Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
JHEP Rep ; 5(2): 100628, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36687470

RESUMO

Background & Aims: The prevalence of non-alcoholic fatty liver disease (NAFLD) and its severe form, non-alcoholic steatohepatitis (NASH), is increasing. Individuals with NASH often develop liver fibrosis and advanced liver fibrosis is the main determinant of mortality in individuals with NASH. We and others have reported that STAT3 contributes to liver fibrosis and hepatocellular carcinoma in mice. Methods: Here, we explored whether STAT3 activation in hepatocyte and non-hepatocyte areas, measured by phospho-STAT3 (pSTAT3), is associated with liver fibrosis progression in 133 patients with NAFLD. We further characterized the molecular and cellular determinants of STAT3 activation by integrating spatial distribution and transcriptomic changes in fibrotic NAFLD livers.Results: pSTAT3 scores in non-hepatocyte areas progressively increased with fibrosis severity (r = 0.53, p <0.001). Correlation analyses between pSTAT3 scores and expression of 1,540 immune- and cancer-associated genes revealed a large effect of STAT3 activation on gene expression changes in non-hepatocyte areas and confirmed a major role for STAT3 activation in fibrogenesis. Digital spatial transcriptomic profiling was also performed on 13 regions selected in hepatocyte and non-hepatocyte areas from four NAFLD liver biopsies with advanced fibrosis, using a customized panel of markers including pSTAT3, PanCK+CK8/18, and CD45. The regions were further segmented based on positive or negative pSTAT3 staining. Cell deconvolution analysis revealed that activated STAT3 was enriched in hepatic progenitor cells (HPCs) and sinusoidal endothelial cells. Regression of liver fibrosis upon STAT3 inhibition in mice with NASH resulted in a reduction of HPCs, demonstrating a direct role for STAT3 in HPC expansion. Conclusion: Increased understanding of the spatial dependence of STAT3 signaling in NASH and liver fibrosis progression could lead to novel targeted treatment approaches. Impact and implications: Advanced liver fibrosis is the main determinant of mortality in patients with NASH. This study showed using liver biopsies from 133 patients with NAFLD, that STAT3 activation in non-hepatocyte areas is strongly associated with fibrosis severity, inflammation, and progression to NASH. STAT3 activation was enriched in hepatic progenitor cells (HPCs) and sinusoidal endothelial cells (SECs), as determined by innovative technologies interrogating the spatial distribution of pSTAT3. Finally, STAT3 inhibition in mice resulted in reduced liver fibrosis and depletion of HPCs, suggesting that STAT3 activation in HPCs contributes to their expansion and fibrogenesis in NAFLD.

2.
JHEP Rep ; 5(4): 100651, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36866391

RESUMO

Background & Aims: Oxidative stress is recognized as a major driver of non-alcoholic steatohepatitis (NASH) progression. The transcription factor NRF2 and its negative regulator KEAP1 are master regulators of redox, metabolic and protein homeostasis, as well as detoxification, and thus appear to be attractive targets for the treatment of NASH. Methods: Molecular modeling and X-ray crystallography were used to design S217879 - a small molecule that could disrupt the KEAP1-NRF2 interaction. S217879 was highly characterized using various molecular and cellular assays. It was then evaluated in two different NASH-relevant preclinical models, namely the methionine and choline-deficient diet (MCDD) and diet-induced obesity NASH (DIO NASH) models. Results: Molecular and cell-based assays confirmed that S217879 is a highly potent and selective NRF2 activator with marked anti-inflammatory properties, as shown in primary human peripheral blood mononuclear cells. In MCDD mice, S217879 treatment for 2 weeks led to a dose-dependent reduction in NAFLD activity score while significantly increasing liver Nqo1 mRNA levels, a specific NRF2 target engagement biomarker. In DIO NASH mice, S217879 treatment resulted in a significant improvement of established liver injury, with a clear reduction in both NAS and liver fibrosis. αSMA and Col1A1 staining, as well as quantification of liver hydroxyproline levels, confirmed the reduction in liver fibrosis in response to S217879. RNA-sequencing analyses revealed major alterations in the liver transcriptome in response to S217879, with activation of NRF2-dependent gene transcription and marked inhibition of key signaling pathways that drive disease progression. Conclusions: These results highlight the potential of selective disruption of the NRF2-KEAP1 interaction for the treatment of NASH and liver fibrosis. Impact and implications: We report the discovery of S217879 - a potent and selective NRF2 activator with good pharmacokinetic properties. By disrupting the KEAP1-NRF2 interaction, S217879 triggers the upregulation of the antioxidant response and the coordinated regulation of a wide spectrum of genes involved in NASH disease progression, leading ultimately to the reduction of both NASH and liver fibrosis progression in mice.

3.
JHEP Rep ; 5(4): 100684, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36879887

RESUMO

Background & Aims: Progression of alcohol-associated liver disease (ALD) is driven by genetic predisposition. The rs13702 variant in the lipoprotein lipase (LPL) gene is linked to non-alcoholic fatty liver disease. We aimed at clarifying its role in ALD. Methods: Patients with alcohol-associated cirrhosis, with (n = 385) and without hepatocellular carcinoma (HCC) (n = 656), with HCC attributable to viral hepatitis C (n = 280), controls with alcohol abuse without liver damage (n = 366), and healthy controls (n = 277) were genotyped regarding the LPL rs13702 polymorphism. Furthermore, the UK Biobank cohort was analysed. LPL expression was investigated in human liver specimens and in liver cell lines. Results: Frequency of the LPL rs13702 CC genotype was lower in ALD with HCC in comparison to ALD without HCC both in the initial (3.9% vs. 9.3%) and the validation cohort (4.7% vs. 9.5%; p <0.05 each) and compared with patients with viral HCC (11.4%), alcohol misuse without cirrhosis (8.7%), or healthy controls (9.0%). This protective effect (odds ratio [OR] = 0.5) was confirmed in multivariate analysis including age (OR = 1.1/year), male sex (OR = 3.0), diabetes (OR = 1.8), and carriage of the PNPLA3 I148M risk variant (OR = 2.0). In the UK Biobank cohort, the LPL rs13702 C allele was replicated as a risk factor for HCC. Liver expression of LPL mRNA was dependent on LPL rs13702 genotype and significantly higher in patients with ALD cirrhosis compared with controls and alcohol-associated HCC. Although hepatocyte cell lines showed negligible LPL protein expression, hepatic stellate cells and liver sinusoidal endothelial cells expressed LPL. Conclusions: LPL is upregulated in the liver of patients with alcohol-associated cirrhosis. The LPL rs13702 high producer variant confers protection against HCC in ALD, which might help to stratify people for HCC risk. Impact and implications: Hepatocellular carcinoma is a severe complication of liver cirrhosis influenced by genetic predisposition. We found that a genetic variant in the gene encoding lipoprotein lipase reduces the risk for hepatocellular carcinoma in alcohol-associated cirrhosis. This genetic variation may directly affect the liver, because, unlike in healthy adult liver, lipoprotein lipase is produced from liver cells in alcohol-associated cirrhosis.

4.
JHEP Rep ; 4(2): 100397, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35059619

RESUMO

Transforming growth factor-ß (TGF-ß) is a potent effector in the liver, which is involved in a plethora of processes initiated upon liver injury. TGF-ß affects parenchymal, non-parenchymal, and inflammatory cells in a highly context-dependent manner. Its bioavailability is critical for a fast response to various insults. In the liver - and probably in other organs - this is made possible by the deposition of a large portion of TGF-ß in the extracellular matrix as an inactivated precursor form termed latent TGF-ß (L-TGF-ß). Several matrisomal proteins participate in matrix deposition, latent complex stabilisation, and activation of L-TGF-ß. Extracellular matrix protein 1 (ECM1) was recently identified as a critical factor in maintaining the latency of deposited L-TGF-ß in the healthy liver. Indeed, its depletion causes spontaneous TGF-ß signalling activation with deleterious effects on liver architecture and function. This review article presents the current knowledge on intracellular L-TGF-ß complex formation, secretion, matrix deposition, and activation and describes the proteins and processes involved. Further, we emphasise the therapeutic potential of toning down L-TGF-ß activation in liver fibrosis and liver cancer.

5.
JHEP Rep ; 4(7): 100508, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35712694

RESUMO

Background & Aims: High-dose irradiation is an essential tool to help control the growth of hepatic tumors, but it can cause radiation-induced liver disease (RILD). This life-threatening complication manifests itself months following radiation therapy and is characterized by fibrosis of the pericentral sinusoids. In this study, we aimed to establish a mouse model of RILD to investigate the underlying mechanism of radiation-induced liver fibrosis. Methods: Using a small animal image-guided radiation therapy platform, an irradiation scheme delivering 50 Gy as a single dose to a focal point in mouse livers was designed. Tissues were analyzed 1 and 6 days, and 6 and 20 weeks post-irradiation. Irradiated livers were assessed by histology, immunohistochemistry, imaging mass cytometry and RNA sequencing. Mitochondrial function was assessed using high-resolution respirometry. Results: At 6 and 20 weeks post-irradiation, pericentral fibrosis was visible in highly irradiated areas together with immune cell infiltration and extravasation of red blood cells. RNA sequencing analysis showed gene signatures associated with acute DNA damage, p53 activation, senescence and its associated secretory phenotype and fibrosis. Moreover, gene profiles of mitochondrial damage and an increase in mitochondrial DNA heteroplasmy were detected. Respirometry measurements of hepatocytes in vitro confirmed irradiation-induced mitochondrial dysfunction. Finally, the highly irradiated fibrotic areas showed markers of reactive oxygen species such as decreased glutathione and increased lipid peroxides and a senescence-like phenotype. Conclusions: Based on our mouse model of RILD, we propose that irradiation-induced mitochondrial DNA instability contributes to the development of fibrosis via the generation of excessive reactive oxygen species, p53 pathway activation and a senescence-like phenotype. Lay summary: Irradiation is an efficient cancer therapy, however, its applicability to the liver is limited by life-threatening radiation-induced hepatic fibrosis. We have developed a new mouse model of radiation-induced liver fibrosis, that recapitulates the human disease. Our model highlights the role of mitochondrial DNA instability in the development of irradiation-induced liver fibrosis. This new model and subsequent findings will help increase our understanding of the hepatic reaction to irradiation and to find strategies that protect the liver, enabling the expanded use of radiotherapy to treat hepatic tumors.

6.
Acta Pharm Sin B ; 12(5): 2300-2314, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35646542

RESUMO

Ferroptosis is a form of regulated cell death, characterized by excessive membrane lipid peroxidation in an iron- and ROS-dependent manner. Celastrol, a natural bioactive triterpenoid extracted from Tripterygium wilfordii, shows effective anti-fibrotic and anti-inflammatory activities in multiple hepatic diseases. However, the exact molecular mechanisms of action and the direct protein targets of celastrol in the treatment of liver fibrosis remain largely elusive. Here, we discover that celastrol exerts anti-fibrotic effects via promoting the production of reactive oxygen species (ROS) and inducing ferroptosis in activated hepatic stellate cells (HSCs). By using activity-based protein profiling (ABPP) in combination with bio-orthogonal click chemistry reaction and cellular thermal shift assay (CETSA), we show that celastrol directly binds to peroxiredoxins (PRDXs), including PRDX1, PRDX2, PRDX4 and PRDX6, through the active cysteine sites, and inhibits their anti-oxidant activities. Celastrol also targets to heme oxygenase 1 (HO-1) and upregulates its expression in activated-HSCs. Knockdown of PRDX1, PRDX2, PRDX4, PRDX6 or HO-1 in HSCs, to varying extent, elevated cellular ROS levels and induced ferroptosis. Taken together, our findings reveal the direct protein targets and molecular mechanisms via which celastrol ameliorates hepatic fibrosis, thus supporting the further development of celastrol as a promising therapeutic agent for liver fibrosis.

7.
JHEP Rep ; 4(8): 100524, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35845296

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is reaching epidemic proportions, with a global prevalence of 25% in the adult population. Non-alcoholic steatohepatitis (NASH), which can lead to cirrhosis, has become the leading indication for liver transplantation in both Europe and the USA. Liver fibrosis is the consequence of sustained, iterative liver injury, and the main determinant of outcomes in NASH. The liver possesses remarkable inherent plasticity, and liver fibrosis can regress when the injurious agent is removed, thus providing opportunities to alter long-term outcomes through therapeutic interventions. Although hepatocyte injury is a key driver of NASH, multiple other cell lineages within the hepatic fibrotic niche play major roles in the perpetuation of inflammation, mesenchymal cell activation, extracellular matrix accumulation as well as fibrosis resolution. The constituents of this cellular interactome, and how the various subpopulations within the fibrotic niche interact to drive fibrogenesis is an area of active research. Important cellular components of the fibrotic niche include endothelial cells, macrophages, passaging immune cell populations and myofibroblasts. In this review, we will describe how rapidly evolving technologies such as single-cell genomics, spatial transcriptomics and single-cell ligand-receptor analyses are transforming our understanding of the cellular interactome in NAFLD/NASH, and how this new, high-resolution information is being leveraged to develop rational new therapies for patients with NASH.

8.
JHEP Rep ; 4(6): 100479, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35469167

RESUMO

Lipids are a complex and diverse group of molecules with crucial roles in many physiological processes, as well as in the onset, progression, and maintenance of cancers. Fatty acids and cholesterol are the building blocks of lipids, orchestrating these crucial metabolic processes. In the liver, lipid alterations are prevalent as a cause and consequence of chronic hepatitis B and C virus infections, alcoholic hepatitis, and non-alcoholic fatty liver disease and steatohepatitis. Recent developments in lipidomics have also revealed that dynamic changes in triacylglycerols, phospholipids, sphingolipids, ceramides, fatty acids, and cholesterol are involved in the development and progression of primary liver cancer. Accordingly, the transcriptional landscape of lipid metabolism suggests a carcinogenic role of increasing fatty acids and sterol synthesis. However, limited mechanistic insights into the complex nature of the hepatic lipidome have so far hindered the development of effective therapies.

9.
Acta Pharm Sin B ; 12(2): 558-580, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35256934

RESUMO

Hepatocellular carcinoma (HCC) is an aggressive human cancer with increasing incidence worldwide. Multiple efforts have been made to explore pharmaceutical therapies to treat HCC, such as targeted tyrosine kinase inhibitors, immune based therapies and combination of chemotherapy. However, limitations exist in current strategies including chemoresistance for instance. Tumor initiation and progression is driven by reprogramming of metabolism, in particular during HCC development. Recently, metabolic associated fatty liver disease (MAFLD), a reappraisal of new nomenclature for non-alcoholic fatty liver disease (NAFLD), indicates growing appreciation of metabolism in the pathogenesis of liver disease, including HCC, thereby suggesting new strategies by targeting abnormal metabolism for HCC treatment. In this review, we introduce directions by highlighting the metabolic targets in glucose, fatty acid, amino acid and glutamine metabolism, which are suitable for HCC pharmaceutical intervention. We also summarize and discuss current pharmaceutical agents and studies targeting deregulated metabolism during HCC treatment. Furthermore, opportunities and challenges in the discovery and development of HCC therapy targeting metabolism are discussed.

10.
Front Pharmacol ; 12: 745561, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675811

RESUMO

Liver fibrosis is an abnormal proliferation of connective tissue in the liver caused by various pathogenic factors. Chronic liver injury leads to release of inflammatory cytokines and reactive oxygen species (ROS) from damaged hepatocytes, which activates hepatic stellate cells (HSCs) to secrete extracellular matrix proteins, thereby leading to fibrosis. Thus, inhibition of hepatocyte injury and HSC activation, and promotion of apoptosis of activated HSCs are important strategies for prevention of liver fibrosis. In this study, we showed that the germacrone (GER), the main component in the volatile oil of zedoary turmeric, inhibited hepatic fibrosis by regulating multiple signaling pathways. First, GER improved the cell survival rate by inhibiting the production of ROS after hepatocyte injury caused by acetaminophen (APAP). In addition, GER inhibited the activation of HSCs and expression of collagen I by blocking TGF-ß/Smad pathway in LX-2 cells. However, when the concentration of GER was higher than 60 µM, it specifically induced HSCs apoptosis by promoting the expression and activation of apoptosis-related proteins, but it had no effect on hepatocytes. Importantly, GER significantly attenuated the methionine- and choline-deficient (MCD) diet-induced liver fibrosis by inhibiting liver injury and the activation of HSCs in vivo. In summary, GER can not only protect hepatocytes by reducing ROS release to avoid the liver injury-induced HSC activation, but also directly inhibit the activation and survival of HSCs by regulating TGF-ß/Smad and apoptosis pathways. These results demonstrate that GER can be used as a potential therapeutic drug for the treatment of liver fibrosis.

11.
JHEP Rep ; 3(3): 100251, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34151244

RESUMO

The family of vascular endothelial growth factors (VEGFs) includes 5 members (VEGF-A to -D, and placenta growth factor), which regulate several critical biological processes. VEGF-A exerts a variety of biological effects through high-affinity binding to tyrosine kinase receptors (VEGFR-1, -2 and -3), co-receptors and accessory proteins. In addition to its fundamental function in angiogenesis and endothelial cell biology, VEGF/VEGFR signalling also plays a role in other cell types including epithelial cells. This review provides an overview of VEGF signalling in biliary epithelial cell biology in both normal and pathologic conditions. VEGF/VEGFR-2 signalling stimulates bile duct proliferation in an autocrine and paracrine fashion. VEGF/VEGFR-1/VEGFR-2 and angiopoietins are involved at different stages of biliary development. In certain conditions, cholangiocytes maintain the ability to secrete VEGF-A, and to express a functional VEGFR-2 receptor. For example, in polycystic liver disease, VEGF secreted by cystic cells stimulates cyst growth and vascular remodelling through a PKA/RAS/ERK/HIF1α-dependent mechanism, unveiling a new level of complexity in VEFG/VEGFR-2 regulation in epithelial cells. VEGF/VEGFR-2 signalling is also reactivated during the liver repair process. In this context, pro-angiogenic factors mediate the interactions between epithelial, mesenchymal and inflammatory cells. This process takes place during the wound healing response, however, in chronic biliary diseases, it may lead to pathological neo-angiogenesis, a condition strictly linked with fibrosis progression, the development of cirrhosis and related complications, and cholangiocarcinoma. Novel observations indicate that in cholangiocarcinoma, VEGF is a determinant of lymphangiogenesis and of the immune response to the tumour. Better insights into the role of VEGF signalling in biliary pathophysiology might help in the search for effective therapeutic strategies.

12.
Regen Ther ; 18: 292-301, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34504910

RESUMO

INTRODUCTION: Transplantation of IC-2-engineered bone marrow-derived mesenchymal stem cell (BM-MSC) sheets (IC-2 sheets) was previously reported to potentially reduce liver fibrosis. METHODS: This study prepared IC-2-engineered cell sheets from multiple lots of BM-MSCs and examined the therapeutic effects of these cell sheets on liver fibrosis induced by carbon tetrachloride in mice. The predictive factors for antifibrotic effect on liver fibrosis were tried to identify in advance. RESULTS: Secreted matrix metalloproteinase (MMP)-14 was found to be a useful predictive factor to reduce liver fibrosis. Moreover, the cutoff index of MMP-14 for 30% reduction of liver fibrosis was 0.918 fg/cell, judging from univariate analysis and receiver operating curve analysis. In addition, MMP-13 activity and thioredoxin contents in IC-2 sheets were also inversely correlated with hepatic hydroxyproline contents. Finally, IC-2 was also found to promote MMP-14 secretion from BM-MSCs of elderly patients. Surprisingly, the values of secreted MMP-14 from BM-MSCs of elderly patients were much higher than those of young persons. CONCLUSION: The results of this study suggest that the IC-2 sheets would be applicable to clinical use in autologous transplantation for patients with cirrhosis regardless of the patient's age.

13.
Biochem Biophys Rep ; 28: 101168, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34825068

RESUMO

PURPOSE: This current study investigated the effect of metformin treatment on hepatic oxidative stress and inflammation associated with nonalcoholic fatty liver disease (NADLD) in high fat diet (HFD) fed rats. METHOD: Wistar rats were fed with a HFD or laboratory chow diet for 8 weeks. Metformin was administered orally at a dose of 200 mg/kg. Body weight, food and water intake were recorded on daily basis. Oral glucose tolerance test (OGTT), biochemical analysis and histological examinations were conducted on plasma and tissue samples. Antioxidant and anti-inflammatory mRNA expression was analyzed using reverse transcription polymeric chain reaction (RT-PCR). RESULTS: Metformin treatment for 8 weeks prevented HFD-induced weight gain and decreased fat deposition in HFD fed rats. Biochemical analysis revealed that metformin treatment significantly attenuated nitro-oxidative stress markers malondialdehyde (MDA), advanced protein oxidation product (APOP), and excessive nitric oxide (NO) levels in the liver of HFD fed rats. Gene expression analysis demonestrated that metformin treatment was associated with an enhanced expression of antioxidant genes such as Nrf-2, HO-1, SOD and catalase in liver of HFD fed rats. Metformin treatment also found to modulate the expression of fat metabolizing and anti-inflammatory genes including PPAR--γ, C/EBP-α, SREBP1c, FAS, AMPK and GLUT-4. Consistent with the biochemical and gene expression data, the histopathological examination unveiled that metformin treatment attenuated inflammatory cells infiltration, steatosis, hepatocyte necrosis, collagen deposition, and fibrosis in the liver of HFD fed rats. CONCLUSION: In conclusion, this study suggests that metformin might be effective in the prevention and treatment of HFD-induced steatosis by reducing hepatic oxidative stress and inflammation in the liver.

14.
JHEP Rep ; 3(2): 100217, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33490936

RESUMO

BACKGROUND & AIMS: Increasing evidence highlights dietary fructose as a major driver of non-alcoholic fatty liver disease (NAFLD) pathogenesis, the majority of which is cleared on first pass through the hepatic circulation by enzymatic phosphorylation to fructose-1-phosphate via the ketohexokinase (KHK) enzyme. Without a current approved therapy, disease management emphasises lifestyle interventions, but few patients adhere to such strategies. New targeted therapies are urgently required. METHODS: We have used a unique combination of human liver specimens, a murine dietary model of NAFLD and human multicellular co-culture systems to understand the hepatocellular consequences of fructose administration. We have also performed a detailed nuclear magnetic resonance-based metabolic tracing of the fate of isotopically labelled fructose upon administration to the human liver. RESULTS: Expression of KHK isoforms is found in multiple human hepatic cell types, although hepatocyte expression predominates. KHK knockout mice show a reduction in serum transaminase, reduced steatosis and altered fibrogenic response on an Amylin diet. Human co-cultures exposed to fructose exhibit steatosis and activation of lipogenic and fibrogenic gene expression, which were reduced by pharmacological inhibition of KHK activity. Analysis of human livers exposed to 13C-labelled fructose confirmed that steatosis, and associated effects, resulted from the accumulation of lipogenic precursors (such as glycerol) and enhanced glycolytic activity. All of these were dose-dependently reduced by administration of a KHK inhibitor. CONCLUSIONS: We have provided preclinical evidence using human livers to support the use of KHK inhibition to improve steatosis, fibrosis, and inflammation in the context of NAFLD. LAY SUMMARY: We have used a mouse model, human cells, and liver tissue to test how exposure to fructose can cause the liver to store excess fat and become damaged and scarred. We have then inhibited a key enzyme within the liver that is responsible for fructose metabolism. Our findings show that inhibition of fructose metabolism reduces liver injury and fibrosis in mouse and human livers and thus this may represent a potential route for treating patients with fatty liver disease in the future.

15.
JHEP Rep ; 3(4): 100316, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34337369

RESUMO

Portal hypertension, defined as increased pressure in the portal vein, develops as a consequence of increased intrahepatic vascular resistance due to the dysregulation of liver sinusoidal endothelial cells (LSECs) and hepatic stellate cells (HSCs), frequently arising from chronic liver diseases. Extrahepatic haemodynamic changes contribute to the aggravation of portal hypertension. The pathogenic complexity of portal hypertension and the unsuccessful translation of preclinical studies have impeded the development of effective therapeutics for patients with cirrhosis, while counteracting hepatic and extrahepatic mechanisms also pose a major obstacle to effective treatment. In this review article, we will discuss the following topics: i) cellular and molecular mechanisms of portal hypertension, focusing on dysregulation of LSECs, HSCs and hepatic microvascular thrombosis, as well as changes in the extrahepatic vasculature, since these are the major contributors to portal hypertension; ii) translational/clinical advances in our knowledge of portal hypertension; and iii) future directions.

16.
JHEP Rep ; 3(5): 100324, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34381984

RESUMO

The recently identified novel cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) activates the downstream adaptor protein stimulator of interferon genes (STING) by catalysing the synthesis of cyclic GMP-AMP. This in turn initiates an innate immune response through the release of various cytokines, including type I interferon. Foreign DNA (microbial infection) or endogenous DNA (nuclear or mitochondrial leakage) can serve as cGAS ligands and lead to the activation of cGAS-STING signalling. Therefore, the cGAS-STING pathway plays essential roles in infectious diseases, sterile inflammation, tumours, and autoimmune diseases. In addition, cGAS-STING signalling affects the progression of liver inflammation through other mechanisms, such as autophagy and metabolism. In this review, we summarise recent advances in our understanding of the role of cGAS-STING signalling in the innate immune modulation of different liver diseases. Furthermore, we discuss the therapeutic potential of targeting the cGAS-STING pathway in the treatment of liver diseases.

17.
Toxicol Rep ; 8: 1803-1813, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760624

RESUMO

Earlier reports have shown that Cyclophosphamide (CYCP), an anti-malignant drug, elicited cytotoxicity; and that naringin has several beneficial potentials against oxidative stress and dyslipidaemias. We investigated the influence of naringin on free radical scavenging, cellular integrity, cellular ATP, antioxidants, oxidative stress, and lipid profiles in the CYCP-induced erythrocytotoxicity rat model. Rats were pretreated orally by gavage for fourteen consecutive days with three doses (50, 100, and 200 mg/kg) naringin before single CYCP (200 mg/kg, i.p.) administration. Afterwards, the rats were sacrificed. Naringin concentrations required for 50 % scavenging hydrogen peroxide and nitric oxide radical were 0.27 mg/mL and 0.28 mg/mL, respectively. Naringin pretreatment significantly (p < 0.05) protected erythrocytes plasma membrane architecture and integrity by abolishing CYCP-induced decrease in the activity of erythrocyte LDH (a marker of ATP). Pretreatment with naringin remarkably (p < 0.05) reversed CYCP-induced decreases in the erythrocytes glutathione levels, activities of glutathione-S-transferase, catalase, glutathione peroxidase, and glutathione reductase; attenuated CYCP-mediated increases in erythrocytes levels of malondialdehyde, nitric oxide, and major lipids (cholesterol, triacylglycerol, phospholipids, and non-esterified fatty acids). Taken together, different acute pretreatment doses of naringin might avert CYCP-mediated erythrocytes dysfunctions via its antioxidant, free-radical scavenging, and anti-dyslipidaemia properties.

18.
Acta Pharm Sin B ; 10(11): 2171-2182, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33304784

RESUMO

Primary bile acids were reported to augment secretion of chemokine (C‒X‒C motif) ligand 16 (CXCL16) from liver sinusoidal endothelial cells (LSECs) and trigger natural killer T (NKT) cell-based immunotherapy for liver cancer. However, abundant expression of receptors for primary bile acids across the gastrointestinal tract overwhelms the possibility of using agonists against these receptors for liver cancer control. Taking advantage of the intrinsic property of LSECs in capturing circulating nanoparticles in the circulation, we proposed a strategy using nanoemulsion-loaded obeticholic acid (OCA), a clinically approved selective farnesoid X receptor (FXR) agonist, for precisely manipulating LSECs for triggering NKT cell-mediated liver cancer immunotherapy. The OCA-nanoemulsion (OCA-NE) was prepared via ultrasonic emulsification method, with a diameter of 184 nm and good stability. In vivo biodistribution studies confirmed that the injected OCA-NE mainly accumulated in the liver and especially in LSECs and Kupffer cells. As a result, OCA-NE treatment significantly suppressed hepatic tumor growth in a murine orthotopic H22 tumor model, which performed much better than oral medication of free OCA. Immunologic analysis revealed that the OCA-NE resulted in augmented secretion of CXCL16 and IFN-γ, as well as increased NKT cell populations inside the tumor. Overall, our research provides a new evidence for the antitumor effect of receptors for primary bile acids, and should inspire using nanotechnology for precisely manipulating LSECs for liver cancer therapy.

19.
Contemp Clin Trials Commun ; 19: 100601, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32642592

RESUMO

BACKGROUND: Hepatitis B virus (HBV) infection is an important etiology for chronic hepatitis globally, and especially so in China. HBV infection can lead to the development of cirrhosis through the pathological process of liver fibrosis. The effective suppression of HBV replication with NAs or interferon-alpha can histologically regress the fibrotic pathological process, but there remain patients who have achieved anti-viral responses and normalization of serum liver tests, but not liver fibrosis regression. This subset of patients typically presents with advanced liver fibrosis at baseline. Therefore, it is reasonable to administer the anti-fibrotic agents, coupled with antivirals for patients with advanced liver fibrosis due to HBV, in order to improve the fibrotic regression of the patients. Fuzheng Huayu (FZHY) tablet is a botanical product with evidence demonstrating its efficacy against mild to moderate liver fibrosis. The current clinical trial evaluates the efficacy and safety of the combination therapy of traditional Chinese medicine (TCM) (FZHY and herbal granule) and entecavir for HBV compensated cirrhosis. We will enroll HBV patients who presented with a good viral response after 2 years of entecavir treatment but had advanced liver fibrosis (≥Ishak F5). METHODS: This is a single-arm clinical trial, conducted in 20 centers in mainland China over a period of 60 weeks, including 48 weeks of treatment observation and 12 weeks of follow-up. The main inclusion criteria include HBsAg positive more than 6 months, 2 years administration of entecavir, HBV DNA less than 20 IU/ml, liver fibrotic stage ≥ F5, and Child-Pugh scoring <7 (Stage A). The sample size is estimated to be about 190, considering a 20% drop-out and 60% of patient's compliance for the second liver biopsy so a total of 350 participants will be enrolled. All eligible participants are divided into 3 subgroups according to the TCM clinic pattern. And all patients will take 1 Entecavir tablet (0.5 mg) per day, 4 FZHY tablets (1.6 g) three times a day, and specific TCM granule three times a day, which is decided by TCM clinical patterns (CPs) differentiation. The patients were treated for 48 weeks, and follow-up visits at 12, 24, 36, 48 weeks and 60 weeks. The patients will receive the second liver biopsy at the end of 48 weeks, with a 12 weeks follow-up after that.The primary endpoint is the proportion of subjects with a 1-point improvement of liver fibrosis stage using the Ishak score from baseline to week 48 in the study, according to consensus readings evaluated by a panel of hepato-pathologists. The secondary endpoints are the brightness-mode ultrasonic, fibrotic biomarkers. The adverse events (AEs) will be recorded for 60 weeks, and the safety of the combination therapy will be evaluated. Meanwhile, the efficacy in the 3 sub-groups will be stratified and analyzed. DISCUSSION: The study has been designed to test the therapeutic effects and safety of the combination therapy of FZHY and herbal granule with entecavir on persistent advanced stage fibrosis/cirrhosis following 2 years entecavir treatment, and to explore an effective integrative therapy on HBV cirrhosis. TRIAL REGISTRATION: ClinicalTrials.gov. NCT02241616. Registered on September 16, 2014.

20.
JHEP Rep ; 2(1): 100064, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32039405

RESUMO

BACKGROUND & AIMS: C-C motif chemokine ligand 24 (CCL24) is a chemokine that regulates inflammatory and fibrotic activities through its receptor, C-C motif chemokine receptor (CCR3). The aim of the study was to evaluate the involvement of the CCL24-CCR3 axis in liver fibrosis and inflammation and to assess the potential of its blockade, by a monoclonal anti-CCL24 antibody, as a therapeutic strategy for non-alcoholic steatohepatitis (NASH) and liver fibrosis. METHODS: Expression of CCL24 and CCR3 was evaluated in liver biopsies and blood samples. CCL24 involvement in NAFLD/NASH pathogenesis was assessed in Ccl24 knockout mouse using the methionine-choline deficient (MCD) diet experimental model. Antifibrotic and anti-inflammatory effects of CM-101 were tested in the MCD and STAM mouse models and in the thioacetamide (TAA) model in rats. Liver enzymes, liver morphology, histology and collagen deposition, as well as fibrosis- and inflammation-related protein expression were assessed. Activation of hepatic stellate cells (HSCs) was evaluated in the human LX2 cell line. RESULTS: Patients with NASH and advanced NAFLD exhibited significant expression of both CCL24 and CCR3 in liver and blood samples. In the experimental MCD-diet model, Ccl24 knockout mice showed an attenuated liver damage response compared to wild-type mice, exhibiting reduced histological NAFLD activity scores and fibrosis, as well as lower levels of liver enzymes. Blocking CCL24 using CM-101 robustly reduced liver damage in 3 experimental animal models (MCD, STAM and TAA), as demonstrated by attenuation of liver fibrosis and NAFLD activity score. Furthermore, blocking CCL24 by CM-101 significantly inhibited CCL24-induced HSC motility, α-SMA expression and pro-collagen I secretion. CONCLUSION: Our results reveal that blocking CCL24 significantly attenuates liver fibrosis and inflammation and may have a potential therapeutic effect in patients with NASH and/or liver fibrosis. LAY SUMMARY: CCL24 is a chemokine that regulates inflammation and fibrosis. It was found to be significantly expressed in patients with non-alcoholic steatohepatitis, in whom it regulates profibrotic processes in the liver. Herein, we show that blockade of CCL24 using a monoclonal antibody robustly attenuated liver fibrosis and inflammation in animal models, thus suggesting a potential therapeutic role for an anti-CCL24 agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA