurely activating, rather than inhibiting, protease function leads to the pyroptotic death of infected cells, with exciting implications for efforts to eradicate viral reservoirs. Despite 40 years of research into the kinetics of protease activation, it remains unclear exactly when protease becomes activated. Recent reports have estimated that protease activation occurs minutes to hours after viral release, suggesting that premature protease activation is challenging to induce efficiently. Here, monitoring viral protease activity with sensitive techniques, including nanoscale flow cytometry and instant structured illumination microscopy, we demonstrate that the viral protease is activated within cells prior to the release of free virions. Using genetic mutants that lock protease into a precursor conformation, we further show that both the precursor and mature protease have rapid activation kinetics and that the activity of the precursor protease is sufficient for viral fusion with target cells. Our finding that HIV-1 protease is activated within producer cells prior to release of free virions helps resolve a long-standing question of when protease is activated and suggests that only a modest acceleration of protease activation kinetics is required to induce potent and specific elimination of HIV-infected cells. IMPORTANCE HIV-1 protease inhibitors have been a mainstay of antiretroviral therapy for more than 2 decades. Although antiretroviral therapy is effective at controlling HIV-1 replication, persistent reservoirs of latently infected cells quickly reestablish replication if therapy is halted. A promising new strategy to eradicate the latent reservoir involves prematurely activating the viral protease, which leads to the pyroptotic killing of infected cells. Here, we use highly sensitive techniques to examine the kinetics of protease activation during and shortly after particle formation. We found that protease is fully activated before virus is released from the cell membrane, which is hours earlier than recent estimates. Our findings help resolve a long-standing debate as to when the viral protease is initially activated during viral assembly and confirm that prematurely activating HIV-1 protease is a viable strategy to eradicate infected cells following latency reversal.


Assuntos
Protease de HIV , HIV-1 , Ativação Enzimática/fisiologia , Infecções por HIV/virologia , Protease de HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Humanos , Inibidores de Proteases/farmacologia
5.
Bioorg Med Chem Lett ; 83: 129168, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738797

RESUMO

We report here the synthesis and biological evaluation of darunavir derived HIV-1 protease inhibitors and their functional effect on enzyme inhibition and antiviral activity in MT-2 cell lines. The P2' 4-amino functionality was modified to make a number of amide derivatives to interact with residues in the S2' subsite of the HIV-1 protease active site. Several compounds exhibited picomolar enzyme inhibitory and low nanomolar antiviral activity. The X-ray crystal structure of the chloroacetate derivative bound to HIV-1 protease was determined. Interestingly, the active chloroacetate group converted to the acetate functionality during X-ray exposure. The structure revealed that the P2' carboxamide functionality makes enhanced hydrogen bonding interactions with the backbone atoms in the S2'-subsite.


Assuntos
Inibidores da Protease de HIV , HIV-1 , Darunavir/farmacologia , Amidas/farmacologia , Protease de HIV/metabolismo , Cloroacetatos/farmacologia , Cristalografia por Raios X , Desenho de Fármacos , Relação Estrutura-Atividade
6.
Mol Divers ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36788191

RESUMO

The present work reports the cost-effective, high yielding and environmentally acceptable preparation of unsymmetrical ureas from thiocarbamate salts using sodium percarbonate as an oxidant. Efficacy of the unsymmetrical ureas as potential human immune deficiency virus (HIV-1) protease inhibitors has been evaluated via in silico approach. The results revealed interactions of the urea compounds at the active site of the enzyme with favorable binding affinities causing possible mutations hindering the functioning of the enzyme. Further computational assessment of IC50 using known references satisfactorily authenticated the inhibitory action of the selected compounds against HIV-1 protease. Added to the easy synthesis of the ureas following an environmentally benign protocol, this work may be a valuable addition to the ongoing search for drugs with better efficacy profiles and reduced toxicity against HIV.

7.
Molecules ; 28(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687159

RESUMO

The use of protease inhibitors in human immunodeficiency virus type 1 (HIV-1) treatment is limited by adverse effects, including metabolic complications. To address these challenges, efforts are underway in the pursuit of more potent and less toxic HIV-1 protease inhibitors. Repurposing existing drugs offers a promising avenue to expedite the drug discovery process, saving both time and costs compared to conventional de novo drug development. This study screened FDA-approved and investigational drugs in the DrugBank database for their potential as HIV-1 protease inhibitors. Molecular docking studies and cell-based assays, including anti-HIV-1 in vitro assays and XTT cell viability tests, were conducted to evaluate their efficacy. The study findings revealed that CBR003PS, an antibiotic currently in clinical use, and CBR013PS, an investigational drug for treating endometriosis and uterine fibroids, exhibited significant binding affinity to the HIV-1 protease with high stability. Their EC50 values, measured at 100% cell viability, were 9.4 nM and 36.6 nM, respectively. Furthermore, cell-based assays demonstrated that these two compounds showed promising results, with therapeutic indexes higher than 32. In summary, based on their favorable therapeutic indexes, CBR003PS and CBR013PS show potential for repurposing as HIV-1 protease inhibitors.


Assuntos
HIV-1 , Inibidores de Proteases , Feminino , Humanos , Inibidores de Proteases/farmacologia , Simulação de Acoplamento Molecular , Terapia Enzimática , Antibacterianos , Drogas em Investigação
8.
Molecules ; 28(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298951

RESUMO

Scutellaria barbata D. Don (SB, Chinese: Ban Zhi Lian), a well-known medicinal plant used in traditional Chinese medicine, is rich in flavonoids. It possesses antitumor, anti-inflammatory, and antiviral activities. In this study, we evaluated the inhibitory activities of SB extracts and its active components against HIV-1 protease (HIV-1 PR) and SARS-CoV2 viral cathepsin L protease (Cat L PR). UPLC/HRMS was used to identify and quantify the major active flavonoids in different SB extracts, and fluorescence resonance energy transfer (FRET) assays were used to determine HIV-1 PR and Cat L PR inhibitions and identify structure-activity relationships. Molecular docking was also performed, to explore the diversification in bonding patterns of the active flavonoids upon binding to the two PRs. Three SB extracts (SBW, SB30, and SB60) and nine flavonoids inhibited HIV-1 PR with an IC50 range from 0.006 to 0.83 mg/mL. Six of the flavonoids showed 10~37.6% inhibition of Cat L PR at a concentration of 0.1 mg/mL. The results showed that the introduction of the 4'-hydroxyl and 6-hydroxyl/methoxy groups was essential in the 5,6,7-trihydroxyl and 5,7,4'-trihydroxyl flavones, respectively, to enhance their dual anti-PR activities. Hence, the 5,6,7,4'-tetrahydroxyl flavone scutellarein (HIV-1 PR, IC50 = 0.068 mg/mL; Cat L PR, IC50 = 0.43 mg/mL) may serve as a lead compound to develop more effective dual protease inhibitors. The 5,7,3',4'-tetrahydroxyl flavone luteolin also showed a potent and selective inhibition of HIV-1 PR (IC50 = 0.039 mg/mL).


Assuntos
COVID-19 , HIV-1 , Scutellaria , Extratos Vegetais/química , Flavonoides/farmacologia , Peptídeo Hidrolases , Scutellaria/química , Catepsina L , Simulação de Acoplamento Molecular , RNA Viral , SARS-CoV-2 , Endopeptidases , Relação Estrutura-Atividade
9.
BMC Bioinformatics ; 23(1): 447, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36303135

RESUMO

BACKGROUND: The site information of substrates that can be cleaved by human immunodeficiency virus 1 proteases (HIV-1 PRs) is of great significance for designing effective inhibitors against HIV-1 viruses. A variety of machine learning-based algorithms have been developed to predict HIV-1 PR cleavage sites by extracting relevant features from substrate sequences. However, only relying on the sequence information is not sufficient to ensure a promising performance due to the uncertainty in the way of separating the datasets used for training and testing. Moreover, the existence of noisy data, i.e., false positive and false negative cleavage sites, could negatively influence the accuracy performance. RESULTS: In this work, an ensemble learning algorithm for predicting HIV-1 PR cleavage sites, namely EM-HIV, is proposed by training a set of weak learners, i.e., biased support vector machine classifiers, with the asymmetric bagging strategy. By doing so, the impact of data imbalance and noisy data can thus be alleviated. Besides, in order to make full use of substrate sequences, the features used by EM-HIV are collected from three different coding schemes, including amino acid identities, chemical properties and variable-length coevolutionary patterns, for the purpose of constructing more relevant feature vectors of octamers. Experiment results on three independent benchmark datasets demonstrate that EM-HIV outperforms state-of-the-art prediction algorithm in terms of several evaluation metrics. Hence, EM-HIV can be regarded as a useful tool to accurately predict HIV-1 PR cleavage sites.


Assuntos
Protease de HIV , HIV-1 , Algoritmos , Protease de HIV/química , HIV-1/enzimologia , Aprendizado de Máquina , Especificidade por Substrato
10.
BMC Bioinformatics ; 23(1): 466, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36344934

RESUMO

BACKGROUND: In most parts of the world, especially in underdeveloped countries, acquired immunodeficiency syndrome (AIDS) still remains a major cause of death, disability, and unfavorable economic outcomes. This has necessitated intensive research to develop effective therapeutic agents for the treatment of human immunodeficiency virus (HIV) infection, which is responsible for AIDS. Peptide cleavage by HIV-1 protease is an essential step in the replication of HIV-1. Thus, correct and timely prediction of the cleavage site of HIV-1 protease can significantly speed up and optimize the drug discovery process of novel HIV-1 protease inhibitors. In this work, we built and compared the performance of selected machine learning models for the prediction of HIV-1 protease cleavage site utilizing a hybrid of octapeptide sequence information comprising bond composition, amino acid binary profile (AABP), and physicochemical properties as numerical descriptors serving as input variables for some selected machine learning algorithms. Our work differs from antecedent studies exploring the same subject in the combination of octapeptide descriptors and method used. Instead of using various subsets of the dataset for training and testing the models, we combined the dataset, applied a 3-way data split, and then used a "stratified" 10-fold cross-validation technique alongside the testing set to evaluate the models. RESULTS: Among the 8 models evaluated in the "stratified" 10-fold CV experiment, logistic regression, multi-layer perceptron classifier, linear discriminant analysis, gradient boosting classifier, Naive Bayes classifier, and decision tree classifier with AUC, F-score, and B. Acc. scores in the ranges of 0.91-0.96, 0.81-0.88, and 80.1-86.4%, respectively, have the closest predictive performance to the state-of-the-art model (AUC 0.96, F-score 0.80 and B. Acc. ~ 80.0%). Whereas, the perceptron classifier and the K-nearest neighbors had statistically lower performance (AUC 0.77-0.82, F-score 0.53-0.69, and B. Acc. 60.0-68.5%) at p < 0.05. On the other hand, logistic regression, and multi-layer perceptron classifier (AUC of 0.97, F-score > 0.89, and B. Acc. > 90.0%) had the best performance on further evaluation on the testing set, though linear discriminant analysis, gradient boosting classifier, and Naive Bayes classifier equally performed well (AUC > 0.94, F-score > 0.87, and B. Acc. > 86.0%). CONCLUSIONS: Logistic regression and multi-layer perceptron classifiers have comparable predictive performances to the state-of-the-art model when octapeptide sequence descriptors consisting of AABP, bond composition and standard physicochemical properties are used as input variables. In our future work, we hope to develop a standalone software for HIV-1 protease cleavage site prediction utilizing the linear regression algorithm and the aforementioned octapeptide sequence descriptors.


Assuntos
Protease de HIV , HIV-1 , Humanos , Síndrome da Imunodeficiência Adquirida , Algoritmos , Teorema de Bayes , Infecções por HIV , Protease de HIV/química , HIV-1/enzimologia , Inibidores da Protease de HIV/química
11.
FASEB J ; 35(12): e21898, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34727385

RESUMO

Toxoplasma gondii is an obligate intracellular apicomplexan parasite causing lethal diseases in immunocompromised patients. UBL-UBA shuttle proteins (DDI1, RAD23, and DSK2) are important components of the ubiquitin-proteasome system. By degrading ubiquitinated proteins, UBL-UBA shuttle proteins regulate many cellular processes. However, the specific processes regulated by UBL-UBA shuttle proteins remain elusive. Here, we revealed that the deletion of shuttle proteins results in a selective accumulation of ubiquitinated proteins in the nucleus and aberrant DNA replication. ROP18 was mistargeted and accumulated in the shuttle protein mutant strain, resulting in the recruitment of immunity-related GTPases to the parasitophorous vacuole membrane (PVM). Furthermore, the mistargeting of ROP18 and the recruitment of Irgb6 to the PVM were also observed in the DDI1 mutant strain. DDI1 is a nonclassical UBL-UBA shuttle protein homologous to the HIV-1 protease. Molecular docking showed that DDI1 was a potential target of HIV-1 protease inhibitors. However, these inhibitors blocked the growth of T gondii in vitro but not in vivo. In conclusion, the Toxoplasma UBL-UBA shuttle protein regulates several important cellular processes and the mistargeting of ROP18 may be a representative of the abnormal homeostasis caused by shuttle protein mutation.


Assuntos
Indinavir/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina/metabolismo , Animais , Replicação do DNA , Feminino , Inibidores da Protease de HIV/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Serina-Treonina Quinases/genética , Proteínas de Protozoários/genética , Toxoplasma/efeitos dos fármacos , Complexos Ubiquitina-Proteína Ligase/genética , Ubiquitinação
12.
Bioorg Med Chem ; 64: 116760, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35483138

RESUMO

Based upon the preliminary design of enhancing genetic barrier to drug-resistant viral mutants by maximizing hydrogen-bonding or other van der Waals contacts, we have designed, synthesized and biologically evaluated a new class of HIV-1 protease inhibitors with phenol derived P2 ligands and nitro or halogens in P2' ligands. Results indicate that a majority of inhibitors exhibit robust enzyme inhibitory with IC50 values in picomolar or single digit nanomolar ranges. Among which, compound 17d displays potency with IC50 value of 21 pM and high protease selectivity. Of note, 17d exhibits greater antiviral activity against the DRV-resistant variant than the efficacy against the wild type virus. Furthermore, the molecular modeling studies demonstrate important interactions between 17d and the active sites of both the wild-type and DRV-resistant HIV-1 protease, as well as furnish insights for further optimization of new inhibitors.


Assuntos
Inibidores da Protease de HIV , HIV-1 , Cristalografia por Raios X , Protease de HIV/química , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , Ligantes , Fenóis/farmacologia
13.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430656

RESUMO

With the increasing prevalence of drug-resistant variants, novel potent HIV-1 protease inhibitors with broad-spectrum antiviral activity against multidrug-resistant causative viruses are urgently needed. Herein, we designed and synthesized a new series of HIV-1 protease inhibitors with phenols or polyphenols as the P2 ligands and a variety of sulfonamide analogs as the P2' ligands. A number of these new inhibitors showed superb enzymatic inhibitory activity and antiviral activity. In particular, inhibitors 15d and 15f exhibited potent enzymatic inhibitory activity in the low picomolar range, and the latter showed excellent activity against the Darunavir-resistant HIV-1 variant. Furthermore, the molecular modeling studies provided insight into the ligand-binding site interactions between inhibitors and the enzyme cavity, and they sparked inspiration for the further optimization of potent inhibitors.


Assuntos
Inibidores da Protease de HIV , HIV-1 , Ligantes , Polifenóis/farmacologia , Fenóis/farmacologia , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/química
14.
Molecules ; 27(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080318

RESUMO

The COVID-19 pandemic continues to impose a huge threat on human health due to rapid viral mutations. Thus, it is imperative to develop more potent antivirals with both prophylactic and treatment functions. In this study, we screened for potential antiviral compounds from Sarcandra glabra (SG) against Cathepsin L and HIV-1 proteases. A FRET assay was applied to investigate the inhibitory effects and UPLC-HRMS was employed to identify and quantify the bioactive components. Furthermore, molecular docking was carried out to get a glimpse of the binding of active compounds to the proteases. Our results showed that the SG extracts (SGW, SG30, SG60, and SG85) inhibited HIV-1 protease with an IC50 of 0.003~0.07 mg/mL and Cathepsin L protease with an IC50 of 0.11~0.26 mg/mL. Fourteen compounds were identified along with eight quantified from the SG extracts. Chlorogenic acid, which presented in high content in the extracts (12.7~15.76 µg/mg), possessed the most potent inhibitory activity against HIV-1 protease (IC50 = 0.026 mg/mL) and Cathepsin L protease (inhibition: 40.8% at 0.01 mg/mL). Thus, SG extracts and the active ingredients could potentially be used to prevent/treat viral infections, including SARS-CoV-2, due to their dual-inhibition functions against viral proteases.


Assuntos
COVID-19 , HIV-1 , Antivirais/química , Antivirais/farmacologia , Catepsina L , HIV-1/metabolismo , Humanos , Simulação de Acoplamento Molecular , Pandemias , Peptídeo Hidrolases , SARS-CoV-2
15.
Chembiochem ; 22(3): 577-584, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32969142

RESUMO

Inteins, self-catalytic enzymes, have been widely used in the field of protein engineering and chemical biology. Here, Nostoc punctiforme PCC73102 (Npu) DnaE intein was engineered to have an altered split position. An 11-residue N-intein of DnaE in which Gly and Asp were substituted for Tyr4 and Glu5, respectively, was designed, and the active C-intein variants were acquired by a GFP fluorescence-based screening. The designed N-intein and the obtained active C-intein variants were used to construct a turn-on system for enzyme activities such as human immunodeficiency 1 protease and NanoLuc luciferase. Based on the NanoLuc-intein fusion, we developed two intein pairs, each of which is capable of reacting preferentially, by interchanging the charged amino acids on N- and C-inteins. The specific splicing reactions were easily monitored and discriminated by bioluminescence resonance energy transfer (BRET).


Assuntos
DNA Polimerase III/metabolismo , Luciferases/metabolismo , Nostoc/enzimologia , Peptídeo Hidrolases/metabolismo , Engenharia de Proteínas , Biocatálise , DNA Polimerase III/genética , Inteínas
16.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199858

RESUMO

The approval of the first HIV-1 protease inhibitors (HIV-1 PRIs) marked a fundamental step in the control of AIDS, and this class of agents still represents the mainstay therapy for this illness. Despite the undisputed benefits, the necessary lifelong treatment led to numerous severe side-effects (metabolic syndrome, hepatotoxicity, diabetes, etc.). The HIV-1 PRIs are capable of interacting with "secondary" targets (off-targets) characterized by different biological activities from that of HIV-1 protease. In this scenario, the in-silico techniques undoubtedly contributed to the design of new small molecules with well-fitting selectivity against the main target, analyzing possible undesirable interactions that are already in the early stages of the research process. The present work is focused on a new mixed-hierarchical, ligand-structure-based protocol, which is centered on an on/off-target approach, to identify the new selective inhibitors of HIV-1 PR. The use of the well-established, ligand-based tools available in the DRUDIT web platform, in combination with a conventional, structure-based molecular docking process, permitted to fast screen a large database of active molecules and to select a set of structure with optimal on/off-target profiles. Therefore, the method exposed herein, could represent a reliable help in the research of new selective targeted small molecules, permitting to design new agents without undesirable interactions.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Infecções por HIV/tratamento farmacológico , Inibidores da Protease de HIV/farmacologia , Protease de HIV/química , HIV-1/efeitos dos fármacos , Domínio Catalítico , Simulação por Computador , Infecções por HIV/enzimologia , Infecções por HIV/virologia , HIV-1/enzimologia , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Conformação Proteica , Relação Estrutura-Atividade
17.
Retrovirology ; 17(1): 13, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430025

RESUMO

BACKGROUND: HIV-1 can develop resistance to antiretroviral drugs, mainly through mutations within the target regions of the drugs. In HIV-1 protease, a majority of resistance-associated mutations that develop in response to therapy with protease inhibitors are found in the protease's active site that serves also as a binding pocket for the protease inhibitors, thus directly impacting the protease-inhibitor interactions. Some resistance-associated mutations, however, are found in more distant regions, and the exact mechanisms how these mutations affect protease-inhibitor interactions are unclear. Furthermore, some of these mutations, e.g. N88S and L76V, do not only induce resistance to the currently administered drugs, but contrarily induce sensitivity towards other drugs. In this study, mutations N88S and L76V, along with three other resistance-associated mutations, M46I, I50L, and I84V, are analysed by means of molecular dynamics simulations to investigate their role in complexes of the protease with different inhibitors and in different background sequence contexts. RESULTS: Using these simulations for alchemical calculations to estimate the effects of mutations M46I, I50L, I84V, N88S, and L76V on binding free energies shows they are in general in line with the mutations' effect on [Formula: see text] values. For the primary mutation L76V, however, the presence of a background mutation M46I in our analysis influences whether the unfavourable effect of L76V on inhibitor binding is sufficient to outweigh the accompanying reduction in catalytic activity of the protease. Finally, we show that L76V and N88S changes the hydrogen bond stability of these residues with residues D30/K45 and D30/T31/T74, respectively. CONCLUSIONS: We demonstrate that estimating the effect of both binding pocket and distant mutations on inhibitor binding free energy using alchemical calculations can reproduce their effect on the experimentally measured [Formula: see text] values. We show that distant site mutations L76V and N88S affect the hydrogen bond network in the protease's active site, which offers an explanation for the indirect effect of these mutations on inhibitor binding. This work thus provides valuable insights on interplay between primary and background mutations and mechanisms how they affect inhibitor binding.


Assuntos
Farmacorresistência Viral/genética , Inibidores da Protease de HIV/farmacologia , Protease de HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/genética , Mutação , Sítios de Ligação , Domínio Catalítico , Humanos , Ligação de Hidrogênio , Concentração Inibidora 50 , Simulação de Dinâmica Molecular
18.
Biochem Biophys Res Commun ; 532(2): 219-224, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32863004

RESUMO

HIV infection is a global health epidemic with current FDA-approved HIV-1 Protease inhibitors (PIs) designed against subtype B protease, yet they are used in HIV treatment world-wide regardless of patient HIV classification. In this study, double electron-electron resonance (DEER) electron paramagnetic resonance (EPR) spectroscopy was utilized to gain insights in how natural polymorphisms in several African and Brazilian protease (PR) variants affect the conformational landscape both in the absence and presence of inhibitors. Findings show that Subtypes F and H HIV-1 PR adopt a primarily closed conformation in the unbound state with two secondary mutations, D60E and I62V, postulated to be responsible for the increased probability for closed conformation. In contrast, subtype D, CRF_AG, and CRF_BF HIV-1 PR adopt a primarily semi-open conformation, as observed for PI-naïve-subtype B when unbound by substrate or inhibitor. The impact that inhibitor binding has on shifting the conformational land scape of these variants is also characterized, where analysis provides classification of inhibitor induced shifts away from the semi-open state into weak, moderate and strong effects. The findings are compared to those for prior studies of inhibitor induced conformational shifts in PI-naïve Subtype B, C and CRF_AE.


Assuntos
Protease de HIV/química , Protease de HIV/genética , África Central , Brasil , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Protease de HIV/metabolismo , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/metabolismo , HIV-1/genética , Polimorfismo Genético , Conformação Proteica , Marcadores de Spin
19.
J Comput Chem ; 41(19): 1773-1780, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32352193

RESUMO

A major challenge in computer-aided drug design is the accurate estimation of ligand binding affinity. Here, a new approach that combines the adaptive steered molecular dynamics (ASMD) and partial atomic charges calculated by semi-empirical quantum mechanics (SQMPC), namely ASMD-SQMPC, is suggested to predict the ligand binding affinities, with 24 HIV-1 protease inhibitors as testing examples. In the ASMD-SQMPC, the relative binding free energy (ΔG) is reflected by the average maximum potential of mean force (max ) between bound and unbound states. The correlation coefficient (R2 ) between the max and experimentally determined ΔG is 0.86, showing a significant improvement compared with the conventional ASMD (R2 = 0.52). Therefore, this study provides an efficient approach to predict the relative ΔG and reveals the significance of precise partial atomic charges in the theoretical simulations.


Assuntos
Inibidores da Protease de HIV/química , Protease de HIV/química , Simulação de Dinâmica Molecular , Termodinâmica , Sítios de Ligação/efeitos dos fármacos , Protease de HIV/metabolismo , Inibidores da Protease de HIV/farmacologia
20.
Chembiochem ; 21(21): 3051-3055, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32558168

RESUMO

Following excision from the Gag-Pol polyprotein, HIV-1 reverse transcriptase is released as an asymmetric homodimer comprising two p66 subunits that are structurally dissimilar but identical in amino acid sequence. Subsequent cleavage of the RNase H domain from only one of the subunits, denoted p66', results in the formation of the mature p66/p51 enzyme in which catalytic activity resides in the p66 subunit, and the p51 subunit (derived from p66') provides a supporting structural scaffold. Here, we probe the interaction of the p66/p66' asymmetric reverse transcriptase precursor with HIV-1 protease by pulsed Q-band double electron-electron resonance EPR spectroscopy to measure distances between nitroxide labels introduced at surface-engineered cysteine residues. The data suggest that the flexible, exposed linker between the RNaseH and connection domains in the open state of the p66' subunit binds to the active site of protease in a configuration that is similar to that of extended peptide substrates.


Assuntos
Protease de HIV/química , Transcriptase Reversa do HIV/química , Espectroscopia de Ressonância de Spin Eletrônica , Protease de HIV/metabolismo , Transcriptase Reversa do HIV/metabolismo , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA