Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(4): e0228423, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38445904

RESUMO

Halocins are antimicrobial peptides secreted by haloarchaea capable of inhibiting the growth of other haloarchaea or bacteria. Halocin H4 (HalH4) is secreted by the model halophilic archaeon Haloferax mediterranei ATCC 33500. Despite attempts to express halH4 heterologously in Escherichia coli and subsequent careful renaturation procedures commonly employed for haloarchaeal proteins, no active halocin was obtained. However, it was discovered that the antihaloarchaeal activity of this halocin could be activated through cleavage by halolysin R4 (HlyR4), a serine protease also secreted by Hfx. mediterranei ATCC 33500. Replacement of the cysteine at the number 115 amino acid with glycine and deletion of the internal trans-membrane region (15 aa) markedly abolished HalH4's antihaloarchaeal activity. Compared to the N-terminus, the C-terminal amino acid sequence was found to be more crucial for HalH4 to exert its antihaloarchaeal activity. Mass spectrometry analysis revealed that the biologically active antihaloarchaeal peptide produced after hydrolytic cleavage by HlyR4 was the C-terminus of HalH4, suggesting a potential mechanism of action involving pore formation within competitor species' cell membranes. Taken together, this study offers novel insights into the interplay between halocins and secreted proteases, as well as their contribution to antagonistic interaction within haloarchaea. IMPORTANCE: The antihaloarchaeal function of halocin H4 (HalH4) can be activated by extracellular proteases from haloarchaea, as demonstrated in this study. Notably, we report the first instance of halocin activation through proteolytic cleavage, highlighting its significance in the field. The C-terminus of HalH4 (CTH4) has been identified as the antihaloarchaeal peptide present in hydrolysates generated by HlyR4. The CTH4 exhibited inhibitory activity against a range of haloarchaeal species (Haloarchaeobius spp., Haloarcula spp., Haloferax spp., Halorubellus spp., and Halorubrum spp.), as well as selected bacterial species (Aliifodinibius spp. and Salicola spp.), indicating its broad-spectrum inhibitory potential across domains. The encoding gene of halocin HalH4, halH4, from the model halophilic archaeon Haloferax mediterranei ATCC 33500 can be expressed in Escherichia coli without codon optimization.


Assuntos
Haloferax mediterranei , Haloferax , Serina Endopeptidases/metabolismo , Peptídeos/metabolismo , Haloferax/metabolismo , Escherichia coli/genética
2.
Appl Environ Microbiol ; 90(6): e0057124, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38814058

RESUMO

Denitrification, a crucial biochemical pathway prevalent among haloarchaea in hypersaline ecosystems, has garnered considerable attention in recent years due to its ecological implications. Nevertheless, the underlying molecular mechanisms and genetic regulation governing this respiration/detoxification process in haloarchaea remain largely unexplored. In this study, RNA-sequencing was used to compare the transcriptomes of the haloarchaeon Haloferax mediterranei under oxic and denitrifying conditions, shedding light on the intricate metabolic alterations occurring within the cell, such as the accurate control of the metal homeostasis. Furthermore, the investigation identifies several genes encoding transcriptional regulators and potential accessory proteins with putative roles in denitrification. Among these are bacterioopsin-like transcriptional activators, proteins harboring a domain of unknown function (DUF2249), and cyanoglobin. In addition, the study delves into the genetic regulation of denitrification, finding a regulatory motif within promoter regions that activates numerous denitrification-related genes. This research serves as a starting point for future molecular biology studies in haloarchaea, offering a promising avenue to unravel the intricate mechanisms governing haloarchaeal denitrification, a pathway of paramount ecological importance.IMPORTANCEDenitrification, a fundamental process within the nitrogen cycle, has been subject to extensive investigation due to its close association with anthropogenic activities, and its contribution to the global warming issue, mainly through the release of N2O emissions. Although our comprehension of denitrification and its implications is generally well established, most studies have been conducted in non-extreme environments with mesophilic microorganisms. Consequently, there is a significant knowledge gap concerning extremophilic denitrifiers, particularly those inhabiting hypersaline environments. The significance of this research was to delve into the process of haloarchaeal denitrification, utilizing the complete denitrifier haloarchaeon Haloferax mediterranei as a model organism. This research led to the analysis of the metabolic state of this microorganism under denitrifying conditions and the identification of regulatory signals and genes encoding proteins potentially involved in this pathway, serving as a valuable resource for future molecular studies.


Assuntos
Desnitrificação , Perfilação da Expressão Gênica , Transcriptoma , Desnitrificação/genética , Regulação da Expressão Gênica em Archaea , Haloferax mediterranei/genética , Haloferax mediterranei/metabolismo , RNA-Seq , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo
3.
Appl Environ Microbiol ; 90(7): e0074124, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-38953660

RESUMO

To cope with a high-salinity environment, haloarchaea generally employ the twin-arginine translocation (Tat) pathway to transport secretory proteins across the cytoplasm membrane in a folded state, including Tat-dependent extracellular subtilases (halolysins) capable of autocatalytic activation. Some halolysins, such as SptA of Natrinema gari J7-2, are produced at late-log phase to prevent premature enzyme activation and proteolytic damage of cellular proteins in haloarchaea; however, the regulation mechanism for growth phase-dependent expression of halolysins remains largely unknown. In this study, a DNA-protein pull-down assay was performed to identify the proteins binding to the 5'-flanking sequence of sptA encoding halolysin SptA in strain J7-2, revealing a TrmBL2-like transcription factor (NgTrmBL2). The ΔtrmBL2 mutant of strain J7-2 showed a sharp decrease in the production of SptA, suggesting that NgTrmBL2 positively regulates sptA expression. The purified recombinant NgTrmBL2 mainly existed as a dimer although monomeric and higher-order oligomeric forms were detected by native-PAGE analysis. The results of electrophoretic mobility shift assays (EMSAs) showed that NgTrmBL2 binds to the 5'-flanking sequence of sptA in a non-specific and concentration-dependent manner and exhibits an increased DNA-binding affinity with the increase in KCl concentration. Moreover, we found that a distal cis-regulatory element embedded in the neighboring upstream gene negatively regulates trmBL2 expression and thus participates in the growth phase-dependent biosynthesis of halolysin SptA. IMPORTANCE: Extracellular proteases play important roles in nutrient metabolism, processing of functional proteins, and antagonism of haloarchaea, but no transcription factor involved in regulating the expression of haloaechaeal extracellular protease has been reported yet. Here we report that a TrmBL2-like transcription factor (NgTrmBL2) mediates the growth phase-dependent expression of an extracellular protease, halolysin SptA, of haloarchaeon Natrinema gari J7-2. In contrast to its hyperthermophilic archaeal homologs, which are generally considered to be global transcription repressors, NgTrmBL2 functions as a positive regulator for sptA expression. This study provides new clues about the transcriptional regulation mechanism of extracellular protease in haloarchaea and the functional diversity of archaeal TrmBL2.


Assuntos
Halobacteriaceae , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Halobacteriaceae/genética , Halobacteriaceae/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Regulação da Expressão Gênica em Archaea
4.
Artigo em Inglês | MEDLINE | ID: mdl-39283657

RESUMO

The haloarchaeal genera Halomicroarcula and Haloarcula, belonging to the family Haloarculaceae, order Halobacteriales, class Halobacteria, within the phylum Methanobacteriota, have previously exhibited significant phylogenetic and taxonomic overlaps. This issue was recently resolved by merging the two genera into a single genus, Haloarcula. However, Halomicroarcula saliterrae and Halomicroarcula onubensis were described almost simultaneously with the proposal to unify the genera Haloarcula and Halomicroarcula. Their names were validly published under the International Code of Nomenclature of Prokaryotes (ICNP) according to Validation List no. 217, alongside six Haloarcula species and the transfer of the existing Halomicroarcula species into the genus Haloarcula. Therefore a phylogenetic, phylogenomic, and comparative genomic analysis was carried out to clarify the taxonomic status of these two haloarchaeal species, Halomicroarcula saliterrae and Halomicroarcula onubensis, with lower priority than the six new species of the genus Haloarcula. Phylogenetic studies of 16S rRNA and rpoB' gene sequences, along with phylogenomic reconstructions using single-copy core-orthologous proteins, indicated that the two species clustered with the members of the genus Haloarcula. The overall genome relatedness indexes (OGRIs), comparative analyses of phenotypic features, and polar lipid profiles further supported their taxonomic reassignment as two separate species within the genus Haloarcula. Consequently, we propose the reclassification of Halomicroarcula saliterrae Straková et al. 2024 and Halomicroarcula onubensis Straková et al. 2024 into the genus Haloarcula, as Haloarcula saliterrae comb. nov. and Haloarcula onubensis comb. nov., respectively, in accordance with the ICNP.


Assuntos
DNA Arqueal , Haloarcula , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , DNA Arqueal/genética , Haloarcula/genética , Haloarcula/classificação , Genoma Arqueal , Composição de Bases
5.
Artigo em Inglês | MEDLINE | ID: mdl-38512754

RESUMO

Eight colonies of live microbes were isolated from an extensively surface-sterilized halite sample which had been retrieved from a depth of 2000 m from a salt mine in the Qianjiang Depression, Hubei Province, PR China. The eight colonies, obtained after 4 weeks of incubation, were named JI20-1T-JI20-8 and JI20-1T was selected as the type strain. The strains have been previously described, including a genomic analysis based on the complete genome for strain JI20-1T and draft genomes for the other strains. In that study, the name Halobacterium hubeiense was suggested, based on the location of the drilling site. Previous phylogenomic analysis showed that strain JI20-1T is most closely related to the Permian isolate Halobacterium noricense from Alpine rock salt. The orthologous average nucleotide identity (orthoANI) and digital DNA-DNA hybridization (dDDH) percentages between the eight strains are 100-99.6 % and 99.8-96.4 %, respectively. The orthoANI and dDDH values of these strains with respect to the type strains of species of the genus Halobacterium are 89.9-78.2 % and 37.3-21.6 %, respectively, supporting their placement in a novel extremely halophilic archaeal species. The phylogenomic tree based on the comparison of sequences of 632 core-orthologous proteins confirmed the novel species status for these haloarchaea. The polar lipid profile includes phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, and sulfated galactosyl mannosyl galactosyl glucosyl diether, a profile compatible with that of Halobacterium noricense. Based on genomic, phenotypic, and chemotaxonomic characterization, we propose strain JI20-1T (=DSM 114402T = HAMBI 3616T) as the type strain of a novel species in the genus Halobacterium, with the name Halobacterium hubeiense sp. nov.


Assuntos
Halobacteriaceae , Halobacterium , Análise de Sequência de DNA , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/química , Cloreto de Sódio , China , Fosfatidilgliceróis , DNA Arqueal/genética
6.
Extremophiles ; 28(3): 33, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037576

RESUMO

Carotenoids are a diverse group of pigments known for their broad range of biological functions and applications. This study delves into multifaceted potential of carotenoids extracted from Haloferax larsenii NCIM 5678 previously isolated from Pachpadra Salt Lake in Rajasthan, India. H. larsenii NCIM 5678 was able to grow up to OD600 1.77 ± 0.03 with carotenoid concentration, 3.3 ± 0.03 µg/ml. The spectrophotometric analysis of carotenoid extract indicated the presence of three-fingered peak (460, 490 and 520 nm) which is a characteristic feature of bacterioruberin and its derivatives. The bacterioruberin was purified using silica gel column chromatography and thin layer chromatography. The carotenoid extract showed 12.3 ± 0.09 mm zone of growth inhibition with a minimum inhibitory concentration 546 ng/ml against indicator strain, H. larsenii HA4. The percentage antioxidant activity of carotenoid was found to be 84% which was higher as compared to commercially available ascorbic acid (56.74%). Thus, carotenoid extract from H. larsenii NCIM 5678 possesses unique attributes with compelling evidence of antimicrobial and antioxidant potential for the development of novel pharmaceuticals and nutraceuticals.


Assuntos
Antioxidantes , Carotenoides , Haloferax , Lagos , Carotenoides/química , Carotenoides/metabolismo , Lagos/microbiologia , Antioxidantes/farmacologia , Antioxidantes/química , Haloferax/metabolismo
7.
Environ Res ; 252(Pt 2): 118751, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522738

RESUMO

Haloarchaea with the capacity to degrade alkanes is promising to deal with petroleum pollution in hypersaline environments. However, only a limited number of haloarchaeal species are investigated, and their pathway and mechanism for alkane degradation remain unclear. In this study, Halogranum rubrum RO2-11, a haloarchaeal strain, verified the ability to degrade kerosene and hexadecane in 184 g/L NaCl, with 53% and 52% degradation rates after 9 and 4 days, respectively. Genome sequencing and gene annotation indicated that strain RO2-11 possesses a complete potential alkane-degrading pathway, of which alkane hydroxylases may include CYP450, AlmA, and LadA. Transcriptome and metabolome analyses revealed that the upregulation of related genes in TCA cycle, lysine biosynthesis, and acetylation may help improve hexadecane degradation. Additionally, an alternative degrading pathway of hexadecane based on dual-terminal ß-oxidation may occur in strain RO2-11. It is likely to be the first report of alkane degradation by the genus Halogranum, which may be helpful for applications of oil-pollution bioremediation under high-salt conditions.


Assuntos
Alcanos , Biodegradação Ambiental , Alcanos/metabolismo , Halobacteriaceae/genética , Halobacteriaceae/metabolismo , Multiômica
8.
Appl Microbiol Biotechnol ; 108(1): 401, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951176

RESUMO

Haloarchaea are extremophilic microorganisms belonging to the Archaea domain that require high salt concentrations to be alive, thus inhabiting ecosystems like salty ponds, salty marshes, or extremely salty lagoons. They are more abundantly and widely distributed worldwide than initially expected. Most of them are grouped into two families: Halobacteriaceae and Haloferacaceae. The extreme conditions under which haloarchaea survive contribute to their metabolic and molecular adaptations, thus making them good candidates for the design of bioremediation strategies to treat brines, salty water, and saline soils contaminated with toxic compounds such as nitrate, nitrite, oxychlorates such as perchlorate and chlorate, heavy metals, hydrocarbons, and aromatic compounds. New advances in understanding haloarchaea physiology, metabolism, biochemistry, and molecular biology suggest that biochemical pathways related to nitrogen and carbon, metals, hydrocarbons, or aromatic compounds can be used for bioremediation proposals. This review analyses the novelty of the most recent results showing the capability of some haloarchaeal species to assimilate, modify, or degrade toxic compounds for most living beings. Several examples of the role of these microorganisms in the treatment of polluted brine or salty soils are also discussed in connection with circular economy-based processes. KEY POINTS: • Haloarchaea are extremophilic microorganisms showing genuine metabolism • Haloarchaea can metabolise compounds that are highly toxic to most living beings • These metabolic capabilities are useful for designing soil and water bioremediation strategies.


Assuntos
Biodegradação Ambiental , Archaea/metabolismo , Halobacteriaceae/metabolismo , Halobacteriaceae/genética , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Microbiologia do Solo
9.
Appl Microbiol Biotechnol ; 108(1): 265, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498113

RESUMO

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a type of polyhydroxyalkanoates (PHA) that exhibits numerous outstanding properties and is naturally synthesized and elaborately regulated in various microorganisms. However, the regulatory mechanism involving the specific regulator PhaR in Haloferax mediterranei, a major PHBV production model among Haloarchaea, is not well understood. In our previous study, we showed that deletion of the phosphoenolpyruvate (PEP) synthetase-like (pps-like) gene activates the cryptic phaC genes in H. mediterranei, resulting in enhanced PHBV accumulation. In this study, we demonstrated the specific function of the PPS-like protein as a negative regulator of phaR gene expression and PHBV synthesis. Chromatin immunoprecipitation (ChIP), in situ fluorescence reporting system, and in vitro electrophoretic mobility shift assay (EMSA) showed that the PPS-like protein can bind to the promoter region of phaRP. Computational modeling revealed a high structural similarity between the rifampin phosphotransferase (RPH) protein and the PPS-like protein, which has a conserved ATP-binding domain, a His domain, and a predicted DNA-binding domain. Key residues within this unique DNA-binding domain were subsequently validated through point mutation and functional evaluations. Based on these findings, we concluded that PPS-like protein, which we now renamed as PspR, has evolved into a repressor capable of regulating the key regulator PhaR, and thereby modulating PHBV synthesis. This regulatory network (PspR-PhaR) for PHA biosynthesis is likely widespread among haloarchaea, providing a novel approach to manipulate haloarchaea as a production platform for high-yielding PHA. KEY POINTS: • The repressive mechanism of a novel inhibitor PspR in the PHBV biosynthesis was demonstrated • PspR is widespread among the PHA accumulating haloarchaea • It is the first report of functional conversion from an enzyme to a trans-acting regulator in haloarchaea.


Assuntos
Poli-Hidroxialcanoatos , Poli-Hidroxialcanoatos/metabolismo , Hidroxibutiratos , DNA , Poliésteres/metabolismo
10.
Food Microbiol ; 124: 104623, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39244374

RESUMO

The demand for natural products has significantly increased, driving interest in carotenoids as bioactive compounds for both human and animal consumption. Carotenoids, natural pigments with several biological properties, like antioxidant and antimicrobial, are increasingly preferred over synthetic colorants by the consumers (chemophobia). The global carotenoid market is projected to reach US$ 2.45 billion by 2034, driven by consumer preferences for natural ingredients and regulatory restrictions on synthetic products. Among carotenoids, bacterioruberin (BR), a C50 carotenoid naturally found in microbial hyperhalophilic archaea and in moderate halophilic archaea, stands out for its exceptional antioxidant capabilities, surpassing even well-known carotenoids like astaxanthin. BR's and its derivatives unique structure, with 13 conjugated double bonds and four -OH groups, contributes to its potent antioxidant activity and potential applications in food, feed, supplements, pharmaceuticals, and cosmeceuticals. This review explores BR's chemical and biological properties, upstream and downstream technologies, analytical techniques, market applications, and prospects in the colorants industry. While BR is not intended to replace existing carotenoids, its inclusion enriches the range of natural products available to meet the rising demand for natural alternatives. Furthermore, BR's promising antioxidant capacity positions it as a key player in the future carotenoid market, offering diverse industries a natural and potent alternative for several applications.


Assuntos
Antioxidantes , Carotenoides , Indústria Alimentícia , Carotenoides/metabolismo , Carotenoides/química , Antioxidantes/farmacologia , Antioxidantes/química , Humanos , Archaea/metabolismo , Animais
11.
Mar Drugs ; 22(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38667784

RESUMO

Halophilic archaea, also termed haloarchaea, are a group of moderate and extreme halophilic microorganisms that constitute the major microbial populations in hypersaline environments. In these ecosystems, mainly aquatic, haloarchaea are constantly exposed to ionic and oxidative stress due to saturated salt concentrations and high incidences of UV radiation (mainly in summer). To survive under these harsh conditions, haloarchaea have developed molecular adaptations including hyperpigmentation. Regarding pigmentation, haloarchaeal species mainly synthesise the rare C50 carotenoid called bacterioruberin (BR) and its derivatives, monoanhydrobacterioruberin and bisanhydrobacterioruberin. Due to their colours and extraordinary antioxidant properties, BR and its derivatives have been the aim of research in several research groups all over the world during the last decade. This review aims to summarise the most relevant characteristics of BR and its derivatives as well as describe their reported antitumoral, immunomodulatory, and antioxidant biological activities. Based on their biological activities, these carotenoids can be considered promising natural biomolecules that could be used as tools to design new strategies and/or pharmaceutical formulas to fight against cancer, promote immunomodulation, or preserve skin health, among other potential uses.


Assuntos
Antineoplásicos , Antioxidantes , Carotenoides , Neoplasias , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Humanos , Carotenoides/farmacologia , Carotenoides/química , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Animais , Archaea/metabolismo
12.
Mar Drugs ; 22(10)2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39452856

RESUMO

Haloarchaea are a group of moderate and extreme halophilic microorganisms, belonging to the Archaea domain, that constitute relevant microbial communities in salty environments like coastal and inland salted ponds, marshes, salty lagoons, etc. They can survive in stress conditions such as high salinity and, therefore, high ionic strength, high doses of ultraviolet radiation (UV), high temperature, and extreme pH values. Consequently, most of the species can be considered polyextremophiles owing to their ability to respond to the multiple extreme conditions characterizing their natural habitats. They cope with those stresses thanks to several molecular and metabolic adaptations. Thus, some of the molecules produced by haloarchaea show significantly different biological activities and physicochemical properties compared to their bacterial counterparts. Recent studies have revealed promising applications in biotechnology and medicine for these biomolecules. Among haloarchaeal biomolecules, rare natural pigments (C50 carotenoids) and small peptides called halocins and microhalocins have attracted attention worldwide due to their effects on animal and human commercial tumoral cells, apart from the role as antibiotics described for halocins or the immunomodulatory activity reported from C50 carotenoids like bacterioruberin. This review summarizes recent knowledge on these two types of biomolecules in connection with cancer to shed new light on the design of drugs and new therapies based on natural compounds.


Assuntos
Antineoplásicos , Carotenoides , Neoplasias , Humanos , Carotenoides/farmacologia , Carotenoides/química , Animais , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/química , Bacteriocinas/farmacologia , Bacteriocinas/química
13.
World J Microbiol Biotechnol ; 40(11): 340, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39358625

RESUMO

Extracellular proteases from haloarchaea, also referred to as halolysins, are in increasing demand and are studied for their various applications in condiments and leather industries. In this study, an extracellular protease encoding gene from the haloarchaeon Halorubellus sp. PRR65, hly65, was cloned and heterologously expressed in E. coli. The novel halolysin Hly65 from the genus Halorubellus was characterized by complete inhibition of phenylmethanesulfonyl fluoride (PMSF) on its enzyme activity. Experimental determination revealed a triad catalytic active center consisting of Asp154-His193-Ser348. Deletion of the C-terminal extension (CTE) resulted in loss of enzyme activity, while dithiothreitol (DTT) did not inhibit the enzyme activity, suggesting that Hly65 may function as a monomer. The Km, Vmax and Kcat for the Hly65 were determined to be 2.91 mM, 1230.47 U·mg-1 and 1538.09 S-1, respectively, under 60 °C, pH 8.0 and 4.0 M NaCl using azocasecin as a substrate. Furthermore, a three-dimensional structure prediction based on functional domains was obtained in this study which will facilitate modification and reorganization of halolysins to generate mutants with new physiological activities.


Assuntos
Proteínas Arqueais , Clonagem Molecular , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Caseínas , Domínio Catalítico , Estabilidade Enzimática , Escherichia coli/genética , Halobacteriaceae/genética , Halobacteriaceae/enzimologia , Halobacteriaceae/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Fluoreto de Fenilmetilsulfonil/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Cloreto de Sódio/metabolismo , Especificidade por Substrato , Temperatura
14.
Mol Biol Evol ; 39(4)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35275997

RESUMO

Our understanding of microbial diversity and its evolutionary relationships has increased substantially over the last decade. Such an understanding has been greatly fueled by culture-independent metagenomics analyses. However, the outcome of some of these studies and their biological and evolutionary implications, such as the origin of the eukaryotic lineage from the recently discovered archaeal Asgard superphylum, is debated. The sequences of the ribosomal constituents are amongst the most used phylogenetic markers. However, the functional consequences underlying the analysed sequence diversity and their putative evolutionary implications are essentially not taken into consideration. Here, we propose to exploit additional functional hallmarks of ribosome biogenesis to help disentangle competing evolutionary hypotheses. Using selected examples, such as the multiple origins of halophily in archaea or the evolutionary relationship between the Asgard archaea and Eukaryotes, we illustrate and discuss how function-aware phylogenetic framework can contribute to refining our understanding of archaeal phylogeny and the origin of eukaryotic cells.


Assuntos
Archaea , Genoma Arqueal , Archaea/genética , Evolução Biológica , Eucariotos/genética , Filogenia , Ribossomos/genética
15.
Genetica ; 151(2): 133-152, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36795306

RESUMO

Halophilic archaea are polyextremophiles with the ability to withstand fluctuations in salinity, high levels of ultraviolet radiation, and oxidative stress, allowing them to survive in a wide range of environments and making them an excellent model for astrobiological research. Natrinema altunense 4.1R is a halophilic archaeon isolated from the endorheic saline lake systems, Sebkhas, located in arid and semi-arid regions of Tunisia. It is an ecosystem characterized by periodic flooding from subsurface groundwater and fluctuating salinities. Here, we assess the physiological responses and genomic characterization of N. altunense 4.1R to UV-C radiation, as well as osmotic and oxidative stresses. Results showed that the 4.1R strain is able to survive up to 36% of salinity, up to 180 J/m2 to UV-C radiation, and at 50 mM of H2O2, a resistance profile similar to Halobacterium salinarum, a strain often used as UV-C resistant model. In order to understand the genetic determinants of N. altunense 4.1R survival strategy, we sequenced and analyzed its genome. Results showed multiple gene copies of osmotic stress, oxidative stress, and DNA repair response mechanisms supporting its survivability at extreme salinities and radiations. Indeed, the 3D molecular structures of seven proteins related to responses to UV-C radiation (excinucleases UvrA, UvrB, and UvrC, and photolyase), saline stress (trehalose-6-phosphate synthase OtsA and trehalose-phosphatase OtsB), and oxidative stress (superoxide dismutase SOD) were constructed by homology modeling. This study extends the abiotic stress range for the species N. altunense and adds to the repertoire of UV and oxidative stress resistance genes generally known from haloarchaeon.


Assuntos
Halobacteriaceae , Raios Ultravioleta , Ecossistema , Peróxido de Hidrogênio , Halobacteriaceae/genética , Estresse Oxidativo , Genômica
16.
Artigo em Inglês | MEDLINE | ID: mdl-37578894

RESUMO

An extremely halophilic archaeal strain, designated S1CR25-10T, was isolated from hypersaline soil sampled in the Odiel Saltmarshes Natural Area in Southwestern Spain (Huelva) and subjected to a polyphasic taxonomic characterization. The cells were Gram-stain-negative, motile and their colonies were pink-pigmented. It was a strictly aerobic haloarchaeon that could grow at 25-55 °C (optimum, 37 °C), at pH 6.0-9.0 (optimum, pH 7.0-8.0) and in the presence of 12-30 % (w/v) total salts (optimum, 20-25 %, w/v). The phylogenetic analysis based on the comparison of the 16S rRNA gene sequences revealed that strain S1CR25-10T belongs to the genus Natrinema, with 98.9 % similarity to Natrinema salinisoli SLN56T. In addition, the values of orthologous average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity were below the threshold limits accepted for prokaryotic species delineation, with N. salinisoli SLN56T showing the highest relatedness values (92.6 % and 48.4 %, respectively). The major polar lipids were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and a glycolipid chromatographically identical to sulfated diglycosyl diether. The DNA G+C content of the isolate was 63.8 mol%. Based on the phylogenetic, phenotypic and chemotaxonomic characterization and the whole genome results, strain S1CR25-10T represents a new species within the genus Natrinema, for which the name Natrinema salsiterrestre sp. nov., with type strain S1CR25-10T (=CECT 30623T=CCM 9251T), is proposed.


Assuntos
Ácidos Graxos , Halobacteriaceae , Filogenia , RNA Ribossômico 16S/genética , DNA Arqueal/genética , Composição de Bases , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Fosfolipídeos/química , Fosfatidilgliceróis/análise , China
17.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37990990

RESUMO

An extremely halophilic archaeon, strain S1AR25-5AT, was isolated from a hypersaline soil sampled in Odiel Saltmarshes Natural Area (Huelva, Spain). The cells were Gram-stain-negative, motile, pleomorphic rods. Cell growth was observed in the presence of 15-30 % (w/v) NaCl [optimum, 25 % (w/v) NaCl], at pH 6.0-9.0 (optimum, pH 6.5-7.5) and at 25-50 °C (optimum, 37 °C). Based on the 16S rRNA and rpoB' gene sequence comparisons, strain S1AR25-5AT was affiliated to the genus Haloarcula. Taxogenomic analysis, including comparison of the genomes and the phylogenomic tree based on the core-orthologous proteins, together with the genomic indices, i.e., orthologous average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity, confirmed that strain S1AR25-5AT (=CCM 9249T=CECT 30619T) represents a new species of the genus Haloarcula, for which we propose the name Haloarcula terrestris sp. nov. The major polar lipids were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulphate and an unidentified glycolipid, which correlated with the lipid profile of species of the genus Haloarcula. In addition, based on the modern approach in description of species in taxonomy of prokaryotes, the above mentioned genomic indexes indicated that the species Haloarcula tradensis should be considered as a heterotypic synonym of Haloarcula argentinensis.


Assuntos
Haloarcula , RNA Ribossômico 16S/genética , Cloreto de Sódio , Ácidos Graxos/química , Filogenia , Análise de Sequência de DNA , Composição de Bases , DNA Arqueal/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Fosfolipídeos/química , Fosfatidilgliceróis
18.
Mar Drugs ; 21(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36827113

RESUMO

Haloferax mediterranei has revealed a high bioremediation potential for several inorganic anions (e.g., nitrates and nitrites) and metals from hypersaline waters and brines. However, it is unclear, to date, whether this microorganism allows Cd (II) bioremediation. Consequently, the main objective of this work was to assess the Cd (II) bioremediation potential of Hfx. mediterranei R4. To this end, Hfx. mediterranei cell growth rate and metal bioaccumulation were investigated using different culture media (complex, CM, and defined medium, DM) containing Cd (II) up to 1 mM. In addition, the elemental profile of the biomass (i.e., Al, Ba, Ca, Co, Cu, Fe, K, Mg, Mn, Na, Ni, Sr and Zn) has also been monitored to gain insight into the metabolic processes that may be taking place at the intracellular level for Cd (II) removal. Because of the formation of CdS precipitate, CM is not a suitable culture media for evaluating Cd bioremediation since metal concentration could not be appropriately controlled. When operating in DM, it was observed that the cell doubling time increases three times in the presence of Cd (II). Hfx. mediterranei can bioaccumulate Cd, showing the highest significant accumulation at concentrations of 0.4 mM (108 ± 12 mg Cd/g dry tissue). Finally, the presence of Cd (II) affects the content of K, Mg, Mn and Zn in the biomass, by increasing K levels up to 27 ± 18% and Mn up to 310 ± 140% and reducing Mg levels up to 55 ± 36% and Zn up to 30 ± 4%. These results suggest that different mechanisms are involved in Cd (II) tolerance by Hfx. mediterranei, resulting in increasing the cell concentration of stress-tolerant elements in the biomass (K and Mn), while lowering the concentration of elements which Cd (II) competes with (Mg and Zn), and that all affects the physiological response of the organism by decreasing its growth rate.


Assuntos
Cádmio , Haloferax mediterranei , Cádmio/metabolismo , Haloferax mediterranei/metabolismo , Metais/metabolismo , Nitritos/metabolismo , Meios de Cultura/metabolismo
19.
Proc Natl Acad Sci U S A ; 117(33): 20223-20234, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32759215

RESUMO

Nano-sized archaeota, with their small genomes and limited metabolic capabilities, are known to associate with other microbes, thereby compensating for their own auxotrophies. These diminutive and yet ubiquitous organisms thrive in hypersaline habitats that they share with haloarchaea. Here, we reveal the genetic and physiological nature of a nanohaloarchaeon-haloarchaeon association, with both microbes obtained from a solar saltern and reproducibly cultivated together in vitro. The nanohaloarchaeon Candidatus Nanohalobium constans LC1Nh is an aerotolerant, sugar-fermenting anaerobe, lacking key anabolic machinery and respiratory complexes. The nanohaloarchaeon cells are found physically connected to the chitinolytic haloarchaeon Halomicrobium sp. LC1Hm. Our experiments revealed that this haloarchaeon can hydrolyze chitin outside the cell (to produce the monosaccharide N-acetylglucosamine), using this beta-glucan to obtain carbon and energy for growth. However, LC1Hm could not metabolize either glycogen or starch (both alpha-glucans) or other polysaccharides tested. Remarkably, the nanohaloarchaeon's ability to hydrolyze glycogen and starch to glucose enabled growth of Halomicrobium sp. LC1Hm in the absence of a chitin. These findings indicated that the nanohaloarchaeon-haloarchaeon association is both mutualistic and symbiotic; in this case, each microbe relies on its partner's ability to degrade different polysaccharides. This suggests, in turn, that other nano-sized archaeota may also be beneficial for their hosts. Given that availability of carbon substrates can vary both spatially and temporarily, the susceptibility of Halomicrobium to colonization by Ca Nanohalobium can be interpreted as a strategy to maximize the long-term fitness of the host.


Assuntos
Halobacteriaceae/fisiologia , Nanoarchaeota/fisiologia , Polissacarídeos/metabolismo , Simbiose/fisiologia , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Técnicas de Cocultura , Regulação da Expressão Gênica em Archaea , Genoma Arqueal , Genômica , Filogenia
20.
J Basic Microbiol ; 63(5): 558-569, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36892092

RESUMO

Toxic heavy metal/oxyanion contamination has increased severely through the last decades. In this study, 169 native haloarchaeal strains were isolated from different saline and hypersaline econiches of Iran. After providing pure culture and performing morphological, physiological, and biochemical tests, haloarchaea resistance toward arsenate, selenite, chromate, cadmium, zinc, lead, copper, and mercury were surveyed using an agar dilution method. On the basis of minimum inhibitory concentrations (MICs), the least toxicities were found with selenite and arsenate, while the haloarchaeal strains revealed the highest sensitivity for mercury. On the other hand, the majority of haloarchaeal strains exhibited similar responses to chromate and zinc, whereas the resistance level of the isolates to lead, cadmium, and copper was very heterogeneous. 16 S ribosomal RNA (rRNA) gene sequence analysis revealed that most haloarchaeal strains belong to the Halorubrum and Natrinema genera. The obtained results from this study showed that among the identified isolates, Halococcus morrhuae strain 498 had an exceptional resistance toward selenite and cadmium (64 and 16 mM, respectively). Also, Halovarius luteus strain DA5 exhibited a remarkable tolerance against copper (32 mM). Moreover, strain Salt5, identified as Haloarcula sp., was the only strain that could tolerate all eight tested heavy metals/oxyanions and had a significant tolerance of mercury (1.5 mM).


Assuntos
Mercúrio , Metais Pesados , Cobre , Arseniatos , Cádmio , Ecossistema , Cromatos , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA