Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39062816

RESUMO

To assess the effects of hydroxysafflor yellow A (HSYA) on ultraviolet A (UVA)-induced damage in HaCaT keratinocytes. HaCaT keratinocytes were UVA-irradiated, and the effects of HSYA on cell viability, reactive oxygen species (ROS) generation, lipid peroxidation, and messenger (m)RNA expression were measured. mRNA expressions of matrix metalloproteinase (MMP)-1, MMP-2, MMP-9, and cyclooxygenase (COX)-2 were determined by a real-time polymerase chain reaction (RT-PCR). UVA exposure led to a decrease in cell viability and an increase in ROS generation in HaCaT keratinocytes. HSYA effectively increased the viability of HaCaT keratinocytes after UVA exposure and protected them from UVA-induced oxidative stress. Moreover, HSYA inhibited expressions of MMP-1, MMP-2, MMP-9, and COX-2 by HaCaT keratinocytes with UVA-induced photodamage. Our results suggest that HSYA can act as a free radical scavenger when keratinocytes are photodamaged. HSYA has the potential to be a skin-protective ingredient against UVA-induced photodamage.


Assuntos
Sobrevivência Celular , Chalcona , Células HaCaT , Queratinócitos , Quinonas , Espécies Reativas de Oxigênio , Raios Ultravioleta , Humanos , Quinonas/farmacologia , Raios Ultravioleta/efeitos adversos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Queratinócitos/metabolismo , Chalcona/farmacologia , Chalcona/análogos & derivados , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Linhagem Celular , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética
2.
Arch Biochem Biophys ; 747: 109767, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37748625

RESUMO

Pathological platelet activation plays a vital role in the prevalence of cardiovascular diseases. Hydroxysafflor yellow A (HSYA) has been shown to have significant anti-platelet aggregation and anti-activation effects, but its mechanism of action is unclear. Our study showed that HSYA inhibited the expression of platelet surface glycoproteins IIß/III α (GPIIß/III α) and thromboxane A2 (TXA2) during platelet activation and reduced platelet Ca2+ accumulation. HSYA significantly reduced the number of platelets and inhibited adrenaline-induced platelet hyperaggregation in rats. Transcriptomic analysis of platelets suggested that HSYA significantly suppressed SRC and MAPK3 (ERK1/2) gene expression. YEEI peptide, an SRC activator, could significantly reverse the inhibition of HSYA on the phosphorylation of SRC/PLCγ2/PKCδ/MEK/ERK1/2 pathway proteins and reverse the effect of HSYA on platelet activation-related markers GPIIß/IIIα protein, TXA2 and cAMP. The SRC genes were further predicted by transcriptome analysis of HSYA-regulated miRNAs combined with bioinformatics techniques. The results suggested that HSYA could significantly upregulate the expression level of the miR-9a-5p gene and further confirmed that miR-9a-5p had a targeted regulatory relationship with SRC by dual-luciferase activity reporter and cell transfection experiments. The inhibitory effect of HSYA on the SRC/PLCγ2/PKCδ/MEK/ERK1/2 pathway was significantly reversed after platelets were transfected with the miR-9a inhibitor, while SRC siRNA attenuated the effect of the miR-9a inhibitor. SRC siRNA was able to attenuate the effect of the miR-9a inhibitor. In conclusion, this study suggests that HSYA can inhibit the activation of the SRC/PLCγ2/PKC δ/MEK/ERK1/2 axis by upregulating platelet miR-9a-5p, thereby reducing the activation of platelets and inhibiting platelet aggregation.

3.
BMC Plant Biol ; 20(1): 353, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727365

RESUMO

BACKGROUND: Safflower (Carthamus tinctorius L.) is an important cash crop, of which the dried tube flower is not only an important raw material for dyes and cosmetics but also an important herb widely used in traditional Chinese medicine. The pigment and bioactive compounds are composed of flavonoids (mainly quinone chalcones), and studies have reported that MeJA can promote the biosynthesis of quinone chalcones, but the mechanism underlying the effect of MeJA in safflower remains unclear. Here, we attempt to use metabolomics and transcriptome technologies to analyse the molecular mechanism of flavonoid biosynthesis under MeJA treatment in safflower. RESULTS: Based on a UHPLC-ESI-MS/MS detection platform and a self-built database (including hydroxysafflor yellow A, HSYA), a total of 209 flavonoid metabolites were detected, and 35 metabolites were significantly different after treatment with MeJA. Among them, 24 metabolites were upregulated upon MeJA treatment, especially HSYA. Eleven metabolites were downregulated after MeJA treatment. Integrated metabolomics and transcriptome analysis showed that MeJA might upregulate the expression of upstream genes in the flavonoid biosynthesis pathway (such as CHSs, CHIs and HCTs) and downregulate the expression of downstream genes (such as F3Ms, ANRs and ANSs), thus promoting the biosynthesis of quinone chalcones, such as HSYA. The transcription expressions of these genes were validated by real-time PCR. In addition, the promoters of two genes (CtCHI and CtHCT) that were significantly upregulated under MeJA treatment were cloned and analysed. 7 and 3 MeJA response elements were found in the promoters, respectively. CONCLUSIONS: MeJA might upregulate the expression of the upstream genes in the flavonoid biosynthesis pathway and downregulate the expression of the downstream genes, thus promoting the biosynthesis of quinone chalcones. Our results provide insights and basic data for the molecular mechanism analysis of flavonoid synthesis in safflower under MeJA treatment.


Assuntos
Acetatos/farmacologia , Carthamus tinctorius/efeitos dos fármacos , Ciclopentanos/farmacologia , Flavonoides/biossíntese , Flavonoides/genética , Oxilipinas/farmacologia , Carthamus tinctorius/genética , Carthamus tinctorius/metabolismo , Cromatografia Líquida de Alta Pressão , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metabolômica/métodos , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
4.
Zhongguo Zhong Yao Za Zhi ; 43(9): 1940-1945, 2018 May.
Artigo em Zh | MEDLINE | ID: mdl-29902908

RESUMO

To investigate the pharmacokinetic characteristics of active constituents of Guhong injection in rats with cerebral ischemia reperfusion injury. The middle cerebral artery occlusion (MCAO) model was established in our studies, and then all the rats received iv administration of Guhong injection (2.1 mL·kg⁻¹). The blood concentrations of aceglutamide and hydroxysafflor yellow A (HSYA) were determined by high performance liquid chromatography (HPLC) method at different time points. The concentration-time curves were drawn and pharmacokinetic data were obtained by DAS 3.2.6 software. The results showed that aceglutamide and HSYA showed good linear relationship within the ranges of 1.5-500 mg·L⁻¹ (R²=0.997 5) and 0.33-40 mg·L⁻¹ (R²=0.998 9) respectively. This quantitative method showed a high recovery rate, good precision and stability. The main pharmacokinetics parameters of t1/2α, t1/2ß, CL1, CL2, AUC0-t, AUC0-∞, Vd1, and Vd2 were (0.139±0.007) and (0.155±0.017) h, (0.803±0.046) and (2.233±0.410) h, (0.016±0) and (0.149±0.018) L·h⁻¹·kg⁻¹, (0.015±0.001) and (0.446±0.016) L·h⁻¹·kg⁻¹, (133.335±3.844) and (9.298±0.179) mg·h·L⁻¹, (143.851±3.595) and (14.464±1.451) mg·h·L⁻¹, (0.009±0.001) and (0.223±0.007) L·kg⁻¹, (0.006±0.001) and (0.212±0.032) L·kg⁻¹, respectively. The results showed that the established HPLC method was highly specific, and could be used for the simultaneous detection of aceglutamide and HSYA of Guhong injection in MCAO rats, which was conducive to pharmacokinetic studies. Pharmacokinetic data and parameters could provide reference for continuous administration and interval administration of the drug.


Assuntos
Isquemia Encefálica , Infarto da Artéria Cerebral Média , Animais , Glutamina/análogos & derivados , Extratos Vegetais , Ratos , Ratos Sprague-Dawley
5.
J Neuroinflammation ; 14(1): 97, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28468657

RESUMO

BACKGROUND: Hydroxysafflor yellow A (HSYA) is a major active component of yellow pigment extracted from safflowers; this compound possesses potent neuroprotective effects both in vitro and in vivo. However, underlying mechanism of HSYA is not fully elucidated. The present study investigated the protective effects of HSYA in rat spinal cord compression injury model and related mechanisms involved. METHODS: Sprague-Dawley rats were divided as Sham, Control, and HSYA groups (n = 30 per group). Spinal cord injury (SCI) model was induced by application of vascular clips (force of 50 g, 1 min) to the dura at T9-T10 level of vertebra. Injured animals were administered with either HSYA (8 mg/kg at 1 and 6 h after injury, then 14 mg/kg, for a total of 7 days at 24-h time intervals) or equal volume of saline by intraperitoneal injection. RESULTS: From this experiment, we discovered that SCI in rats resulted in severe trauma, which is characterized by tissue damage, lipid peroxidation, neutrophil infiltration, inflammation mediator release, and neuronal apoptosis. However, HSYA treatment significantly reduced the following: (1) degree of tissue injury (histological score) and edema; (2) neutrophil infiltration (myeloperoxidase activity); (3) oxidative stress (superoxide dismutase, malondialdehyde, and nitric oxide); (4) pro-inflammatory cytokine expression (tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2); (5) nuclear factor-κB activation; (6) apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labeling staining and cysteine-aspartic protease-3 activity). Moreover, in a separate set of experiments, we clearly demonstrated that HSYA treatment significantly ameliorated recovery of limb function (as evaluated by Basso, Beattie, and Bresnahan behavioral recovery scores). CONCLUSIONS: Treatment with HSYA restrains development of oxidative stress, inflammation response, and apoptotic events associated with SCI of rats, demonstrating that HSYA is a potential neuroprotectant for human SCI therapy.


Assuntos
Apoptose/fisiologia , Chalcona/análogos & derivados , Mediadores da Inflamação/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Quinonas/uso terapêutico , Compressão da Medula Espinal/metabolismo , Animais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Chalcona/farmacologia , Chalcona/uso terapêutico , Mediadores da Inflamação/antagonistas & inibidores , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Pigmentos Biológicos/farmacologia , Pigmentos Biológicos/uso terapêutico , Quinonas/farmacologia , Ratos , Ratos Sprague-Dawley , Compressão da Medula Espinal/tratamento farmacológico
6.
Pharm Biol ; 52(9): 1085-93, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24618007

RESUMO

CONTEXT: One approach to protect against liver fibrosis is the use of herb-derived natural compounds, such as hydroxysafflor yellow A (HSYA). The antifibrosis effect of HYSA against liver fibrosis has been investigated; however, its mechanisms have not yet been entirely revealed. OBJECTIVES: To study the protective effects of HSYA on liver fibrosis induced by carbon tetrachloride (CCl4) and a high-fat diet (HFD), and to determine the mechanism of action of HSYA. MATERIALS AND METHODS: CCl4 and HFD were used to mimic liver fibrosis in rats, and serum biochemical indicators were determined. The antifibrosis effects of HSYA were evaluated and its mechanisms were investigated by histopathological analysis, immunohistochemical staining, enzyme-linked immunosorbent assays, real-time-PCR, and western blotting. RESULTS: HSYA reduced CCl4- and HFD-mediated liver fibrosis and ameliorated serum biochemical indicator, downregulated the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) (0.31 ± 0.03 protein, 0.59 ± 0.02 mRNA) and transformin growth factor-ß1 (TGF-ß1) (0.81 ± 0.02 protein, 0.58 ± 0.04 mRNA), and upregulated the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) (1.57 ± 0.13 protein, 2.48 ± 0.19 mRNA) and matrix metallopeptidases-2 (MMP-2) (2.31 ± 0.16 protein, 2.79 ± 0.22 mRNA) (p < 0.01, versus model group). These effects were significantly attenuated by PPAR-γ antagonist GW9662 via blocking the phosphorylation of p38 MAPK. DISCUSSION AND CONCLUSION: These data demonstrate a novel role for HSYA in inhibiting CCl4- and HFD-mediated liver fibrosis, and reveal that PPAR-γ and p38 MAPK signaling play pivotal roles in the prevention of liver fibrosis induced by CCl4 and HFD.


Assuntos
Chalcona/análogos & derivados , Cirrose Hepática Experimental/prevenção & controle , PPAR gama/metabolismo , Quinonas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Western Blotting , Tetracloreto de Carbono/toxicidade , Chalcona/farmacologia , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Masculino , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
7.
Phytomedicine ; 132: 155814, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38878526

RESUMO

BACKGROUND: Alcohol-associated liver disease (ALD) is a prevalent liver ailment. It has escalated into a significant public health issue, imposing substantial burdens on medical, economic, and social domains. Currently, oxidative stress, inflammation, and apoptosis are recognized as crucial culprits in improving ALD. Consequently, mitigating these issues has emerged as a promising avenue for enhancing ALD. Hydroxysafflor yellow A (HSYA) is the main ingredient in safflower, showing excellent antioxidative stress, anti-inflammatory, and anti-apoptosis traits. However, there are limited investigations into the mechanisms by which HSYA ameliorates ALD PURPOSE: We investigated whether HSYA, a significant constituent of Asteraceae safflower, exerts antioxidant stress and attenuates inflammation and anti-apoptotic effects through PI3K/Akt and STAT3/NF-κB pathways, thereby ameliorating ALD METHODS: We established two experimental models: an ethanol-induced liver damage mouse model in vivo and a HepG2 cell alcohol injury model in vitro RESULTS: The results demonstrated that HSYA effectively ameliorated liver tissue damage, reduced levels of ALT, AST, LDL-C, TG, TC, and MDA, enhanced HDL-C levels, SOD and GSH activities, reduced ROS accumulation in cells, and activated the Nrf2 pathway, a transcription factor involved in antioxidant defense. By regulating the PI3K/Akt and STAT3/NF-κB pathways, HSYA exhibits notable antioxidative stress, anti-inflammatory, and anti-apoptotic effects, effectively impeding ALD's advancement. To further confirm the regulatory effect of HSYA on PI3K/Akt and downstream signaling pathways, the PI3K activator 740 Y-P was used and was found to reverse the downregulation of PI3K by HSYA CONCLUSION: This study supports the effectiveness of HSYA in reducing ALD by regulating the PI3K/Akt and STAT3/NF-κB pathways, indicating its potential medicinal value.


Assuntos
Chalcona , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Quinonas , Fator de Transcrição STAT3 , Transdução de Sinais , Chalcona/farmacologia , Chalcona/análogos & derivados , Animais , Fator de Transcrição STAT3/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinonas/farmacologia , NF-kappa B/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Masculino , Células Hep G2 , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Etanol , Hepatopatias Alcoólicas/tratamento farmacológico , Camundongos Endogâmicos C57BL , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Fígado/efeitos dos fármacos
8.
Nitric Oxide ; 35: 144-51, 2013 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-24126016

RESUMO

Peroxynitrite-mediated protein tyrosine nitration represents a crucial pathogenic mechanism of stroke. Hydroxysafflor yellow A (HSYA) is the most important active component of the safflower plant. Here we assess the neuroprotective efficacy of HSYA and investigate the mechanism through anti-nitrative pathway. Rats were subjected to 60-min ischemia followed by reperfusion. HSYA (2.5-10mg/kg) was injected at 1h after ischemia onset. Other groups received HSYA (10mg/kg) treatment at 3-9h after onset. Infarct volume, brain edema, and neurological score were evaluated at 24h after ischemia. Nitrotyrosine and inducible NO synthase (iNOS) expression, as well as NO level (nitrate/nitrite) in ischemic cortex was examined within 24h after ischemia. The ability of HSYA to scavenge peroxynitrite was evaluated in vitro. Infarct volume was significantly decreased by HSYA (P<0.05), with a therapeutic window of 3h after ischemia at dose of 10mg/kg. HSYA treatment also reduced brain edema and improved neurological score (P<0.05). Nitrotyrosine formation was dose- and time-dependently inhibited by HSYA. The time window of HSYA in decreasing protein tyrosine nitration paralleled its action in infarct volume. HSYA also greatly reduced iNOS expression and NO content at 24h after ischemia, suggesting prevention of peroxynitrite generation from iNOS. In vitro, HSYA blocked authentic peroxynitrite-induced tyrosine nitration in bovine serum albumin and primary cortical neurons. Collectively, our results indicated that post-ischemic HSYA treatment attenuates brain ischemic injury which is at least partially due to reducing nitrotyrosine formation, possibly by the combined mechanism of its peroxynitrite scavenging ability and its reduction in iNOS production.


Assuntos
Isquemia Encefálica/metabolismo , Chalcona/análogos & derivados , Quinonas/farmacologia , Tirosina/análogos & derivados , Animais , Chalcona/farmacologia , Expressão Gênica/efeitos dos fármacos , Masculino , Óxido Nítrico Sintase/análise , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II/análise , Óxido Nítrico Sintase Tipo II/metabolismo , Ácido Peroxinitroso/análise , Ácido Peroxinitroso/metabolismo , Ratos , Ratos Sprague-Dawley , Tirosina/análise , Tirosina/metabolismo
9.
Curr Mol Med ; 23(5): 410-419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35996252

RESUMO

BACKGROUND: Vitamin D receptor (VDR) is critical for mineral and bone homeostasis since it plays an essential role in the osteoblast differentiation of bone marrow mesenchymal stem cells (BM-MSCs). Hydroxysafflor yellow A (HSYA) has the potential to promote bone mineralization and inhibit bone resorption, while its detailed mechanism needs to be elaborated. OBJECTIVE: This study intends to explore the action of HSYA on the proliferation and differentiation of BM-MSC and the underlying mechanism. METHODS: Different concentrations of HSYA to BM-MSC and CCK-8, and EdU were used to detect cell viability and proliferation. The alkaline phosphatase (ALP) was used to observe the differentiation ability of BM-MSC osteoblasts. The calcium uptake and mineralization of osteoblast-like cells were observed by alizarin red staining. The level of calcium ion uptake in cells was detected by flow cytometry. AutoDock was performed for molecular docking of HSYA to VDR protein. Immunofluorescence and western blotting were performed to detect the expression of VDR expression levels. Finally, the effect of VDR was verified by a VDR inhibitor. RESULTS: After treatment with HSYA, the proliferation and calcium uptake of BM-MSC were increased. The level of ALP increased significantly and reached its peak on the 12th day. HSYA promoted calcium uptake and calcium deposition, and mineralization of osteoblasts. The western blotting and immunofluorescence showed that HSYA increased the expression of VDR in the osteoblast-like cell's nucleus and upregulated Osteocalcin, S100 calcium-binding protein G, and CYP24A1. In addition, HYSA treatment increased the expression of osteopontin and the synthesis of osteogenic proteins, such as Type 1 collagen. After the addition of the VDR inhibitor, the effect of HSYA was weakened. CONCLUSION: HSYA could significantly promote the activity and proliferation of osteoblasts and increase the expression level of VDR in osteoblasts. HSYA may also improve calcium absorption by osteoblasts by regulating the synthesis of calciumbinding protein and vitamin D metabolic pathway-related proteins.


Assuntos
Células da Medula Óssea , Chalcona , Células-Tronco Mesenquimais , Osteoblastos , Quinonas , Osteoblastos/citologia , Diferenciação Celular/efeitos dos fármacos , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Cálcio/metabolismo , Receptores de Calcitriol/metabolismo , Humanos , Chalcona/análogos & derivados , Chalcona/farmacologia , Quinonas/farmacologia
10.
Nutrients ; 15(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37571350

RESUMO

Ferroptosis is closely associated with the pathophysiology of myocardial ischemia. Hydroxysafflor yellow A (HSYA), the main active ingredient in the Chinese herbal medicine safflower, exerts significant protective effects against myocardial ischemia/reperfusion injury (MI/RI). The aim of this study was to investigate the protective effects of HSYA against MI/RI and identify the putative underlying mechanisms. An in vivo model of acute MI/RI was established in C57 mice. Subsequently, the effects of HSYA on myocardial tissue injury were evaluated by histology. Lipid peroxidation and myocardial injury marker contents in myocardial tissue and serum and iron contents in myocardial tissue were determined using biochemical assays. Mitochondrial damage was assessed using transmission electron microscopy. H9C2 cardiomyocytes were induced in vitro by oxygen-glucose deprivation/reoxygenation, and ferroptosis inducer erastin was administered to detect ferroptosis-related indicators, oxidative-stress-related indicators, and expressions of ferroptosis-related proteins and HIF-1α. In MI/RI model mice, HSYA reduced myocardial histopathological damage, ameliorated mitochondrial damage in myocardial cells, and decreased total cellular iron and ferrous ion contents in myocardial tissue. HSYA increased the protein levels of SLC7A11, HIF-1α, and GPX4 and mitigated erastin- or HIF-1α siRNA-induced damage in H9C2 cells. In summary, HSYA alleviated MI/RI by activating the HIF-1α/SLC7A11/GPX4 signaling pathway, thereby inhibiting ferroptosis.


Assuntos
Ferroptose , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Transdução de Sinais , Quinonas/farmacologia , Quinonas/uso terapêutico , Traumatismo por Reperfusão/patologia
11.
Int J Pharm ; 623: 121918, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35716973

RESUMO

Hydroxy-safflower yellow A (HSYA) is the chief component of safflower against myocardial ischemia (MI), and belongs to biopharmaceutics classification system (BCS) III drugs. Its structure contains multiple hydroxyl groups, contributing to its high polarity and poor oral bioavailability. The main objective of this study was to probe the potential of oral penetration enhancer n-[8-(2-hydroxybenzoyl) amino] sodium octanoate (SNAC) and cationic copolymer Eudragit®EPO (EPO) to promote absorption of HSYA. HSYA composites (SNAC-HSYA-EPO) were formed by hydrogen bonding and van der Waals force. SNAC-HSYA-EPO has biocompatibility, and can improve the membrane fluidity, uptake, transport, and penetration of Caco-2 cells. The mechanism of promoting of SNAC-HSYA-EPO may be related to energy and P-glycoprotein (P-gp) when compared with the inhibitor NaN3 and verapamil group. In the pharmacokinetic (PK) results, SNAC-HSYA-EPO significantly improved oral bioavailability. Pharmacodynamics (PD) results determined that SNAC-HSYA-EPO could improve the symptoms of MI. The mechanism of the SNAC-HSYA-EPO anti-MI is related to alleviating inflammation and anti-apoptosis to protect the heart. In summary, SNAC-HSYA-EPO prepared in this study possessed a complete appearance, high recombination rate and excellent oral permeability promoting ability. SNAC-HSYA-EPO has the potential to improve oral bioavailability and further enhance the anti-MI effect of HSYA.


Assuntos
Chalcona , Doença da Artéria Coronariana , Isquemia Miocárdica , Células CACO-2 , Chalcona/análogos & derivados , Chalcona/farmacologia , Humanos , Isquemia , Isquemia Miocárdica/tratamento farmacológico , Permeabilidade
12.
Front Plant Sci ; 13: 833811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463446

RESUMO

The unique flavonoids, quinochalcones, such as hydroxysafflor yellow A (HSYA) and carthamin, in the floret of safflower showed an excellent pharmacological effect in treating cardiocerebral vascular disease, yet the regulating mechanisms governing the flavonoid biosynthesis are largely unknown. In this study, CtACO3, the key enzyme genes required for the ethylene signaling pathway, were found positively related to the flavonoid biosynthesis at different floret development periods in safflower and has two CtACO3 transcripts, CtACO3-1 and CtACO3-2, and the latter was a splice variant of CtACO3 that lacked 5' coding sequences. The functions and underlying probable mechanisms of the two transcripts have been explored. The quantitative PCR data showed that CtACO3-1 and CtACO3-2 were predominantly expressed in the floret and increased with floret development. Subcellular localization results indicated that CtACO3-1 was localized in the cytoplasm, whereas CtACO3-2 was localized in the cytoplasm and nucleus. Furthermore, the overexpression of CtACO3-1 or CtACO3-2 in transgenic safflower lines significantly increased the accumulation of quinochalcones and flavonols. The expression of the flavonoid pathway genes showed an upward trend, with CtCHS1, CtF3H1, CtFLS1, and CtDFR1 was considerably induced in the overexpression of CtACO3-1 or CtACO3-2 lines. An interesting phenomenon for CtACO3-2 protein suppressing the transcription of CtACO3-1 might be related to the nucleus location of CtACO3-2. Yeast two-hybrid (Y2H), glutathione S-transferase (GST) pull-down, and BiFC experiments revealed that CtACO3-2 interacted with CtCSN5a. In addition, the interactions between CtCSN5a and CtCOI1, CtCOI1 and CtJAZ1, CtJAZ1 and CtbHLH3 were observed by Y2H and GST pull-down methods, respectively. The above results suggested that the CtACO3-2 promoting flavonoid accumulation might be attributed to the transcriptional activation of flavonoid biosynthesis genes by CtbHLH3, whereas the CtbHLH3 might be regulated through CtCSN5-CtCOI1-CtJAZ1 signal molecules. Our study provided a novel insight of CtACO3 affected the flavonoid biosynthesis in safflower.

13.
Cells ; 11(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36496986

RESUMO

In the process of ischemic stroke (IS), cellular macroautophagy/autophagy and apoptosis play a vital role in neuroprotection against it. Therefore, regulating their balance is a potential therapeutic strategy. It has been proved that hydroxysafflor yellow A (HSYA) has anti-inflammatory and antioxidant effects, which can both protect neurons. By exploring bioinformatics combined with network pharmacology, we found that HIF1A and CASP3, key factors regulating autophagy and apoptosis, may be important targets of HSYA for neuroprotection in an oxygen glucose deprivation and reperfusion (OGD/R) model. In this study, we explored a possible new mechanism of HSYA neuroprotection in the OGD/R model. The results showed that OGD/R increased the expression of HIF1A and CASP3 in SH-SY5Y cells and induced autophagy and apoptosis, while HSYA intervention further promoted the expression of HIF1A and inhibited the level of CASP3, accompanied by an increase in autophagy and a decrease in apoptosis in SH-SY5Y cells. The inhibition of HIF1A diminished the activation of autophagy induced with HSYA, while the inhibition of autophagy increased cell apoptosis and blocked the neuroprotective effect of HSYA, suggesting that the neuroprotective effect of HSYA should be mediated by activating the HIF1A/BNIP3 signaling pathway to induce autophagy. These results demonstrate that HSYA may be a promising agent for treating IS.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Humanos , Fármacos Neuroprotetores/farmacologia , Glucose/metabolismo , Oxigênio/metabolismo , Autofagia , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas
14.
Naunyn Schmiedebergs Arch Pharmacol ; 395(5): 579-591, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35201390

RESUMO

Our previous studies found that safflower yellow (SY) and its main component hydroxysafflor yellow A (HSYA) could alleviate obesity and improve leptin resistance in high-fat diet (HFD) induced obese mice. Therefore, our present study aimed to investigate whether the above effect of SY/HSYA was a direct effect or follow-up effect of weight loss and whether leptin was essential for the anti-obesity effect of SY/HSYA or not. HFD-induced obese mice were treated with SY or HSYA for 4 weeks, while ob/ob mice were treated with SY for 10 weeks. Body weight, food intake, fat mass, and serum leptin levels were measured. The leptin sensitivity experiment was conducted in HFD-induced obese mice. The expressions of leptin and its signaling-related genes were detected by RT-qPCR and Western blot methods. SY/HSYA treatment had no effect on food intake, energy expenditure, body weight, fat mass, and serum leptin levels in HFD-induced obese mice. However, the leptin sensitivity experiment showed that the food intake decreased by 18.4% in the HFD-SY group and the body weight gain decreased by 104.6% in the HFD-HSYA group, respectively (both P < 0.05). Furthermore, the expressions of leptin and leptin signaling inhibitory regulators were significantly decreased, while the phosphorylation of signal transducer and activator of transcription 3 (p-STAT3) were notably increased in WAT of HFD-induced obese mice, fully differentiated 3T3-L1 adipocytes after SY/HSYA intervention (all P < 0.05). Interestingly, SY treatment was ineffective on body weight, fat mass, and glucose metabolism in leptin-deficient ob/ob mice. SY/HSYA administration could firstly improve peripheral leptin resistance in adipose tissue of HFD-induced obese mice before their body weight was significantly changed, and leptin was essential for the anti-obesity effect of SY.


Assuntos
Dieta Hiperlipídica , Leptina , Animais , Peso Corporal , Chalcona/análogos & derivados , Leptina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Quinonas
15.
J Agric Food Chem ; 69(46): 13838-13848, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34757740

RESUMO

Modulation of fuel selection is critical in skeletal muscle function. Hydroxysafflor yellow A (HSYA) is the major bioactive component in safflower (Carthamus tinctorius L.) and, in our previous study, has been demonstrated to promote a shift from fast to slow myofiber. However, the effects of HSYA on fuel selection in skeletal muscle and its underlying mechanisms remain unclear. In this study, the in vitro experiments found that water extracts of safflower, rich in HSYA, significantly suppressed the expressions of the genes related to glucose utilization and activated the expressions of the lipolysis genes. Furthermore, HSYA resulted in a shift in substrate utilization toward fat relative to carbohydrates in C2C12 myotubes. Animal tests showed HSYA could significantly reduce the respiratory exchange ratio and prolonge endurance performance in mice and also trigger a switch in intramuscular fuel selection preference from carbohydrates to fat at rest and during exercise. Mechanistic studies revealed that HSYA converted this fuel selection by activating peroxisome proliferator activated receptor δ (PPARδ), and these effects of HSYA could be reversed by specific suppression of PPARδ by PPARδ siRNA. Collectively, our study demonstrated that HSYA can switch substrate utilization from glucose to fat in myocytes by activating PPARδ signaling, resulting in prolonged endurance performance. These findings provided direct evidence for the endurance performance enhancement effect of HSYA and explored new perspectives for the innovation and application of HSYA in the health care industry.


Assuntos
Chalcona , PPAR delta , Animais , Chalcona/análogos & derivados , Chalcona/farmacologia , Glucose , Camundongos , Células Musculares , Quinonas/farmacologia
16.
Phytomedicine ; 85: 153532, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33735723

RESUMO

BACKGROUND: Mitochondria are key cellular organelles that are essential for cell fate decisions. Hydroxysafflor yellow A (HSYA) has displayed an impressively essential role in protection of cerebral ischemia/reperfusion (I/R). However, the mitochondrial effect of HSYA on Brain Microvascular Endothelial Cells (BMECs) under I/R remains to be largely unclear. PURPOSE: To evaluate the protective effects of HSYA-mediated mitochondrial permeability transition pore (mPTP) on cerebral I/R injury and its mechanism. METHODS: Cerebral I/R injury was established by the model of Middle cerebral artery occlusion (MCAO) in rats. Furthermore, to further clarify the relevant mechanism of HSYA's effects on mPTP, inhibition of extracellular regulated protein kinases (ERK) with U0126 and transfect with Cyclophilin D (CypD) SiRNA to reversely verified whether the protective effects of HSYA were exerted by regulating the Mitogen-activated protein kinase kinase (MEK)/ERK/CypD pathway. RESULTS: HSYA treatment significantly increased BMECs viability, decreased the generation of ROS, opening of mPTP and translocation of cytochrome c after OGD/R. In addition to inhibited CypD, HSYA potentiated MEK and increased phosphorylation of ERK expression in BMECs, inhibited apoptosis mediated by mitochondrial. Notably, HSYA also significantly ameliorated neurological deficits and decreased the infarct volume in rats. CONCLUSION: HSYA reduced the CytC export from mitochondrial by inhibited the open of mPTP via MEK/ERK/CypD pathway, contributing to the protection of I/R. Thus, our study not only revealed novel mechanisms of HSYA for its anti-I/R function, but also provided a template for the design of novel mPTP inhibitor for the treatment of various mPTP-related diseases.


Assuntos
Apoptose/efeitos dos fármacos , Chalcona/análogos & derivados , Células Endoteliais/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial , Quinonas/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Isquemia Encefálica/tratamento farmacológico , Chalcona/farmacologia , Células Endoteliais/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Mitocôndrias/efeitos dos fármacos , Fosforilação , Ratos , Ratos Sprague-Dawley
17.
Curr Neurovasc Res ; 18(4): 415-426, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34751117

RESUMO

OBJECTIVE: Angiogenesis led by brain microvascular endothelial cells (BMECs) contributes to the remission of brain injury after brain ischemia reperfusion. In this study, we investigated the effects of hydroxysafflor yellow A(HSYA) on angiogenesis of BMECs injured by OGD/R via SIRT1-HIF-1α-VEGFA signaling pathway. METHODS: The OGD/R model of BMECs was established in vitro by OGD for 2h and reoxygenation for 24h. At first, the concentrations of vascular endothelial growth factor (VEGF), Angiopoietin (ang) and platelet-derived growth factor (PDGF) in supernatant were detected by ELISA, and the proteins expression of VEGFA, Ang-2 and PDGFB in BMECs were tested by western blot; the proliferation, adhesion, migration (scratch healing and transwell) and tube formation experiment of BMECs; the expression of CD31 and CD34 were tested by immunofluorescence staining. The levels of sirtuin1(SIRT1), hypoxia-inducible factor-1α (HIF-1α), VEGFA mRNA and protein were tested. RESULTS: HSYA up-regulated the levels of VEGF, Ang and PDGF in the supernatant of BMECs under OGD/R, and the protein expression of VEGFA, Ang-2 and PDGFB was increased; HSYA could significantly alleviate the decrease of cell proliferation, adhesion, migration and tube formation ability of BMECs during OGD/R; HSYA enhanced the fluorescence intensity of CD31 and CD34 of BMECs during OGD/R; HSYA remarkably up-regulated the expression of SIRT1, HIF-1α, VEGFA mRNA and protein after OGD/R, and these increase decreased after SIRT1 was inhibited. CONCLUSION: SIRT1-HIF-1α-VEGFA signaling pathway is involved in HSYA improves angiogenesis of BMECs injured by OGD/R.


Assuntos
Células Endoteliais , Glucose , Animais , Encéfalo/metabolismo , Chalcona/análogos & derivados , Glucose/metabolismo , Oxigênio/metabolismo , Quinonas , Ratos , Transdução de Sinais , Sirtuína 1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Front Pharmacol ; 12: 734539, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803683

RESUMO

Background: To investigate the therapeutic effect of Hydroxy-safflower yellow A (HSYA) on rat's osteoporosis and explore its potential mechanism of action. Methods: Bilateral ovariectomized female rats (OVX) were used to establish a postmenopausal rat model of osteoporosis. HSYA was given as an intervention, and estradiol was used as a positive control. The levels of serum alkaline phosphatase (ALP), calcium ion (Ca2+), and inorganic phosphorus (IP) were used to detect bone loss. Three months after modeling, the rats were sacrificed and the rat's ovaries, kidneys, tibia, and femur were used to calculate the organ index. The bone marrow of the femur of the rats was stained with Giemsa staining. The femur strength of rats was measured by INSTRON. The degree of osteoporosis was detected by pathological staining after decalcification of bone tissue. Predicted the main targets of HSYA in combination with bioinformatics, and the proteins related to osteoclast differentiation were detected in combination with western blotting. The effect of HSYA on the differentiation of RAW264.7 cells into osteoclasts was observed. Results: The Giemsa staining and serum test results showed that the operation was successful and affected bone metabolism. In the bone strength test, HSYA significantly increased the maximum threshold of femoral load in rats. Pathological examination showed that tibial cartilage, trabecular bone, and cortex significantly increased after treatment with HYSA. The number of osteoblasts increased while the number of osteoclasts decreased-elevated levels of type I and III collagen. Autodock was used for molecular docking of potential targets of HSYA. qPCR and western blot were used to show that the expression levels of CA2 and osteoclast differentiation-related proteins were significantly decreased after HSYA treatment. Cell level results showed that HSYA could inhibit the activity of osteoclasts and the ability of RAW264.7 cells to differentiate into osteoclasts. Conclusion: HSYA can inhibit the differentiation and formation of osteoclasts by inhibiting the expression of CA2 and relieving osteoporosis symptoms in OVX rats.

19.
Front Pharmacol ; 11: 482, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32372961

RESUMO

PURPOSE: Oxidative stress plays an important role in the pathogenesis of obesity and its associated disorders. Safflower yellow (SY) and hydroxysafflor yellow A (HSYA), the natural compounds isolated from Carthamus tinctorius L., has been found to possess antioxidative and anti-obesity properties. The purpose of the present study is to investigate whether SY and its main component HSYA alleviate obesity by the antioxidant effects. METHODS: Diet-induced obese (DIO) mice were treated with 200 mg/kg/d SY or HSYA for 10 weeks. Body weight, fat mass, serum biochemical parameters and superoxide dismutase (SOD) activities were measured. Glucose and insulin tolerance tests were performed. The expression of antioxidant enzymes in liver and adipose tissue were measured. In vitro, H2O2-induced oxidative stress HepG2 cells and 3T3-L1 adipocytes were treated with SY and HSYA to investigate the direct effects of SY and HSYA on the expression of antioxidant enzymes. RESULTS: SY and HSYA significantly decreased the body weight gain of DIO mice, and decreased fat mass to 57.8% and 61.6% of the control mice, respectively (P < 0.05). The parameters of glucose metabolism and liver function were improved after SY and HSYA treatment. The hepatic SOD activities and the mRNA levels of antioxidant enzymes in liver and adipose tissue of SY and HSYA treated mice were increased (P < 0.05). Meanwhile, the administration of SY and HSYA on the H2O2-induced oxidative stress HepG2 cells and adipocytes also increased the expression of the antioxidant factor and antioxidant enzymes to 1.2~3.3 folds of the control cells (P < 0.05). CONCLUSION: SY and its main component HSYA could significantly decrease the fat mass, and improve glucose metabolism and liver function in diet-induced obese mice. The beneficial effects of SY and HSYA on obesity and metabolism may be associated with the increased expression of antioxidant enzymes in liver and adipose tissue.

20.
Cell Biochem Biophys ; 78(4): 511-520, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32705535

RESUMO

Esophageal cancer (EC) is a common digestive tract malignant tumor and the clinical outcome of patients with EC after surgery remains unsatisfactory. Hence, it is necessary to identify some effective drugs or methods to improve the prognosis of patients with EC. In this study, we attempted to analyze the potential role of hydroxysafflor yellow A (HSYA) in EC. Combined with The Cancer Genome Atlas (TCGA) and Comparative Toxicogenomics Database (CTD) as well as Database for Annotation, Visualization, and Integrated Discovery (DAVID) website, we tried to identify the related genes and pathways of HSYA. Then we estimated the actions of HSYA on proliferation, invasion and migration, and apoptosis of EC cells using cell counting kit 8, transwell and flow cytometry assays, respectively. At last, the expression of inflammatory protein and signaling pathway-related protein were measured using western blot analysis. Relative protein expression of intercellular adhesion molecule 1 (ICAM1), matrix metallopeptidase 9 (MMP9), tumor necrosis factor (TNF), and vascular cell adhesion molecule 1 (VCAM1) were all upregulated in EC tissues compared with normal tissues and they might be the target gene of HSYA according to bioinformatics analysis. HSYA exerted an inhibitory actions on cells proliferation, invasion, and migration but could accelerate the apoptosis of cells in EC. Moreover, HSYA could inhibit the expression of ICAM1, MMP9, TNF-α, and VCAM1 and induced the expression of phosphor-nuclear transcription factor kappa B p65 (p-P65) and phosphor-I kappa B-alpha (p-IκBα), but it did not influence the expression of P65 and IκBα. HSYA suppressed proliferation, invasion, and migration, simultaneously induce apoptosis of EC cells partly via regulating NF-κB signaling pathway.


Assuntos
Antineoplásicos/farmacologia , Carcinogênese/efeitos dos fármacos , Carthamus tinctorius/química , Chalcona/análogos & derivados , Neoplasias Esofágicas/patologia , NF-kappa B/metabolismo , Quinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chalcona/farmacologia , Descoberta de Drogas , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA