Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Chromosomes Cancer ; 63(1): e23198, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658696

RESUMO

Composite hemangioendothelioma is a rare, locally aggressive, and rarely metastasizing vascular neoplasm which affects both children and adults. Recently, a number of gene fusions including YAP1::MAML2, PTBP1::MAML2, and EPC1::PHC2 have been detected in a small subset of cases with or without neuroendocrine expression. Herein, we present four additional cases with novel in-frame fusions. The cohort comprises two females and two males with a wide age range at diagnosis (24-80 years). Two tumors were deep involving the right brachial plexus and mediastinum, while the remaining were superficial (right plantar foot and abdominal wall). The size ranged from 1.5 to 4.8 cm in greatest dimension. Morphologically, all tumors had an admixture of at least two architectural patterns including retiform hemangioendothelioma, hemangioma, epithelioid hemangioendothelioma, or angiosarcoma. The tumors were positive for endothelial markers CD31 (3/3), ERG (4/4), and D2-40 (1/4, focal), while SMA was expressed in 2/3 highlighting the surrounding pericytes. Synaptophysin showed immunoreactivity in 2/3 cases. One patient had a local recurrence after 40 months, while two patients had no evidence of disease 4 months post-resection. Targeted RNA sequencing detected novel in-frame fusions in each of the cases: HSPG2::FGFR1, YAP1::FOXR1, ACTB::MAML2, and ARID1B::MAML2. The two cases with neuroendocrine expression occurred as superficial lesions and harbored YAP1::FOXR1 and ARID1B::MAML2 fusions. Our study expands on the molecular spectrum of this enigmatic tumor, further enhancing our current understanding of the disease.


Assuntos
Hemangioendotelioma Epitelioide , Hemangioendotelioma , Hemangioma , Adulto , Masculino , Criança , Feminino , Humanos , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Hemangioendotelioma/patologia , Hemangioendotelioma Epitelioide/genética , Sequência de Bases , Diagnóstico Diferencial , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas , Proteína de Ligação a Regiões Ricas em Polipirimidinas
2.
Alzheimers Dement ; 20(2): 819-836, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37791598

RESUMO

INTRODUCTION: We discovered that the APOE3 Christchurch (APOE3Ch) variant may provide resistance to Alzheimer's disease (AD). This resistance may be due to reduced pathological interactions between ApoE3Ch and heparan sulfate proteoglycans (HSPGs). METHODS: We developed and characterized the binding, structure, and preclinical efficacy of novel antibodies targeting human ApoE-HSPG interactions. RESULTS: We found that one of these antibodies, called 7C11, preferentially bound ApoE4, a major risk factor for sporadic AD, and disrupts heparin-ApoE4 interactions. We also determined the crystal structure of a Fab fragment of 7C11 and used computer modeling to predict how it would bind to ApoE. When we tested 7C11 in mouse models, we found that it reduced recombinant ApoE-induced tau pathology in the retina of MAPT*P301S mice and curbed pTau S396 phosphorylation in brains of systemically treated APOE4 knock-in mice. Targeting ApoE-HSPG interactions using 7C11 antibody may be a promising approach to developing new therapies for AD.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Camundongos , Humanos , Animais , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Fosforilação , Apolipoproteínas E/metabolismo , Doença de Alzheimer/patologia , Fatores Imunológicos , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo
3.
EMBO J ; 38(11)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31000523

RESUMO

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells with strong immunosuppressive activity that promote tumor growth. In this study, we describe a mechanism by which cancer cells control MDSCs in human cancers by upregulating TRF2, a protein required for telomere stability. Specifically, we showed that the TRF2 upregulation in cancer cells has extratelomeric roles in activating the expression of a network of genes involved in the biosynthesis of heparan sulfate proteoglycan, leading to profound changes in glycocalyx length and stiffness, as revealed by atomic force microscopy. This TRF2-dependent regulation facilitated the recruitment of MDSCs, their activation via the TLR2/MyD88/IL-6/STAT3 pathway leading to the inhibition of natural killer recruitment and cytotoxicity, and ultimately tumor progression and metastasis. The clinical relevance of these findings is supported by our analysis of cancer cohorts, which showed a correlation between high TRF2 expression and MDSC infiltration, which was inversely correlated with overall patient survival.


Assuntos
Glicocálix/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Evasão Tumoral/fisiologia , Animais , Células Cultivadas , Feminino , Regulação Neoplásica da Expressão Gênica , Glicocálix/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/fisiologia , Células NIH 3T3 , Neoplasias/genética , Neoplasias/mortalidade , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Evasão Tumoral/genética
4.
J Neuroinflammation ; 20(1): 251, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37915090

RESUMO

BACKGROUND: Disruption of the extracellular matrix at the blood-brain barrier (BBB) underpins neuroinflammation in multiple sclerosis (MS). The degradation of extracellular matrix components, such as heparan sulfate (HS) proteoglycans, can be prevented by treatment with HS-mimetics through their ability to inhibit the enzyme heparanase. The heparanase-inhibiting ability of our small dendrimer HS-mimetics has been investigated in various cancers but their efficacy in neuroinflammatory models has not been evaluated. This study investigates the use of a novel HS-mimetic, Tet-29, in an animal model of MS. METHODS: Neuroinflammation was induced in mice by experimental autoimmune encephalomyelitis, a murine model of MS. In addition, the BBB and choroid plexus were modelled in vitro using transmigration assays, and migration of immune cells in vivo and in vitro was quantified by flow cytometry. RESULTS: We found that Tet-29 significantly reduced lymphocyte accumulation in the central nervous system which, in turn, decreased disease severity in experimental autoimmune encephalomyelitis. The disease-modifying effect of Tet-29 was associated with a rescue of BBB integrity, as well as inhibition of activated lymphocyte migration across the BBB and choroid plexus in transwell models. In contrast, Tet-29 did not significantly impair in vivo or in vitro steady state-trafficking under homeostatic conditions. CONCLUSIONS: Together these results suggest that Tet-29 modulates, rather than abolishes, trafficking across central nervous system barriers.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Encefalomielite Autoimune Experimental/metabolismo , Doenças Neuroinflamatórias , Sistema Nervoso Central/metabolismo , Barreira Hematoencefálica/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos Endogâmicos C57BL
5.
Alzheimers Dement ; 19(9): 3835-3847, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36951251

RESUMO

INTRODUCTION: Genetic associations with Alzheimer's disease (AD) age at onset (AAO) could reveal genetic variants with therapeutic applications. We present a large Colombian kindred with autosomal dominant AD (ADAD) as a unique opportunity to discover AAO genetic associations. METHODS: A genetic association study was conducted to examine ADAD AAO in 340 individuals with the PSEN1 E280A mutation via TOPMed array imputation. Replication was assessed in two ADAD cohorts, one sporadic early-onset AD study and four late-onset AD studies. RESULTS: 13 variants had p<1×10-7 or p<1×10-5 with replication including three independent loci with candidate associations with clusterin including near CLU. Other suggestive associations were identified in or near HS3ST1, HSPG2, ACE, LRP1B, TSPAN10, and TSPAN14. DISCUSSION: Variants with suggestive associations with AAO were associated with biological processes including clusterin, heparin sulfate, and amyloid processing. The detection of these effects in the presence of a strong mutation for ADAD reinforces their potentially impactful role.


Assuntos
Doença de Alzheimer , Clusterina , Humanos , Clusterina/genética , Colômbia , Doença de Alzheimer/diagnóstico , Mutação/genética , Amiloide , Presenilina-1/genética , Idade de Início
6.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982528

RESUMO

Heparan sulfate proteoglycans (HSPGs) possess various functions driving malignancy of tumors. However, their impact on tumor cell sensitivity to cytotoxic treatment is far less understood. Aiming to investigate this, we depleted HSPGs by downregulating Exostosin 1 (EXT1), a key enzyme in HS formation, or upregulating heparanase in human MV3 human melanoma cells, and investigated their response to cytotoxic drugs. Cytotoxicity of trametinib, doxorubicin, and mitoxantrone was detected by MTT assay. Insights into intracellular signaling was provided by kinome protein profiler array, and selected kinases were inhibited to investigate their impact on cell sensitization and migratory dynamics. EXT1 knockdown (EXT1kd) in MV3 cells affected the activity of doxorubicin and mitoxantrone, significantly increasing EC50 values two- or fourfold, respectively. Resistance formation was scarcely related to HSPG deficiency, suggested by enzymatic cleavage of HSPG in control cells. Notably, EXT1kd induced an upregulation of EGFR signaling via JNK and MEK/ERK, and hence blocking these kinases returned resistance to a sensitive level. JNK appeared as a key signal component, also inducing higher migratory activity of EXT1kd cells. Furthermore, EXT1kd upregulated thrombotic properties of MV3 cells, indicated by tissue factor and PAR-1 expression, functionally reflected by a stronger activation of platelet aggregation. EXT1 was confirmed to act as a tumor suppressor, shown here for the first time to affect chemosensitivity of melanoma cells.


Assuntos
Antineoplásicos , Melanoma , Humanos , Doxorrubicina , Resistencia a Medicamentos Antineoplásicos/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno , Mitoxantrona
7.
Horm Behav ; 142: 105171, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35381449

RESUMO

The ovary plays an important role in mediating both a female's response to her social environment and communicating it to her developing offspring via maternal effects. Past work has focused on how ovarian hormones respond to competition, but we know little about how the broader ovarian transcriptomic landscape changes, either during or after competition, giving us a narrow perspective on how socially induced phenotypes arise. Here, we experimentally generated social competition among wild, cavity-nesting female birds (tree swallows, Tachycineta bicolor), a species in which females lack a socially induced rise in circulating testosterone but they nevertheless increase allocation to eggs. After territory settlement, we reduced availability of nesting cavities, generating heightened competition; within 24 h we reversed the manipulation, causing aggressive interactions to subside. We measured ovarian transcriptomic responses at the peak of competition and 48 h later, along with date-matched controls. Network analyses indicated that competing females experienced an immediate and temporary decrease in the expression of genes involved in the early stages of steroidogenesis, and this was moderately correlated with plasma testosterone; however, two days after competition had ended, there was a marked increase in the expression of genes involved in the final stages of steroidogenesis, including HSD17B1. Gene networks related to the cell cycle, muscle performance, and extracellular matrix organization also displayed altered activity. Although the functional consequences of these findings are unclear, they shed light on socially responsive ovarian genomic mechanisms that could potentially exert lasting effects on behavior, reproduction, and maternal effects.


Assuntos
Comportamento de Nidação , Andorinhas , Animais , Feminino , Herança Materna , Comportamento de Nidação/fisiologia , Ovário/metabolismo , Reprodução/fisiologia , Andorinhas/genética , Testosterona/metabolismo
8.
Mol Cell Biochem ; 477(1): 241-254, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34657240

RESUMO

DAL-1/4.1B is frequently absent in lung cancer tissues, which is significantly related to the occurrence and development of lung cancer. In this research, we found that DAL-1/4.1B affected the uptake of exosomes by lung cancer cells. When the expression of DAL-1/4.1B increased and decreased, the ability of exosome uptake enhanced and attenuated correspondingly. And we found that when cells were treated with different vesicles uptake inhibitors (chlorpromazine, methyl-ß-cyclodextrin (MßCD), cytochalasin D, chloroquine and heparin) and heparinase (HSPE), only heparin and HSPE counteracted the uptake enhancement effect caused by DAL-1/4.1B. Therefore, we speculated that DAL-1/4.1B might promote the uptake of exosomes through the heparan sulfate proteoglycans (HSPGs) pathway. After screening the expression of HSPGs and HSPE in H292 cells, the expression of heparan sulfate proteoglycan 2 (HSPG2) increased with overexpression of DAL-1/4.1B and decreased with knockdown of DAL-1/4.1B. Meanwhile, exosome uptake decreased with HSPG2 knockdown in H292 and DAL-1/4.1B-overexpressing H292 cells. Moreover, knockdown of DAL-1/4.1B and HSPG2 in lung cancer A549 cells resulted in a similar decrease in exosome uptake, and the expression of HSPG2 was also decreased with DAL-1/4.1B knockdown. These results indicated that HSPG2 directly affected the uptake of exosomes, while DAL-1/4.1B positively affected the expression of HSPG2. Therefore, DAL-1/4.1B may promote cellular adhesion and inhibit migration in cancer cells.


Assuntos
Exossomos/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Células A549 , Exossomos/genética , Proteoglicanas de Heparan Sulfato/genética , Humanos , Neoplasias Pulmonares/genética , Células MCF-7 , Proteínas dos Microfilamentos/genética , Proteínas de Neoplasias/genética
9.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35887248

RESUMO

The cellular heterogeneity of the tumor environment of breast cancer (BC) is extremely complex and includes different actors such as neoplastic, stromal, and immunosuppressive cells, which contribute to the chemical and mechanical modification of the environment surrounding the tumor-exasperating immune-escaping mechanisms. In addition to molecular signals that make the tumor microenvironment (TME) unacceptable for the penetrance of the immune system, the physical properties of tumoral extracellular matrix (tECM) also have carved out a fundamental role in the processes of the protection of the tumor niche. Tumor-associated macrophages (TAMs), with an M2 immunosuppressive phenotype, are important determinants for the establishment of a tumor phenotype excluded from T cells. NF-κB transcription factors orchestrate innate immunity and represent the common thread between inflammation and cancer. Many studies have focused on canonical activation of NF-κB; however, activation of non-canonical signaling predicts poor survival and resistance to therapy. In this scenario, we demonstrated the existence of an unusual association of NF-κB components in TAMs that determines the deposition of HSPG2 that affects the stiffness of tECM. These results highlight a new mechanism counterbalanced between physical factors and a new perspective of mechano-pathology to be targeted to counteract immune evasion in BC.


Assuntos
NF-kappa B , Neoplasias , Humanos , Macrófagos , Neoplasias/patologia , Microambiente Tumoral , Macrófagos Associados a Tumor
10.
J Mol Liq ; 367: 120566, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36276265

RESUMO

A key step to inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is to prevent the entry of the virus into the host cells. The receptor-binding domains (RBDs) of spike proteins of SARS-CoV and other human coronaviruses utilize heparan sulfate proteoglycans (HSPGs) as the primary receptors for their accumulation on the cell surface and then scan for binding to the main entry receptor angiotensin-converting enzyme 2 (ACE2). SARS-CoV and SARS-CoV-2 share structurally similar RBDs and therefore, it is possible that SARS-COV-2 primarily binds to HSPGs followed by binding to the ACE2 receptors. A promising strategy to inhibit virus infection is to circulate exogenous bioactive moieties structurally mimicking cellular HSPG and ACE2 which act as decoy receptors binding to SARS-CoV-2 and competitively inhibit virus entry to the host cells mediated by cellular-bound HSPG and ACE2. Using a molecular docking tool, we identified carboxymethyl benzyl amide sulfonate (CMBS) and polyanetholesulfonic acid (PAS) as the suitable HSPG mimicking ligands, and Paenibacillus sp. B38-derived carboxypeptidase (B38-CAP) and Bacillus subtilis-derived carboxypeptidase (BS-CAP) as the potential ACE2-like enzymes having a strong binding affinity to the spike proteins as that of cellular HSPG and ACE2. Further, the binding stability and compactness of these moieties with SARS-CoV-2 were analyzed through molecular dynamics (MD) simulations, and the results indicated that these moieties form well-stable complexes with the RBD of spike proteins. The identified moieties could be conjugated to the surfaces of non-toxic nanoparticles to provide multiple interactions to efficiently shield SARS-CoV-2, and inhibit viral entry to the host cells.

11.
BMC Dev Biol ; 21(1): 7, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33678174

RESUMO

BACKGROUND: Heparan sulfate proteoglycan 2 (HSPG2) encodes for perlecan, a large proteoglycan that plays an important role in cartilage formation, cell adhesion, and basement membrane stability. Mutations in HSPG2 have been associated with Schwartz-Jampel Syndrome (SJS) and Dyssegmental Dysplasia Silverman-Handmaker Type (DDSH), two disorders characterized by skeletal abnormalities. These data indicate a function for HSPG2 in cartilage development/maintenance. However, the mechanisms in which HSPG2 regulates cartilage development are not completely understood. Here, we explored the relationship between this gene and craniofacial development through morpholino-mediated knockdown of hspg2 using zebrafish. RESULTS: Knockdown of hspg2 resulted in abnormal development of the mandibular jaw joint at 5 days post fertilization (DPF). We surmised that defects in mandible development were a consequence of neural crest cell (NCC) dysfunction, as these multipotent progenitors produce the cartilage of the head. Early NCC development was normal in morphant animals as measured by distal-less homeobox 2a (dlx2a) and SRY-box transcription factor 10 (sox10) expression at 1 DPF. However, subsequent analysis at later stages of development (4 DPF) revealed a decrease in the number of Sox10 + and Collagen, type II, alpha 1a (Col2a1a)+ cells within the mandibular jaw joint region of morphants relative to random control injected embryos. Concurrently, morphants showed a decreased expression of nkx3.2, a marker of jaw joint formation, at 4 DPF. CONCLUSIONS: Collectively, these data suggest a complex role for hspg2 in jaw joint formation and late stage NCC differentiation.


Assuntos
Nanismo , Osteocondrodisplasias , Animais , Mandíbula , Crista Neural , Peixe-Zebra/genética
12.
J Autoimmun ; 124: 102714, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34403915

RESUMO

BACKGROUND: Viral infections may trigger autoimmunity in genetically predisposed individuals. Immunizations mimic viral infections immunologically, but only in rare instances vaccinations coincide with the onset of autoimmunity. Inadvertent vaccine injection into periarticular shoulder tissue can cause inflammatory tissue damage ('shoulder injury related to vaccine administration, SIRVA). Thus, this accident provides a model to study if vaccine-induced pathogen-specific immunity accompanied by a robust inflammatory insult may trigger autoimmunity in specific genetic backgrounds. METHODS: We studied 16 otherwise healthy adults with suspected SIRVA occurring following a single work-related influenza immunization campaign in 2017. We performed ultrasound, immunophenotypic analyses, HLA typing, and influenza- and self-reactivity functional immunoassays. Vaccine-related bone toxicity and T cell/osteoclast interactions were assessed in vitro. FINDINGS: Twelve of the 16 subjects had evidence of inflammatory tissue damage on imaging, including bone erosions in six. Tissue damage was associated with a robust peripheral blood T and B cell activation signature and extracellular matrix-reactive autoantibodies. All subjects with erosions were HLA-DRB1*04 positive and showed extracellular matrix-reactive HLA-DRB1*04 restricted T cell responses targeting heparan sulfate proteoglycan (HSPG). Antigen-specific T cells potently activated osteoclasts via RANK/RANK-L, and the osteoclast activation marker Trap5b was high in sera of patients with an erosive shoulder injury. In vitro, the vaccine component alpha-tocopheryl succinate recapitulated bone toxicity and stimulated osteoclasts. Auto-reactivity was transient, with no evidence of progression to rheumatoid arthritis or overt autoimmune disease. CONCLUSION: Vaccine misapplication, potentially a genetic predisposition, and vaccine components contribute to SIRVA. The association with autoimmunity risk allele HLA-DRB1*04 needs to be further investigated. Despite transient autoimmunity, SIRVA was not associated with progression to autoimmune disease during two years of follow-up.


Assuntos
Inflamação/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Cápsula Articular/imunologia , Orthomyxoviridae/fisiologia , Osteoclastos/imunologia , Linfócitos T/imunologia , Adulto , Autoimunidade , Doença Crônica , Matriz Extracelular/metabolismo , Feminino , Predisposição Genética para Doença , Cadeias HLA-DRB1/genética , Proteoglicanas de Heparan Sulfato/imunologia , Teste de Histocompatibilidade , Humanos , Masculino , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Fosfatase Ácida Resistente a Tartarato/sangue , Vacinação/efeitos adversos , Adulto Jovem
13.
Hum Genomics ; 14(1): 18, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398079

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease affecting the central nervous system in young adults. Heparan sulfate proteoglycans (HSPGs) are ubiquitous to the cell surface and the extracellular matrix. HSPG biosynthesis is a complex process involving enzymatic attachment of heparan sulfate (HS) chains to a core protein. HS side chains mediate specific ligand and growth factor interactions directing cellular processes including cell adhesion, migration and differentiation. Two main families of HSPGs exist, the syndecans (SDC1-4) and glypicans (GPC1-6). The SDCs are transmembrane proteins, while the GPC family are GPI linked to the cell surface. SDC1 has well-documented interactions with numerous signalling pathways. Genome-wide association studies (GWAS) have identified regions of the genome associated with MS including a region on chromosome 13 containing GPC5 and GPC6. International studies have revealed significant associations between this region and disease development. The exostosin-1 (EXT1) and sulfatase-1 (SULF1) are key enzymes contributing to the generation of HS chains. EXT1, with documented tumour suppressor properties, is involved in the initiation and polymerisation of the growing HS chain. SULF1 removes 6-O-sulfate groups from HS chains, affecting protein-ligand interactions and subsequent downstream signalling with HS modification potentially having significant effects on MS progression. In this study, we identified significant associations between single nucleotide polymorphisms in SDC1, GPC5 and GPC6 and MS in an Australian Caucasian case-control population. Further significant associations in these genes were identified when the population was stratified by sex and disease subtype. No association was found for EXT1 or SULF1.


Assuntos
Biomarcadores/análise , Estudo de Associação Genômica Ampla , Proteoglicanas de Heparan Sulfato/química , Esclerose Múltipla/patologia , Polimorfismo de Nucleotídeo Único , População Branca/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Austrália/epidemiologia , Estudos de Casos e Controles , Feminino , Glipicanas/genética , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/enzimologia , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/genética , N-Acetilglucosaminiltransferases/genética , Sulfotransferases/genética , Sindecana-1/genética , Adulto Jovem
14.
Int J Mol Sci ; 22(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809984

RESUMO

The Perlecan-Semaphorin 3A-Plexin A1-Neuropilin-1 (PSPN) Complex at the cell surface of prostate cancer (PCa) cells influences cell-cell cohesion and dyscohesion. We investigated matrix metalloproteinase-7/matrilysin (MMP-7)'s ability to digest components of the PSPN Complex in bone metastatic PCa cells using in silico analyses and in vitro experiments. Results demonstrated that in addition to the heparan sulfate proteoglycan, perlecan, all components of the PSPN Complex were degraded by MMP-7. To investigate the functional consequences of PSPN Complex cleavage, we developed a preformed microtumor model to examine initiation of cell dispersion after MMP-7 digestion. We found that while perlecan fully decorated with glycosaminoglycan limited dispersion of PCa microtumors, MMP-7 initiated rapid dyscohesion and migration even with perlecan present. Additionally, we found that a bioactive peptide (PLN4) found in perlecan domain IV in a region subject to digestion by MMP-7 further enhanced cell dispersion along with MMP-7. We found that digestion of the PSPN Complex with MMP-7 destabilized cell-cell junctions in microtumors evidenced by loss of co-registration of E-cadherin and F-actin. We conclude that MMP-7 plays a key functional role in PCa cell transition from a cohesive, indolent phenotype to a dyscohesive, migratory phenotype favoring production of circulating tumor cells and metastasis to bone.


Assuntos
Metaloproteinase 7 da Matriz/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neoplasias da Próstata/metabolismo , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Imunofluorescência , Humanos , Masculino , Modelos Biológicos , Neuropilina-1/metabolismo , Neoplasias da Próstata/etiologia , Ligação Proteica , Proteólise
15.
J Mammary Gland Biol Neoplasia ; 25(1): 69-77, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32124140

RESUMO

Localised breast cancer can be cured by surgery and adjuvant treatments, but mortality remains high as some tumours metastasize early. Perlecan is a basement membrane (BM) protein involved in tumour development and progression. Here, mRNA and protein expression of perlecan, and mRNA expression of matrix degrading enzymes were studied in normal breast and invasive breast cancer, and correlated to prognostic risk factors, in particular oestrogen status. Moreover, plasma levels of perlecan were measured in patients with breast cancer and compared with controls. mRNA data was extracted from the Cancer Genome Atlas database. Perlecan protein expression was visualized using immunofluorescence and plasma levels measured by ELISA assay. Perlecan mRNA levels were twice as high in normal breast compared with breast cancer tissue. A strong correlation was found between mRNA expression of perlecan and several matrix-degrading enzymes in oestrogen receptor positive (ER+) tumours. Perlecan protein was localized to both epithelial and vascular BMs, but absent in the stroma in normal breast. In breast cancer, the expression of perlecan in epithelial BM was fragmented or completely lost, with a marked upregulation of perlecan expression in the stroma. Significantly higher levels of perlecan were found in plasma of ER+ patients when compared with ER- patients. This study shows that perlecan expression and degradation in breast cancer may be linked to the ER status of the tumour.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Lobular/patologia , Proteoglicanas de Heparan Sulfato/sangue , Receptores de Estrogênio/metabolismo , Células Estromais/metabolismo , Biomarcadores Tumorais/genética , Neoplasias da Mama/sangue , Neoplasias da Mama/genética , Carcinoma Ductal de Mama/sangue , Carcinoma Ductal de Mama/genética , Carcinoma Lobular/sangue , Carcinoma Lobular/genética , Estudos de Casos e Controles , Estudos de Coortes , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Seguimentos , Proteoglicanas de Heparan Sulfato/genética , Humanos , Pessoa de Meia-Idade , Prognóstico , Receptor ErbB-2/metabolismo , Receptores de Progesterona/metabolismo , Células Estromais/patologia
16.
J Biol Chem ; 294(36): 13292-13303, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31315930

RESUMO

Hepcidin is a liver-derived peptide hormone that controls systemic iron homeostasis. Its expression is regulated by the bone morphogenetic protein 6 (BMP6)/SMAD1/5/8 pathway and by the proinflammatory cytokine interleukin 6 (IL6). Proteoglycans that function as receptors of these signaling proteins in the liver are commonly decorated by heparan sulfate, but the potential role of hepatic heparan sulfate in hepcidin expression and iron homeostasis is unclear. Here, we show that modulation of hepatic heparan sulfate significantly alters hepcidin expression and iron metabolism both in vitro and in vivo Specifically, enzymatic removal of heparan sulfate from primary human hepatocytes, CRISPR/Cas9 manipulation of heparan sulfate biosynthesis in human hepatoma cells, or pharmacological manipulation of heparan sulfate-protein interactions using sodium chlorate or surfen dramatically reduced baseline and BMP6/SMAD1/5/8-dependent hepcidin expression. Moreover inactivation of the heparan sulfate biosynthetic gene N-deacetylase and N-sulfotransferase 1 (Ndst1) in murine hepatocytes (Ndst1f/fAlbCre+) reduced hepatic hepcidin expression and caused a redistribution of systemic iron, leading to iron accumulation in the liver and serum of mice. Manipulation of heparan sulfate had a similar effect on IL6-dependent hepcidin expression in vitro and suppressed IL6-mediated iron redistribution induced by lipopolysaccharide in vivo These results provide compelling evidence that hepatocyte heparan sulfate plays a key role in regulating hepcidin expression and iron homeostasis in mice and in human hepatocytes.


Assuntos
Heparitina Sulfato/metabolismo , Hepatócitos/metabolismo , Hepcidinas/genética , Homeostase , Ferro/metabolismo , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Hepcidinas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos , Regiões Promotoras Genéticas/genética
17.
Adv Exp Med Biol ; 1245: 133-146, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32266656

RESUMO

The tumor microenvironment (TME) is rich in matrix components, growth factors, cytokines, and enzymatic modifiers that respond to changing conditions, to alter the fundamental properties of the tumor bed. Perlecan/HSPG2, a large, multi-domain heparan sulfate proteoglycan, is concentrated in the reactive stroma that surrounds tumors. Depending on its state in the TME, perlecan can either prevent or promote the progression of cancers to metastatic disease. Breast, prostate, lung, and renal cancers all preferentially metastasize to bone, a dense, perlecan-rich environment that is initially a "hostile" niche for cancer cells. Driven by inflammation, production of perlecan and its enzyme modifiers, which include matrix metalloproteinases (MMPs), sulfatases (SULFs), and heparanase (HPSE), increases in the reactive stroma surrounding growing and invading tumors. MMPs act upon the perlecan core protein, releasing bioactive fragments of the protein, primarily from C-terminal domains IV and V. These fragments influence cell adhesion, invasion, and angiogenesis. Sulfatases and heparanases act directly upon the heparan sulfate chains, releasing growth factors from reservoirs to reach receptors on the cancer cell surface. We propose that perlecan modifiers, by promoting the degradation of the perlecan-rich stroma, "flip the molecular switch" and convert the "hostile" stroma into a welcoming one that supports cancer dissemination and metastasis. Targeted therapies that prevent this molecular conversion of the TME should be considered as potential new therapeutics to limit metastasis.


Assuntos
Proteoglicanas de Heparan Sulfato/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral , Proteínas da Matriz Extracelular/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/patologia
18.
J Assist Reprod Genet ; 37(3): 657-667, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31974739

RESUMO

PURPOSE: The study investigated potential correlations between the expression levels of ADAMTS1 and HSPG2 in cumulus cells (CCs) and controlled ovarian hyperstimulation (COH) outcomes. METHODS: RT-PCR was used to determine ADAMTS1 and HSPG2 mRNA levels in mice CCs at different timepoints (0, 4, 8, 12, and 16 h) after human chorionic gonadotropin (hCG) injection, and in CCs after RNAi treatment. Women with polycystic ovary syndrome (PCOS) (n = 45) and normal ovulatory controls (n = 103) undergoing IVF/ICSI were recruited. Relative ADAMTS1 and HSPG2 mRNA levels were measured by RT-PCR. Moreover, correlations of ADAMTS1 and HSPG2 levels with COH outcomes were analyzed. RESULTS: At different timepoints after hCG treatment, ADAMTS1 mRNA had the highest level at 12 h, whereas HSPG2 showed opposite profiles to ADAMTS1 with the lowest level at 12 h. HSPG2 expression was upregulated after ADAMTS1 RNAi treatment The PCOS group had higher HSPG2 and lower ADAMTS1 expression levels than controls. In normal ovulatory women (control group), a higher expression of ADAMTS1 and lower expression of HSPG2 were associated with more mature oocytes, transplantable embryos, and good quality embryos, whereas higher transplantable embryo rates and good quality embryo rates were obtained only with lower HSPG2 expression. ROC curves showed the co-measurement of ADAMTS1 and HSPG2 had a better predictive power than separate analyses. CONCLUSION: The dynamic profiles of ADAMTS1 and HSPG2 were inversely correlated in CCs. In PCOS and normal ovulatory patients, higher ADAMTS1 and lower HSPG2 expression levels in CCs were related to better COH outcomes.


Assuntos
Proteína ADAMTS1/genética , Proteoglicanas de Heparan Sulfato/genética , Síndrome de Hiperestimulação Ovariana/genética , Animais , Células do Cúmulo/metabolismo , Células do Cúmulo/patologia , Feminino , Fertilização in vitro , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Oogênese/genética , Síndrome de Hiperestimulação Ovariana/patologia , Indução da Ovulação , RNA Mensageiro/genética
19.
J Biol Chem ; 293(27): 10826-10840, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29752409

RESUMO

Transcellular propagation of protein aggregate "seeds" has been proposed to mediate the progression of neurodegenerative diseases in tauopathies and α-synucleinopathies. We previously reported that tau and α-synuclein aggregates bind heparan sulfate proteoglycans (HSPGs) on the cell surface, promoting cellular uptake and intracellular seeding. However, the specificity and binding mode of these protein aggregates to HSPGs remain unknown. Here, we measured direct interaction with modified heparins to determine the size and sulfation requirements for tau, α-synuclein, and ß-amyloid (Aß) aggregate binding to glycosaminoglycans (GAGs). Varying the GAG length and sulfation patterns, we next conducted competition studies with heparin derivatives in cell-based assays. Tau aggregates required a precise GAG architecture with defined sulfate moieties in the N- and 6-O-positions, whereas the binding of α-synuclein and Aß aggregates was less stringent. To determine the genes required for aggregate uptake, we used CRISPR/Cas9 to individually knock out the major genes of the HSPG synthesis pathway in HEK293T cells. Knockouts of the extension enzymes exostosin 1 (EXT1), exostosin 2 (EXT2), and exostosin-like 3 (EXTL3), as well as N-sulfotransferase (NDST1) or 6-O-sulfotransferase (HS6ST2) significantly reduced tau uptake, consistent with our biochemical findings, and knockouts of EXT1, EXT2, EXTL3, or NDST1, but not HS6ST2 reduced α-synuclein uptake. In summary, tau aggregates display specific interactions with HSPGs that depend on GAG length and sulfate moiety position, whereas α-synuclein and Aß aggregates exhibit more flexible interactions with HSPGs. These principles may inform the development of mechanism-based therapies to block transcellular propagation of amyloid protein-based pathologies.


Assuntos
Peptídeos beta-Amiloides/química , Glicosaminoglicanos/química , Proteoglicanas de Heparan Sulfato/metabolismo , Enxofre/metabolismo , Tauopatias/patologia , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Sistemas CRISPR-Cas , Glicosaminoglicanos/metabolismo , Humanos , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Sulfotransferases/antagonistas & inibidores , Sulfotransferases/genética , Sulfotransferases/metabolismo , Tauopatias/metabolismo
20.
Development ; 143(11): 1907-13, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27048738

RESUMO

The correct migration and axon extension of neurons in the developing nervous system is essential for the appropriate wiring and function of neural networks. Here, we report that O-sulfotransferases, a class of enzymes that modify heparan sulfate proteoglycans (HSPGs), are essential to regulate neuronal migration and axon development. We show that the 6-O-sulfotransferases HS6ST1 and HS6ST2 are essential for cranial axon patterning, whilst the 2-O-sulfotransferase HS2ST (also known as HS2ST1) is important to regulate the migration of facial branchiomotor (FBM) neurons in the hindbrain. We have also investigated how HS2ST interacts with other signals in the hindbrain and show that fibroblast growth factor (FGF) signalling regulates FBM neuron migration in an HS2ST-dependent manner.


Assuntos
Orientação de Axônios , Movimento Celular/efeitos dos fármacos , Neurônios Motores/citologia , Proteoglicanas/metabolismo , Crânio/metabolismo , Sulfatos/metabolismo , Animais , Orientação de Axônios/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/farmacologia , Camundongos Endogâmicos C57BL , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Crânio/efeitos dos fármacos , Sulfotransferases/metabolismo , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA