RESUMO
New neurons arise from quiescent adult neural progenitors throughout life in specific regions of the mammalian brain. Little is known about the embryonic origin and establishment of adult neural progenitors. Here, we show that Hopx+ precursors in the mouse dentate neuroepithelium at embryonic day 11.5 give rise to proliferative Hopx+ neural progenitors in the primitive dentate region, and they, in turn, generate granule neurons, but not other neurons, throughout development and then transition into Hopx+ quiescent radial glial-like neural progenitors during an early postnatal period. RNA-seq and ATAC-seq analyses of Hopx+ embryonic, early postnatal, and adult dentate neural progenitors further reveal common molecular and epigenetic signatures and developmental dynamics. Together, our findings support a "continuous" model wherein a common neural progenitor population exclusively contributes to dentate neurogenesis throughout development and adulthood. Adult dentate neurogenesis may therefore represent a lifelong extension of development that maintains heightened plasticity in the mammalian hippocampus.
Assuntos
Células-Tronco Embrionárias/metabolismo , Neurogênese , Animais , Diferenciação Celular , Giro Denteado/metabolismo , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismoRESUMO
The colonic epithelium can undergo multiple rounds of damage and repair, often in response to excessive inflammation. The responsive stem cell that mediates this process is unclear, in part because of a lack of in vitro models that recapitulate key epithelial changes that occur in vivo during damage and repair. Here, we identify a Hopx+ colitis-associated regenerative stem cell (CARSC) population that functionally contributes to mucosal repair in mouse models of colitis. Hopx+ CARSCs, enriched for fetal-like markers, transiently arose from hypertrophic crypts known to facilitate regeneration. Importantly, we established a long-term, self-organizing two-dimensional (2D) epithelial monolayer system to model the regenerative properties and responses of Hopx+ CARSCs. This system can reenact the "homeostasis-injury-regeneration" cycles of epithelial alterations that occur in vivo. Using this system, we found that hypoxia and endoplasmic reticulum stress, insults commonly present in inflammatory bowel diseases, mediated the cyclic switch of cellular status in this process.
Assuntos
Técnicas de Cultura de Células/métodos , Colo/patologia , Células-Tronco/patologia , Células 3T3 , Animais , Colite/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Proteínas de Homeodomínio/metabolismo , Camundongos , Modelos Biológicos , Oxigênio/farmacologia , Regeneração/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacosRESUMO
BACKGROUND: N6-methyladenosine (m6A) modification interacting microRNAs (miRNAs) have been confirmed to participate in nasopharyngeal carcinoma (NPC) progression. This research investigated miR-1908-5p's function and regulatory mechanism in the tumorigenesis of NPC via m6A modification and targeting a key gene. METHODS: The levels of miR-1908-5p, homeodomain-only protein homeobox (HOPX), and methyltransferase-like 3 (METTL3) expressions were detected via RT-qPCR. The correlation between miR-1908-5p and the HOPX/METTL3 axis, as well as their regulatory mechanism, was investigated by dual luciferase reporter, western blotting, and MeRIP assays. Moreover, the bio-functions of miR-1908-5p, HOPX, and METTL3 in NPC were explored through CCK8, transwell, caspase-3 activity, and xenograft tumor assays. RESULTS: RT-qPCR results indicated a miR-1908-5p upregulation in NPC. Knocking down miR-1908-5p diminished the NPC cell viability and migration in vitro. In vivo, downregulating miR-1908-5p repressed NPC cell tumor growth. Moreover, HOPX was specifically targeted by miR-1908-5p, and HOPX downregulation led to reversal of the anti-tumor impact of the miR-1908-5p inhibitor against NPC cell malignancy. Also, METTL3 could mediate the m6A modification of miR-1908-5p to regulate its influence on NPC cells. CONCLUSION: This study demonstrated that the METTL3-mediated m6A modification of miR-1908-5p enhanced the tumorigenesis of NPC by targeting HOPX. These findings propose new insights for NPC diagnosis and therapy.
Assuntos
Adenina , Metiltransferases , MicroRNAs , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Adenina/análogos & derivados , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Genes Homeobox , Metiltransferases/metabolismo , MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologiaRESUMO
OBJECTIVE: Mesial Temporal Lobe Epilepsy-associated Hippocampal Sclerosis (MTLE-HS) is a syndrome associated with various aetiologies. We previously identified CD34-positive extravascular stellate cells (CD34+ cells) possibly related to BRAFV600E oncogenic variant in a subset of MTLE-HS. We aimed to identify the BRAFV600E oncogenic variants and characterise the CD34+ cells. METHODS: We analysed BRAFV600E oncogenic variant by digital droplet Polymerase Chain Reaction in 53 MTLE-HS samples (25 with CD34+ cells) and nine non-expansive neocortical lesions resected during epilepsy surgery (five with CD34+ cells). Ex vivo multi-electrode array recording, immunolabelling, methylation microarray and single nuclei RNAseq were performed on BRAFwildtype MTLE-HS and BRAFV600E mutant non-expansive lesion of hippocampus and/or neocortex. RESULTS: We identified a BRAFV600E oncogenic variant in five MTLE-HS samples with CD34+ cells (19%) and in five neocortical samples with CD34+ cells (100%). Single nuclei RNAseq of resected samples revealed two unique clusters of abnormal cells (including CD34+ cells) associated with senescence and oligodendrocyte development in both hippocampal and neocortical BRAFV600E mutant samples. The co-expression of the oncogene-induced senescence marker p16INK4A and the outer subventricular zone radial glia progenitor marker HOPX in CD34+ cells was confirmed by multiplex immunostaining. Pseudotime analysis showed that abnormal cells share a common lineage from progenitors to myelinating oligodendrocytes. Epilepsy surgery led to seizure freedom in eight of the 10 patients with BRAF mutant lesions. INTERPRETATION: BRAFV600E underlies a subset of MTLE-HS and epileptogenic non-expansive neocortical focal lesions. Detection of the oncogenic variant may help diagnosis and open perspectives for targeted therapies.
Assuntos
Epilepsias Parciais , Epilepsia do Lobo Temporal , Epilepsia , Neocórtex , Humanos , Epilepsia do Lobo Temporal/patologia , Neocórtex/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Hipocampo/patologia , Epilepsias Parciais/genética , Epilepsias Parciais/complicações , Epilepsias Parciais/patologia , Epilepsia/patologia , Esclerose/patologia , Imageamento por Ressonância MagnéticaRESUMO
Outer radial glial cells (oRGs) give rise to neurons and glial cells and contribute to cell migration and expansion in developing neocortex. HOPX has been described as a marker of oRGs and possible actor in glioblastomas. Recent years' evidence points to spatiotemporal differences in brain development which may have implications for the classification of cell types in the central nervous system and understanding of a range of neurological diseases. Using the Human Embryonic/Fetal Biobank, Institute of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark, HOPX and BLBP immunoexpression was investigated in developing frontal, parietal, temporal and occipital human neocortex, other cortical areas and brain stem regions to interrogate oRG and HOPX regional heterogeneity. Furthermore, usage of high-plex spatial profiling (Nanostring GeoMx® DSP) was tested on the same material. HOPX marked oRGs in several human developing brain regions as well as cells in known gliogenic areas but did not completely overlap with BLBP or GFAP. Interestingly, limbic structures (e.g. olfactory bulb, indusium griseum, entorhinal cortex, fimbria) showed more intense HOPX immunoreactivity than adjacent neocortex and in cerebellum and brain stem, HOPX and BLBP seemed to stain different cell populations in cerebellar cortex and corpus pontobulbare. DSP screening of corresponding regions indicated differences in cell type composition, vessel density and presence of apolipoproteins within and across regions and thereby confirming the importance of acknowledging time and place in developmental neuroscience.
Assuntos
Neuroglia , Neurônios , Humanos , Neurônios/metabolismo , Neuroglia/metabolismo , Encéfalo , Neurogênese , Sistema Nervoso CentralRESUMO
BACKGROUND: Skin cutaneous melanoma (SKCM) is the most threatening type of skin cancer. Approximately 55,000 people lose their lives every year due to SKCM, illustrating that it seriously threatens human life and health. Homeodomain-only protein homeobox (HOPX) is the smallest member of the homeodomain family and is widely expressed in a variety of tissues. HOPX is involved in regulating the homeostasis of hematopoietic stem cells and is closely related to the development of tumors such as breast cancer, nasopharyngeal carcinoma, and head and neck squamous cell carcinoma. However, its function in SKCM is unclear, and further studies are needed. METHODS: We used the R language to construct ROC (Receiver-Operating Characteristic) curves, KM (KaplanâMeier) curves and nomograms based on databases such as the TCGA and GEO to analyze the diagnostic and prognostic value of HOPX in SKCM patients. Enrichment analysis, immune scoring, GSVA (Gene Set Variation Analysis), and single-cell sequencing were used to verify the association between HOPX expression and immune infiltration. In vitro experiments were performed using A375 cells for phenotypic validation. Transcriptome sequencing was performed to further analyze HOPX gene-related genes and their signaling pathways. RESULTS: Compared to normal cells, SKCM cells had low HOPX expression (p < 0.001). Patients with high HOPX expression had a better prognosis (p < 0.01), and the marker had good diagnostic efficacy (AUC = 0.744). GO/KEGG (Gene Ontology/ Kyoto Encyclopedia of Genes and Genomes) analysis, GSVA and single-cell sequencing analysis showed that HOPX expression is associated with immune processes and high enrichment of T cells and could serve as an immune checkpoint in SKCM. Furthermore, cellular assays verified that HOPX inhibits the proliferation, migration and invasion of A375 cells and promotes apoptosis and S-phase arrest. Interestingly, tumor drug sensitivity analysis revealed that HOPX also plays an important role in reducing clinical drug resistance. CONCLUSION: These findings suggest that HOPX is a blocker of SKCM progression that inhibits the proliferation of SKCM cells and promotes apoptosis. Furthermore, it may be a new diagnostic and prognostic indicator and a novel target for immunotherapy in SKCM patients.
RESUMO
Self-renewal of the intestinal epithelium originates from stem cells located at the crypt base. Upregulation of various stem cell markers in intestinal epithelial neoplasms indicates a potential role of stem cells in tumorigenesis. In this study, the immunoreactivity of potential intestinal stem cell markers (Sry box transcription factor 9 [Sox9], homeodomain-only protein [Hopx], survivin) and tuft cell marker doublecortin-like kinase 1 (DCLK1) in normal canine intestine and intestinal epithelial neoplasms was investigated. Formalin-fixed paraffin-embedded (FFPE) small and large intestine as well as intestinal neoplasms (55 colorectal adenomas [CRAs], 17 small intestinal adenocarcinomas [SICs], and 12 colorectal adenocarcinomas [CRCs]) were analyzed immunohistologically. Potential stem cell markers Sox9, Hopx, and survivin were detected in the crypts of normal canine small and large intestine. DCLK1+ tuft cells were present in decreasing numbers along the crypt-villus axis of the jejunum and rarely detectable in large intestine. In canine intestinal epithelial tumors, nuclear Sox9 immunoreactivity was detectable in 84.9% (CRA), 80% (CRC), and 77% of epithelial neoplastic cells (SIC). Hopx and survivin were expressed within cytoplasm and nuclei of neoplastic cells in benign and malignant tumors. DCLK1 showed a cytoplasmic reaction within neoplastic cells. The combined score of Hopx, DCLK1, and survivin varied among the examined cases. Overall, malignant tumors showed lower DCLK1 scores but higher Hopx scores in comparison with benign tumors. For survivin, no differences were detectable. In conclusion, stem cell markers Sox9, Hopx, and survivin were detectable at the crypt base and the immunoreactivity of Sox9, DCLK1, survivin, and Hopx was increased in canine intestinal adenomas and adenocarcinomas compared with normal mucosa.
Assuntos
Adenocarcinoma , Adenoma , Neoplasias Colorretais , Doenças do Cão , Adenocarcinoma/patologia , Adenocarcinoma/veterinária , Adenoma/metabolismo , Adenoma/veterinária , Animais , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/veterinária , Doenças do Cão/metabolismo , Cães , Quinases Semelhantes a Duplacortina , Mucosa Intestinal/patologia , Intestinos/patologia , Proteínas Serina-Treonina Quinases , Survivina/metabolismoRESUMO
Intestinal ischemia is a life-threatening emergency with mortality rates of 50%-80% due to epithelial cell death and resultant barrier loss. Loss of the epithelial barrier occurs in conditions including intestinal volvulus and neonatal necrotizing enterocolitis. Survival depends on effective epithelial repair; crypt-based intestinal epithelial stem cells (ISCs) are the source of epithelial renewal in homeostasis and after injury. Two ISC populations have been described: 1) active ISC [aISC; highly proliferative; leucine-rich-repeat-containing G protein-coupled receptor 5 (LGR5+)-positive or sex-determining region Y-box 9 -antigen Ki67-positive (SOX9+Ki67+)] and 2) reserve ISC [rISC; less proliferative; homeodomain-only protein X positive (HOPX+)]. The contributions of these ISCs have been evaluated both in vivo and in vitro using a porcine model of mesenteric vascular occlusion to understand mechanisms that modulate ISC recovery responses following ischemic injury. In our previously published work, we observed that rISC conversion to an activated state was associated with decreased HOPX expression during in vitro recovery. In the present study, we wanted to evaluate the direct role of HOPX on cellular proliferation during recovery after injury. Our data demonstrated that during early in vivo recovery, injury-resistant HOPX+ cells maintain quiescence. Subsequent early regeneration within the intestinal crypt occurs around 2 days after injury, a period in which HOPX expression decreased. When HOPX was silenced in vitro, cellular proliferation of injured cells was promoted during recovery. This suggests that HOPX may serve a functional role in ISC-mediated regeneration after injury and could be a target to control ISC proliferation.NEW & NOTEWORTHY This paper supports that rISCs are resistant to ischemic injury and likely an important source of cellular renewal following near-complete epithelial loss. Furthermore, we have evidence that HOPX controls ISC activity state and may be a critical signaling pathway during ISC-mediated repair. Finally, we use multiple novel methods to evaluate ISCs in a translationally relevant large animal model of severe intestinal injury and provide evidence for the potential role of rISCs as therapeutic targets.
Assuntos
Proliferação de Células , Células Epiteliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Mucosa Intestinal/metabolismo , Isquemia Mesentérica/metabolismo , Reepitelização , Células-Tronco/metabolismo , Animais , Modelos Animais de Doenças , Células Epiteliais/patologia , Feminino , Proteínas de Homeodomínio/genética , Mucosa Intestinal/patologia , Masculino , Isquemia Mesentérica/genética , Isquemia Mesentérica/patologia , Fenótipo , Índice de Gravidade de Doença , Células-Tronco/patologia , Sus scrofa , Técnicas de Cultura de TecidosRESUMO
A specific subpopulation of neural progenitor cells, the basal radial glial cells (bRGCs) of the outer subventricular zone (OSVZ), are thought to have a key role in the evolutionary expansion of the mammalian neocortex. In the developing lissencephalic mouse neocortex, bRGCs exist at low abundance and show significant molecular differences from bRGCs in developing gyrencephalic species. Here, we demonstrate that the developing mouse medial neocortex (medNcx), in contrast to the canonically studied lateral neocortex (latNcx), exhibits an OSVZ and an abundance of bRGCs similar to that in developing gyrencephalic neocortex. Unlike bRGCs in developing mouse latNcx, the bRGCs in medNcx exhibit human bRGC-like gene expression, including expression of Hopx, a human bRGC marker. Disruption of Hopx expression in mouse embryonic medNcx and forced Hopx expression in mouse embryonic latNcx demonstrate that Hopx is required and sufficient, respectively, for bRGC abundance as found in the developing gyrencephalic neocortex. Taken together, our data identify a novel bRGC subpopulation in developing mouse medNcx that is highly related to bRGCs of developing gyrencephalic neocortex.
Assuntos
Células Ependimogliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Neocórtex/citologia , Neocórtex/embriologia , Animais , Sistemas CRISPR-Cas/genética , Proliferação de Células , Embrião de Mamíferos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Ventrículos Laterais/embriologia , Camundongos Endogâmicos C57BL , Neocórtex/metabolismo , Fator de Transcrição PAX6/metabolismo , Células-Tronco/citologiaRESUMO
Lgr5-expressing intestinal stem cells (ISCs) maintain continuous and rapid generation of the intestinal epithelium. Here, we present evidence that dedifferentiation of committed enteroendocrine cells (EECs) contributes to maintenance of the epithelium under both basal conditions and in response to injury. Lineage-tracing studies identified a subset of EECs that reside at +4 position for more than 2 wk, most of which were BrdU-label-retaining cells. Under basal conditions, cells derived from these EECs grow from the bottom of the crypt to generate intestinal epithelium according to neutral drift kinetics that is consistent with dedifferentiation of mature EECs to ISCs. The lineage tracing of EECs demonstrated reserve stem cell properties in response to radiation-induced injury with the generation of reparative EEC-derived epithelial patches. Finally, the enterochromaffin (EC) cell was the predominant EEC type participating in these stem cell dynamics. These results provide novel insights into the +4 reserve ISC hypothesis, stem cell dynamics of the intestinal epithelium, and in the development of EC-derived small intestinal tumors. NEW & NOTEWORTHY The current manuscript demonstrating that a subset of mature enteroendocrine cells (EECs), predominantly enterochromaffin cells, dedifferentiates to fully functional intestinal stem cells (ISCs) is novel, timely, and important. These cells dedifferentiate to ISCs not only in response to injury but also under basal homeostatic conditions. These novel findings provide a mechanism in which a specified cell can dedifferentiate and contribute to normal tissue plasticity as well as the development of EEC-derived intestinal tumors under pathologic conditions.
Assuntos
Células-Tronco Adultas/citologia , Diferenciação Celular , Proliferação de Células , Células Enteroendócrinas/citologia , Intestino Delgado/citologia , Células-Tronco Adultas/metabolismo , Animais , Células Cultivadas , Células Enteroendócrinas/metabolismo , Intestino Delgado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Lesões Experimentais por Radiação/patologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismoRESUMO
CONTEXT: Gastric cancer (GC) is the fourth most common cause of cancer-related deaths worldwide. OBJECTIVE: To determine the mRNA-expression of the MAL, TMEM220, MMP28, IL-19 and HOPX genes and analyse the methylation statuses of MAL and TMEM220. MATERIALS AND METHODS: Gene-expression levels were analysed in 10 GC cell lines and 30 matched pairs of GC and normal mucosa (NM) gastric tissue specimens in real-time reverse-transcriptase polymerase chain reactions. Gene methylation was evaluated by bisulphite sequencing. Detailed gene-methylation patterns were confirmed by pyrosequencing analysis. RESULTS: MAL, TMEM220, MMP28 and IL-19 were significantly down-regulated in GC cell lines and GC tissues compared to NM tissues. MAL and TMEM220 were highly methylated in GC tissues, and methylation inversely correlated with expression. MAL and TMEM220 expression were restored by treatment with 5-aza-2'-deoxycytidine. MAL and TMEM220 were specifically methylated and were down-regulated in human GC. DISCUSSION AND CONCLUSION: These loci may serve as novel methylation markers for patients with GC.
Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/genética , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/genética , Neoplasias Gástricas/genética , Linhagem Celular Tumoral , Regulação para Baixo , Perfilação da Expressão Gênica , Humanos , RNA Mensageiro/análiseRESUMO
BACKGROUND: Canonical Wnt pathway signaling is necessary for maintaining the proliferative capacity of mammalian intestinal crypt base columnar stem cells (CBCs). Furthermore, dysregulation of the Wnt pathway is a major contributor to disease, including oncogenic transformation of the intestinal epithelium. Given the critical importance of this pathway, numerous tools have been used as proxy measures for Wnt pathway activity, yet the relationship between Wnt target gene expression and reporter allele activity within individual cells at the crypt base remains unclear. RESULTS: Here, we describe a novel Axin2-CreERT2-tdTomato allele that efficiently marks both Wnt(High) CBCs and radioresistant reserve intestinal stem cells. We analyze the molecular and functional identity of Axin2-CreERT2-tdTomato-marked cells using single cell gene expression profiling and tissue regeneration assays and find that Axin2 reporter activity does not necessarily correlate with expression of Wnt target genes and, furthermore, that Wnt target genes themselves vary in their expression patterns at the crypt base. CONCLUSIONS: Wnt target genes and reporter alleles can vary greatly in their cell-type specificity, demonstrating that these proxies cannot be used interchangeably. Furthermore, Axin2-CreERT2-tdTomato is a robust marker of both active and reserve intestinal stem cells and is thus useful for understanding the intestinal stem cell compartment. Developmental Dynamics 245:822-833, 2016. © 2016 Wiley Periodicals, Inc.
Assuntos
Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Proteína Axina/genética , Proteína Axina/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Citometria de Fluxo , Imunofluorescência , Imunoquímica , Mucosa Intestinal/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco/fisiologia , Via de Sinalização Wnt/genéticaRESUMO
HOPX acts as a tumour suppressor in various cancers. However, the regulation of HOPX in human lung cancer as well as the mechanism underlying its tumour-suppressive function has not yet been well elucidated. Here we investigated the epigenetic regulation and molecular mechanism by which HOPX exerts growth inhibitory effects. We found that HOPX was down-regulated in 12 out of 13 lung cancer cell lines and in 69 out of 120 primary lung tumours at mRNA and protein levels. Patients with lung adenocarcinoma (ADC) exhibited significantly more positive staining of HOPX protein compared with lung squamous cell carcinoma (SCC) (p =0.036). Again in ADC, patients with higher HOPX expression had a significantly longer disease-free survival (p =0.001). Methylation analysis showed that down-regulation of HOPX was associated with DNA methylation (p =0.011). To analyse the function of HOPX in lung cancer cells, stable transfection with an expression vector of HOPX was performed. It turned out that HOPX inhibited tumour cell proliferation rate, migration, and invasion, and, more interestingly, forced expression of HOPX enhanced cellular senescence via activation of oncogenic Ras and the downstream MAPK pathway, which in turn led to decreased MDM2 and increased p21. On the contrary, knockdown of HOPX by siRNA resulted in reduced Ras activity, inactivation of the MAPK pathway, and decreased p21 levels, accompanied by reduced cellular senescence. Additionally, the HOPX-induced senescence pathway was also active in human bronchial epithelial cells. Taken together, our data suggest that down-regulation of HOPX was related to DNA methylation and that HOPX exerts tumour-suppressive activity by oncogenic Ras-induced cellular senescence in lung cancer cells.
Assuntos
Senescência Celular/fisiologia , Metilação de DNA/fisiologia , Proteínas de Homeodomínio/fisiologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/fisiopatologia , Proteínas Supressoras de Tumor/fisiologia , Proteínas ras/fisiologia , Adenocarcinoma/patologia , Adenocarcinoma/fisiopatologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/fisiopatologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Transdução de Sinais/fisiologia , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/fisiopatologia , Proteínas Supressoras de Tumor/genéticaRESUMO
Glioblastoma multiforme (GBM) is a highly lethal human cancer thought to originate from a self-renewing and therapeutically-resistant population of glioblastoma stem cells (GSCs). The intrinsic mechanisms enacted by GSCs during 3D tumor formation, however, remain unclear, especially in the stages prior to angiogenic/immunological infiltration. In this study, we performed a deep characterization of the genetic, immune, and metabolic profiles of GBM organoids from several patient-derived GSCs (GBMO). Despite being devoid of immune cells, transcriptomic analysis across GBMO revealed a surprising immune-like molecular program, enriched in cytokine, antigen presentation and processing, T-cell receptor inhibitors, and interferon genes. We find two important cell populations thought to drive GBM progression, Special AT-rich sequence-binding protein 2 (SATB2+) and homeodomain-only protein homeobox (HOPX+) progenitors, contribute to this immune landscape in GBMO and GBM in vivo. These progenitors, but not other cell types in GBMO, are resistant to conventional GBM therapies, temozolomide and irradiation. Our work defines a novel intrinsic immune-like landscape in GBMO driven, in part, by SATB2+ and HOPX+ progenitors and deepens our understanding of the intrinsic mechanisms utilized by GSCs in early GBM formation.
RESUMO
Heterogeneity at biological and transcriptomic levels poses a challenge in defining and typing low-grade glioma (LGG), leading to a critical need for specific molecular signatures to enhance diagnosis, therapy, and prognostic evaluation of LGG. This study focused on fatty acid metabolism (FAM) related genes and prognostic features to investigate the mechanisms and treatment strategies for LGG cell metastasis and invasion. By screening 158 FAM-related genes and clustering 512 LGG samples into two subtypes (C1 and C2), differential gene expression analysis and functional enrichment were performed. The immune cell scores and prognosis were compared between the two subtypes, with C1 showing poorer outcomes and higher immune scores. A four-gene signature (PHEX, SHANK2, HOPX, and LGALS1) was identified and validated across different datasets, demonstrating a stable predictive effect. Cellular experiments confirmed the roles of LGALS1 and HOPX in promoting tumor cell proliferation, migration, and invasion, while SHANK2 exhibited a suppressive effect. This four-gene signature based on FAM-related genes offers valuable insights for understanding the pathogenesis and clinical management of LGG.
RESUMO
Background: There is increasing evidence that abnormal expression of microRNAs is involved in the occurrence and progression of tumors. In previous experiments, we found that the content of hsa-miR-1301-3p in tumor tissues of patients with nonsmall cell lung cancer (NSCLC) showed an obvious upward trend compared with that in normal tissues. We performed a detailed study on the impact and underlying mechanism of hsa-miR-1301-3p in NSCLC cells. Methods: The impact of hsa-miR-1301-3p on NSCLC cell proliferation, apoptosis, migration, and invasion was examined using colony formation, flow cytometry, modified Boyden chamber, and wound healing assays. Different doses of radiation were applied to NSCLC cells to investigate their sensitivity to radiotherapy. The potential target gene of hsa-miR-1301-3p was determined by dual-luciferase reporter assay and immunoblotting. Result: hsa-miR-1301-3p was upregulated in NSCLC tissues and cells. hsa-miR-1301-3p effectively promoted the rapid proliferation, migration, and invasion of NSCLC cells, while inhibiting apoptosis. It also induced radioresistance in NSCLC cells. hsa-miR-1301-3p targeted the homeodomain-only protein homeobox (HOPX) mRNA 3' untranslated region and inhibited its transcription in NSCLC cells. Exogenous HOPX overexpression antagonized the mechanism by which hsa-miR-1301-3p regulates NSCLC cell proliferation, metastasis, and apoptosis. Conclusions: hsa-miR-1301-3p plays an oncogenic role in the occurrence and development of NSCLC. By targeting HOPX, hsa-miR-1301-3p can not only promote the proliferation and metastasis of NSCLC cells, but also alleviate apoptosis and reduce radiosensitivity.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Genes Homeobox , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Tolerância a Radiação/genéticaRESUMO
This study aimed to elucidate a computed tomography (CT) image-based biopsy with a radiogenomic signature to predict homeodomain-only protein homeobox (HOPX) gene expression status and prognosis in patients with non-small cell lung cancer (NSCLC). Patients were labeled as HOPX-negative or positive based on HOPX expression and were separated into training (n = 92) and testing (n = 24) datasets. In correlation analysis between genes and image features extracted by Pyradiomics for 116 patients, eight significant features associated with HOPX expression were selected as radiogenomic signature candidates from the 1218 image features. The final signature was constructed from eight candidates using the least absolute shrinkage and selection operator. An imaging biopsy model with radiogenomic signature was built by a stacking ensemble learning model to predict HOPX expression status and prognosis. The model exhibited predictive power for HOPX expression with an area under the receiver operating characteristic curve of 0.873 and prognostic power in Kaplan-Meier curves (p = 0.0066) in the test dataset. This study's findings implied that the CT image-based biopsy with a radiogenomic signature could aid physicians in predicting HOPX expression status and prognosis in NSCLC.
RESUMO
p57Kip2 is a cyclin/CDK inhibitor and a negative regulator of cell proliferation. Here, we report that p57 regulates intestinal stem cell (ISC) fate and proliferation in a CDK-independent manner during intestinal development. In the absence of p57, intestinal crypts exhibit an increased proliferation and an amplification of transit-amplifying cells and of Hopx+ ISCs, which are no longer quiescent, while Lgr5+ ISCs are unaffected. RNA sequencing (RNA-seq) analyses of Hopx+ ISCs show major gene expression changes in the absence of p57. We found that p57 binds to and inhibits the activity of Ascl2, a transcription factor critical for ISC specification and maintenance, by participating in the recruitment of a corepressor complex to Ascl2 target gene promoters. Thus, our data suggest that, during intestinal development, p57 plays a key role in maintaining Hopx+ ISC quiescence and repressing the ISC phenotype outside of the crypt bottom by inhibiting the transcription factor Ascl2 in a CDK-independent manner.
Assuntos
Proteínas Correpressoras , Intestinos , Células-Tronco , Diferenciação Celular , Proliferação de Células , Intestinos/metabolismo , Células-Tronco/fisiologia , Fatores de Transcrição , Proteínas Correpressoras/metabolismoRESUMO
Homeobox genes are master regulators of morphogenesis and differentiation by acting at the top of genetic hierarchies and their deregulation is associated with a variety of human diseases. They usually contain a highly conserved sequence that codes for the homeodomain of the protein, a specialized motif with three α helices and an N-terminal arm that aids in DNA binding. However, one homeodomain protein, HOPX, is unique among its family members in that it lacks the capacity to bind DNA and instead functions by interacting with transcriptional regulators. HOPX plays crucial roles in organogenesis and is expressed in both embryonic and adult stem cells. Loss of HOPX expression is common in cancer, where it functions primarily as a tumor suppressor gene. In this review, we describe the function of HOPX in development and discuss its role in carcinogenesis.
RESUMO
The adult dentate gyrus (DG) of rodents hosts a neural stem cell (NSC) niche capable of generating new neurons throughout life. The embryonic origin and molecular mechanisms underlying formation of DG NSCs are still being investigated. We performed a bulk transcriptomic analysis on mouse developing archicortex conditionally deleted for Sox9, a SoxE transcription factor controlling both gliogenesis and NSC formation, and identified Hopx, a recently identified marker of both prospective adult DG NSCs and astrocytic progenitors, as being downregulated. We confirm SOX9 is required for HOPX expression in the embryonic archicortex. In particular, we found that both NSC markers are highly expressed in the cortical hem (CH), while only weakly in the adjacent dentate neuroepithelium (DNE), suggesting a potential CH embryonic origin for DG NSCs. However, we demonstrate both in vitro and in vivo that the embryonic CH, as well as its adult derivatives, lacks stem cell potential. Instead, deletion of Sox9 in the DNE affects both HOPX expression and NSC formation in the adult DG. We conclude that HOPX expression in the CH is involved in astrocytic differentiation downstream of SOX9, which we previously showed regulates DG development by inducing formation of a CH-derived astrocytic scaffold. Altogether, these results suggest that both proteins work in a dose-dependent manner to drive either astrocytic differentiation in CH or NSC formation in DNE.