Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37882660

RESUMO

Three bacterial strains, designated SSBR10-3T, SSTM10-2T and SSHM10-5T, were isolated from saltern soil sampled in Jeollanam-do, Republic of Korea. Cells were aerobic, Gram-stain-positive, flagellated and rod-shaped. The strains grew optimally at 28°C and at pH 7.0. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains SSBR10-3T, SSTM10-2T and SSHM10-5T were placed within the genus Halobacillus, showing the highest similarity to Halobacillus alkaliphilus FP5T (98.6 %), 'Halobacillus ihumii' Marseille-Q1234T (98.5 %) and Halobacillus locisalis MSS-155T (98.6 %), respectively. The genomic similarity values between strains SSBR10-3T, SSTM10-2T and SSHM10-5T and their related species were 17.6-22.6 % for digital DNA-DNA hybridization (dDDH) and 69.6-78.5 % for orthologous average nucleotide identity (OrthoANI), which were lower than the thresholds recommended for species delineation. The dDDH and OrthoANI values among the three strains were below 38.3 and 89.4 %, respectively. Besides the differences in genomic features, strains SSBR10-3T, SSTM10-2T and SSHM10-5T were distinct from each other and from members of the genus in terms of phenotypic traits related to substrate assimilation. The cell-wall peptidoglycan contained meso-diaminopimelic acid, the major fatty acids were anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0, and the predominant menaquinone was MK-7 for all three strains. Diphosphatidylglycerol, phosphatidylglycerol and an unidentified phospholipid were present in their polar lipid profiles. Based on a polyphasic approach incorporating genomic data, strains SSBR10-3T, SSTM10-2T and SSHM10-5T represent novel species, for which the names Halobacillus salinarum sp. nov. (SSBR10-3T=DSM 114353T=KACC 21935T=NBRC 115504T), Halobacillus shinanisalinarum sp. nov. (SSTM10-2T=DSM 114354T=KACC 21936T=NBRC 115505T) and Halobacillus amylolyticus sp. nov. (SSHM10-5T=DSM 114355T= KACC 21937T=NBRC 115506T) are proposed.


Assuntos
Ácidos Graxos , Halobacillus , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Nucleotídeos
2.
J Appl Microbiol ; 133(5): 3030-3040, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35929370

RESUMO

AIMS: This study examined and characterized the extract for metabolites of Halobacillus marinus HMALI004 to understand their antibacterial activities against opportunistic marine pathogens, that is, Vibrio parahaemolyticus and Vibrio cholerae. METHODS AND RESULTS: The bacterial strain HMALI004 was characterized as H. marinus, and an antibacterial spectral test revealed its inhibition against two opportunistic marine pathogens (V. parahaemolyticus and V. cholera). Fermentation broth of strain HMALI004 was subjected to column chromatography and high-performance liquid chromatography to separate antibacterial substances. Two compounds were successfully isolated and identified as 1H-pyrrole-2-carboxylic acid and 4-chloro-1H-pyrrole-2-carboxylic acid by mass spectrometry (MS) and nuclear magnetic resonance. The minimal inhibition concentration (MIC) values of 1H-pyrrole-2-carboxylic acid and 4-chloro-1H-pyrrole-2-carboxylic acid for V. parahaemolyticus were 25 µg/ml, while their MIC values for V. cholerae were 50 and 100 µg/ml, respectively. The reactive oxygen species (ROS) production of two pathogen strains treated with 1H-pyrrole-2-carboxylic acid and 4-chloro-1H-pyrrole-2-carboxylic acid were detected to investigate the antimicrobial mechanism. The results suggested that 4-chloro-1H-pyrrole-2-carboxylic acid exerted enhanced ROS production in V. parahaemolyticus, whereas 1H-pyrrole-2-carboxylic acid had a weaker effect. Both compounds caused a significant rise in ROS production in V. cholerae, causing severe damage to the cell wall and cytoplasm, leading to cell death. CONCLUSIONS: The bacterium H. marinus HMALI004 was isolated from a shrimp pond and was found to produce antimicrobial compounds, which could inhibit the growth of opportunistic marine pathogens V. parahaemolyticus and V. cholerae by increasing ROS. SIGNIFICANCE AND IMPACT OF THE STUDY: Successfully isolated antibacterial-producing strain, H. marinus HMALI004, and its antimicrobial compounds could be used as biological control agents for marine pathogens.


Assuntos
Anti-Infecciosos , Halobacillus , Vibrio cholerae , Vibrio parahaemolyticus , Espécies Reativas de Oxigênio , Agentes de Controle Biológico/farmacologia , Bactérias , Vibrio parahaemolyticus/fisiologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Extratos Vegetais/farmacologia
3.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34825883

RESUMO

An aerobic, Gram-stain-positive, endospore-forming, rod-shaped and moderately halophilic strain SKP4-6T, was isolated from shrimp paste (Ka-pi) collected from Samut Sakhon Province, Thailand. Phylogenetic analysis revealed that strain SKP4-6T belonged to the genus Halobacillus and was most closely related to Halobacillus salinus JCM 11546T (98.6 %), Halobacillus locisalis KCTC 3788T (98.6 %) and Halobacillus yeomjeoni KCTC 3957T (98.6 %) based on 16S rRNA gene sequence similarity. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strain SKP4-6T and its related species were 18.2-19.3 % and 69.84-84.51 %, respectively, which were lower than the threshold recommended for species delineation. The strain grew optimally at 30-40 °C, at pH 7.0 and with 10-15 % (w/v) NaCl. It contained l-Orn-d-Asp in the cell wall peptidoglycan. The DNA G+C content was 44.8 mol%. The major fatty acids were iso-C15 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The predominant isoprenoid quinone was MK-7. Phosphatidylglycerol and diphosphatidylglycerol were present as major polar lipids. Based on this polyphasic approach, digital DNA-DNA relatedness and ANI values, strain SKP4-6T represents a novel species of the genus Halobacillus, for which the name Halobacillus fulvus sp. nov. is proposed. The type strain is SKP4-6T (=JCM 32624T=TISTR 2595T).


Assuntos
Microbiologia de Alimentos , Halobacillus , Filogenia , Alimentos Marinhos/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Halobacillus/classificação , Halobacillus/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tailândia , Vitamina K 2/análogos & derivados , Vitamina K 2/química
4.
Microb Pathog ; 149: 104555, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33010361

RESUMO

INTRODUCTION: In recent years, a challenge in clinical treatment has developed due to bacterial resistance to antibiotics. One of the new mechanisms against infections is virulence factor inhibition. Many virulence factors are controlled by quorum sensing pathways such as biofilm formation and pyocyanin production. The goal of the present study was to investigate the effect of an obligate halophilic bacterial strain on Pseudomonas aeruginosa and Staphylococcus aureus, due to its halo-tolerant substances and enzymes. METHODS: The effect of Halobacillus karajensis on bacterial growth and production of virulence factors was studied in this work. The obligate halophile cells and supernatant fractions were extracted by the methanol/chloroform method and characterized by Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Gas Chromatography-Mass Spectrometry (GC-MS), and zymography. The effects of these fractions were studied on biofilm formation in P. aeruginosa and S. aureus as well as on pyocyanin production in P. aeruginosa. The effective protein in the fraction was analyzed by the SDS-PAGE method, and all protein fragments were studied for pyocyanin inhibition. RESULTS: The crude supernatant extract, MMS fraction, from H. karajensis was effective for the biofilm reduction in S. aureus (74%) and P. aeruginosa (27%). Two proteases in this fraction, which were recognized by zymography on skim milk, were the probable causes for extracellular polymeric substances (EPS) hydrolysis in the biofilm matrix. Also, halide crystals and branched fatty acids, 12methyl-tetradecanoic acid, in the other fractions decreased the biofilm by 18% in S. aureus. The results showed that a new 25 kD protein, which was obtained from MMS fraction, inhibited pyocyanin production by 60% in P. aeruginosa. The zymogram and bioinformatics studies showed that this protein was a serine alkaline metalloprotease and had an interaction with AHL molecules. CONCLUSION: The inhibitory effects of the non-toxic natural substances and proteases on biofilm formation and pyocyanin production, specifically the 25 kD protease, are novel in this study and make them a good candidate for infected wound healing and inhibiting the virulence factors.


Assuntos
Percepção de Quorum , Fatores de Virulência , Antibacterianos/farmacologia , Biofilmes , Halobacillus , Peptídeo Hidrolases , Pseudomonas aeruginosa , Staphylococcus aureus
5.
Extremophiles ; 24(1): 157-166, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31701243

RESUMO

A halophilic bacterial strain, EG1HP4QL, was isolated from a salt sample from Lake Qarun, Fayoum Province, Egypt. Morphological, physiological, biochemical, and phylogenetic analyses indicated that the strain belonged to the genus Halobacillus. Strain EG1HP4QL produced an extracellular polysaccharide (EPS), with production peaking (5.9 g L-1) during growth on medium S-G containing 2% (w/v) sucrose at 35 °C (pH 8.0). The EPS had significant emulsifying activity (E24 %) against kerosene (65.7 ± 0.8%), o-xylene (64.0 ± 1%), and sunflower oil (44.7 ± 0.5%). The composition of the EPS included two polymers-a negatively charged and a neutral one (~ 3:1)-in which mannose and glucose were the main neutral monosaccharide constituents. Strain EG1HP4QL was able to utilize crude oil (35.3%) as the sole carbon source within 12 days. The minimum inhibitory concentrations of heavy metals [Zn(II), Cd(II), Pb(II), Ni(II), and Cu(II)] for strain EG1HP4QL were 1.0, 2.0, 2.0, 2.5, and 5 mM, respectively.


Assuntos
Biodegradação Ambiental , Halobacillus , Egito , Metais Pesados , Petróleo , Filogenia
6.
J Basic Microbiol ; 57(2): 104-113, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27862101

RESUMO

About 110 newly isolated halophilic and halotolerant bacteria were screened for protease production. A moderately halophilic strain (CJ4), isolated from Chott Eldjerid Hypersaline lake in Tunisia, showed the highest activity on agar plate and was then selected. The biochemical and physiological characterization of the isolate along with the 16S rRNA sequence analysis placed it in the genus Halobacillus. Protease production was maximal at 120 g/L NaCl (2 M) and it started from the post-exponential phase reaching a maximum level at the early decline phase of bacterial growth. Protease activity was optimal at 0.4 M NaCl, pH 9 and 45 °C. It showed an excellent stability over wide ranges of temperatures (30-60 °C), NaCl concentrations (0-5 M), and pH values (5-10), which make it a good candidate for industrial applications at harsh conditions. Crude protease was strongly inhibited by PMSF revealing the dominance of serine proteases. Protease activity exhibited high stability in the presence of several organic solvents and detergent additives. These findings make Halobacillus sp. CJ4 protease with a great interest for many biotechnological applications at high salt or low water content such as peptide synthesis and detergent formulation.


Assuntos
Halobacillus/enzimologia , Serina Proteases/isolamento & purificação , Serina Proteases/metabolismo , Técnicas de Tipagem Bacteriana , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Detergentes/metabolismo , Inibidores Enzimáticos/metabolismo , Estabilidade Enzimática , Halobacillus/classificação , Halobacillus/genética , Halobacillus/fisiologia , Concentração de Íons de Hidrogênio , Lagos/microbiologia , Fluoreto de Fenilmetilsulfonil/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Serina Proteases/química , Cloreto de Sódio/metabolismo , Solventes/metabolismo , Temperatura , Tunísia
7.
Antonie Van Leeuwenhoek ; 109(5): 713-20, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26942918

RESUMO

A Gram-positive, moderately halophilic bacterium, designated strain TGS-15(T), was isolated from the sediment of a solar saltern pond located in Shinan, Korea. Strain TGS-15(T) was found to be a strictly aerobic, non-motile rod which can grow at pH 6.0-10.0 (optimum, pH 9.0), at 20-35 °C (optimum, 28 °C) and at salinities of 1-20 % (w/v) NaCl (optimum, 9 % NaCl). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain TGS-15(T) belongs to the genus Halobacillus, with sequence similarity of 98.5-96.0 % to known type strains, showing high sequence similarity to Halobacillus locisalis MSS-155(T) (98.5 %), Halobacillus faecis IGA7-4(T) (98.2 %) and Halobacillus alkaliphilus FP5(T) (98.0 %), and less than 98.0 % sequence similarity to other currently recognised type strains of the genus. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, an unidentified glycolipid and an unidentified lipid. The cell wall peptidoglycan was found to be based on L-Orn-D-Asp, the predominant isoprenoid quinone was identified as menaquinone-7 (MK-7) and the major fatty acids were identified as anteiso-C15:0, iso-C15:0, anteiso-C17:0 and C16:1 ω7c alcohol. The DNA G+C content of this novel isolate was determined to be 45.3 mol %. Levels of DNA:DNA relatedness between strain TGS-15(T) and the type strains of 13 other species of the genus ranged from 52 to 9 %. On the basis of the polyphasic analysis conducted in this study, strain TGS-15(T) is concluded to represent a novel species of the genus Halobacillus, for which the name Halobacillus salicampi sp. nov. is proposed. The type strain is TGS-15(T) (=KACC 18264(T) = NBRC 110640(T)).


Assuntos
Sedimentos Geológicos/microbiologia , Halobacillus/classificação , Halobacillus/isolamento & purificação , Lagoas/microbiologia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , DNA Ribossômico/genética , Sedimentos Geológicos/química , Halobacillus/genética , Halobacillus/fisiologia , Fenótipo , Filogenia , República da Coreia , Salinidade , Microbiologia da Água
8.
J Basic Microbiol ; 54(8): 781-91, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23775888

RESUMO

Salinity and heavy metal stress are challenging problems in agriculture. Here we report the plant growth promoting ability of three moderate halophiles, Halobacillus sp. ADN1, Halomonas sp. MAN5, and Halobacillus sp. MAN6, in presence of both salinity and heavy metal stress. Halobacillus sp. ADN1, Halomonas sp. MAN5, and Halobacillus sp. MAN6 can tolerate 25, 21, and 29% NaCl, respectively and grow in presence of 1 mM cobalt, cadmium, and nickel and 0.04 mM mercury and 0.03 mM silver. Halobacillus sp. ADN1, Halomonas sp. MAN5, and Halobacillus sp. MAN6 produced 152.5, 95.3, and 167.3 µg/ml indole acetic acid (IAA) and could solubilize 61, 53, and 75 parts per million (ppm) phosphate, respectively in the presence of 15% NaCl. The production of IAA and solubilization of phosphate was well retained in the presence of salinity and heavy metals like 1 mM cadmium, 0.7 mM nickel, 0.04 mM mercury, and 0.03 mM silver. Besides, the strains showed amylase and protease activities and could produce hydrogen cyanide and ammonia in presence of salinity and heavy metals. A mixture of three strains enhanced the root growth of Sesuvium portulacastrum under saline and heavy metal stress, where the root length increased nearly 4.5 ± 0.6 times and root dry weight increased 5.4 ± 0.5 times as compared to control. These strains can thus be useful in microbial assisted phytoremediation of polluted saline soils.


Assuntos
Aizoaceae/crescimento & desenvolvimento , Halobacillus/metabolismo , Halomonas/metabolismo , Metais Pesados/farmacologia , Cloreto de Sódio/farmacologia , Aizoaceae/microbiologia , Amônia/metabolismo , Amilases/metabolismo , Técnicas de Tipagem Bacteriana , Halobacillus/genética , Halomonas/genética , Cianeto de Hidrogênio/metabolismo , Ácidos Indolacéticos/metabolismo , Peptídeo Hidrolases/metabolismo , Fosfatos/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Salinidade , Solo , Poluentes do Solo
9.
J Genet Eng Biotechnol ; 21(1): 48, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121925

RESUMO

BACKGROUND: Hydrolytic enzymes from halophilic microorganisms have a wide range of industrial applications. Herein, we report the isolation of Halobacillus sp. HAL1, a moderately halophilic bacterium that produces a novel high molecular weight extracellular alkaline protease when grown in fish processing wastes as a substrate. RESULTS: Results showed that the isolated strain belonged to the genus Halobacillus, and it was designated as Halobacillus sp. HAL1 with the GenBank accession number OK001470. The strain secreted an extracellular alkaline protease, and the highest yield was obtained when it was grown in a medium with fish wastes substrate as the sole nutritional source (10 g/L) and incubated at 25 °C under shaking conditions. The enzyme was partially purified by Sephadex G-100 column chromatography. Zymographic analysis showed two casein degrading bands of about 190 and 250 KDa. The optimum enzyme activity was at a temperature of 50 °C at pH 8. The proteolytic activity was enhanced in the presence of metal ions (Ca2+, Mg2+, and Mn2+), surfactants (Tween 80, SDS, and Triton-X100), H2O2, and EDTA. CONCLUSION: Our study indicates that Haobacillus sp. HAL1 is a moderately halophilic strain and secrets a novel high molecular wight alkaline protease that is suitable for detergent formulation.

10.
Microbiol Resour Announc ; 12(11): e0057023, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37874147

RESUMO

We present the whole-genome sequence of Halobacillus naozhouensis Korean Agricultural Culture Collection (KACC) 21980T, isolated from China by Chen et al.. The genome of Halobacillus naozhouensis KACC 21980T comprises a circular chromosome (4.2 Mb) and one plasmid (17 kb). It includes a total of 4,168 predicted coding genes.

11.
New Microbes New Infect ; 37: 100708, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32793353

RESUMO

Strain Marseille-Q1234T is a new species from the genus Halobacillus that was isolated in 2019 from a stool sample in a healthy Malian child <5 years old. Cells are Gram-positive and strictly halophilic bacilli. Strain Marseille-Q1234T exhibits 98.46% 16S rRNA gene sequence similarity to Halobacillus naozhouensis strain JSM 071068T (NR_116505.1), the phylogenetically closely related species with standing in nomenclature. Based on the phenotypic and phylogenetic evidence, OrthoANI values and results of the biochemical tests, the new species is named Halobacillus ihumii sp. nov., for which strain Marseille-Q1234T (= CSURQ1234) is proposed as the type strain.

12.
Sci Total Environ ; 717: 137048, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32070889

RESUMO

Algicidal behavior is a common interaction between marine microalgae and bacteria, especially in the dissipation phase of algal blooms. The marine bacterium Halobacillus sp. P1 was previously isolated and exhibits high algicidal activity against the diatom Skeletonema costatum. However, little is known about the mechanism underlying this algicidal process. Here, a tandem mass tag (TMT)-based proteomic approach was coupled with physiological analysis to investigate the cellular responses of S. costatum when treated with P1 culture supernatant. Among the 4582 proteins identified, 82 and 437 proteins were differentially expressed after treatment for 12 and 24 h, respectively. The proteomic results were in accordance with the results of verification by parallel reaction monitoring (PRM) assays. Proteins involved in reactive oxygen species scavenging, protein degradation and transport were upregulated, while proteins participating in nitrogen metabolism, protein translation, photosynthetic pigment biosynthesis and cell cycle regulation were significantly downregulated (p-value ≤0.05), corresponding to the increasing malondialdehyde content and the decreasing nitrogen, protein and chlorophyll a contents. A nutrient competitive relationship might exist between the bacterium P1 and S. costatum, and the inhibition of nitrogen metabolism by the P1 culture supernatant might be the key lethal factor that results in the dysfunction of S. costatum metabolism. Our study sheds light on the algicidal mechanism of P1 at the molecular level and provides new insights into algae-bacteria interactions.


Assuntos
Diatomáceas , Halobacillus , Clorofila A , Fotossíntese , Proteômica
13.
J Genet Eng Biotechnol ; 18(1): 57, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33025336

RESUMO

BACKGROUND: Halophiles offer an attractive source of genes conferring salt tolerance. Halobacillus trueperi SS1 strain of Lunsu, Himachal Pradesh, India, a strict halophile, was exploited to isolate and clone the genes for salt tolerance. The genomic library of BamH1 digest of H. trueperi SS1 was constructed in pUC19, and recombinants were screened for salt tolerance on an LB medium containing ampicillin (100 µg/ml) and NaCl (0 to 1.5 M). RESULTS: One recombinant clone named as salt-tolerant clone (STC) conferred salt tolerance to host Escherichia coli/DH5α, which showed growth in the LB medium supplemented with ampicillin and 1.2 M NaCl. Restriction digestion and PCR analysis revealed the presence of an insert of approximately 2000 bp in the STC. DNA sequencing of the 2-kb insert on both strands yielded a sequence of 2301 nucleotides. Protein BLAST analysis of 2301-bp sequence of H. trueperi SS1 present in STC showed 97% identity to multidrug transport ATP binding/permease protein of Halobacillus karajensis. The insert contained in STC was subcloned into pGEX4T2 vector, and the recombinant clone STC/pGEX4T2 conferred salt tolerance to the bacterial host E. coli. CONCLUSIONS: The present study led to the isolation of salt tolerance gene encoding a putative multidrug transport ATP binding/permease protein from H. trueperi SS1. The salt tolerance gene can be subcloned for transferring salt tolerance traits into agricultural crop plants for cultivation in saline and coastal lands.

14.
Chemosphere ; 218: 138-146, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30471494

RESUMO

Microcystis aeruginosa can cause harmful algal blooms in freshwaters worldwide. It has already seriously affected human lives and prevented the use of water resources. Therefore, there is an urgent need to develop ecofriendly and effective methods to control and eliminate M. aeruginosa in aquatic environments. In this study, Halobacillus sp. strain H9, a bacterium that showed high M. aeruginosa flocculation activity, was isolated and selected to assess its potential for the removal of M. aeruginosa. The analyses of flocculation activity and mode indicated that the strain H9 induced M. aeruginosa flocculation by secreting active flocculating substance rather than by directly contacting algal cells. A 5% concentration of the H9 supernatant could efficiently flocculate M. aeruginosa cells with a density of up to 5 × 107 cells/mL. Dramatic increases in the zeta potential indicated that charge neutralization could be the mechanism of the flocculation process. The strain H9 flocculated M. aeruginosa with no damage to the algal cell membrane, and did not result in microcystin being released into the surrounding environment. The flocculated algal culture was less toxic to zebrafish larvae, suggesting an environmentally friendly benefit of the H9 supernatant. In addition to M. aeruginosa, the H9 strain was also able to flocculate two other species causing harmful algal blooms, Phaeocystis globose and Heterosigma akashiwo. Furthermore, the flocculation activity of the H9 supernatant was stable at different temperatures and over a wide pH range. These characteristics give the H9 strain great potential for mitigating the influences of harmful algal blooms.


Assuntos
Floculação , Halobacillus/patogenicidade , Proliferação Nociva de Algas , Microcystis/química , Animais , Água Doce/microbiologia , Humanos , Microcystis/metabolismo , Peixe-Zebra
15.
Colloids Surf B Biointerfaces ; 173: 9-17, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30261347

RESUMO

In the present study, an attempt has been made to explore the antifouling potential of bioactive compound isolated from sponge associated bacterium Halobacillus kuroshimensis SNSAB01. The crude extract of SNSAB01 strongly inhibited the growth of fouling bacterial strains with least minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The bioactive compound was characterized through FT-IR, HPLC, GCMS and NMR predicted as 'pyrrolo". From the mass spectral library, structure was elucidated as pyrrolo [1, 2-a] pyrazine-1, 4-dione, hexahydro. The in silico studies provided encouraging docking scores with two interactions by GLN 200 and GLU 304. The extract inhibited 89% diatom adhesion at 350 µg/ml concentration against Amphora sp. An EC50 value of 150 µg/ml for 50% inhibition of byssal thread of Perna viridis and LC50 was found to be 500 µg/ml. The LC50/EC50 ratio of 3.0 indicated nontoxic to nature. The result suggested that pyrrolo[1,2-a]pyrazine-1,4-dione can be used for antifouling coating.


Assuntos
Anti-Infecciosos/farmacologia , Bivalves/efeitos dos fármacos , Diatomáceas/efeitos dos fármacos , Halobacillus/química , Pirazinas/farmacologia , Pirróis/farmacologia , Acetilglucosamina/análogos & derivados , Acetilglucosamina/metabolismo , Animais , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Sítios de Ligação , Bivalves/crescimento & desenvolvimento , Misturas Complexas/química , Diatomáceas/crescimento & desenvolvimento , Matriz Extracelular/química , Halobacillus/classificação , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Filogenia , Poríferos/microbiologia , Pirazinas/química , Pirazinas/isolamento & purificação , Pirróis/química , Pirróis/isolamento & purificação , Simbiose/fisiologia
16.
J Microbiol ; 56(4): 223-230, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29611137

RESUMO

moderately halophilic spore forming, motile, Gram-positive, rod-shaped bacterial strain designated as KGW1T was isolated from water sample of Chilika Lake and characterized taxonomically using polyphasic approach. The strain grew in the presence of 0-25% (w/v) NaCl in marine salt agar media, hydrolyzes casein, and gelatin and shows presence of alkaline proteases. The major cell wall menaquinone was MK7 and major cellular fatty acids were anteiso-C15:0 (44.89%), anteiso-C17:0 (6.18%), isoC15:0 (19.38%), and iso-C16:0 (7.39%). Several chemotaxonomic features conform the isolate be a member of genus Halobacillus. The isolate KGW1T contained A1γ meso-Dpm-direct type of peptidoglycan which is different from its phylogenetically closest neighbours. The 16S rRNA gene sequence based phylogenetic analysis also revealed the strain KGW1T was affiliated to the genus Halobacillus and sequence similarity between the isolated strain and the type strains of Halobacillus species were found closest to, H. dabanensis D-8 DSM 18199T (99.08%) and H. faecis IGA7-4 DSM 21559T (99.01%), H. trueperi SL-5 DSM 10404T (98.94%). The in silico DDH showed that the values in a range of 14.2-17.5% with the most closest strain H. dabanensis D-8 DSM 18199T and other type strains of the genus Halobacillus for which whole genome sequence is reported. DNA-DNA relatedness between strain KGW1T and the closest type strain Halobacillus trueperi DSM 10404T was 11.75% (± 1.15). The draft genome sequence includes 3,683,819 bases and comprises of 3898 predicted coding sequences with a G + C content of 46.98%. Thus, the significant distinctiveness supported by phenotypic and genotypic data with its closest neighbors and other closely related species confirm the strain KGW1T to be classified as a novel species within the genus Halobacillus, for which the name Halobacillus marinus sp. nov. is proposed. The type strain is KGW1T (= DSM 29522 = JCM 30443).


Assuntos
Genoma Bacteriano , Halobacillus/classificação , Halobacillus/genética , Lagos/microbiologia , Microbiologia da Água , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , DNA Ribossômico/genética , Ácidos Graxos/análise , Genótipo , Halobacillus/química , Halobacillus/isolamento & purificação , Índia , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Análise de Sequência de DNA
17.
Appl Biochem Biotechnol ; 183(1): 189-199, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28236193

RESUMO

A halophilic cellulase-producing bacterium was isolated from a sediment sample collected from Lake Qarun (Fayoum Province, Egypt). Molecular identification based on 16S rDNA amplification and sequencing revealed 99% homology with Halobacillus sp. and hence was designated as Halobacillus sp. QLS 31. Medium composition and culture conditions were optimized for enhancing the production of cellulase enzyme using the Plackett-Burman statistical design. Ten variables were evaluated for their influence on cellulase production. Carboxymethyl cellulose (CMC), zinc sulfate (ZnSO4), and inoculum size were found to exert a significant effect on cellulase productivity by Halobacillus sp. QLS 31. The maximum specific activity of cellulase enzyme was 48.08 U/mg. Following the predicted conditions, a 7.5-fold increase in cellulase specific activity (175.47 U/mg) was achieved compared to the basal medium (23.19 U/mg) under the following optimized conditions: temperature (30 °C), fermentation time (2 days ), pH value (9), CMC concentration (1%), inoculum size (1%), yeast extract concentration (0.1%), ammonium sulfate ((NH3)2SO4) concentration (0.1%), sodium chloride (NaCl) concentration (20%), and metal inducers: ZnSO4 (0.1%) and Ca/Mg ratio (0.01%). Thus, the results of this study provide an important basis for more efficient, cheap industrial cellulase production from halophilic Halobacillus sp. QLS 31.


Assuntos
Proteínas de Bactérias/biossíntese , Celulases/biossíntese , Halobacillus , Lagos/microbiologia , Microbiologia da Água , Proteínas de Bactérias/genética , Celulases/genética , Egito , Halobacillus/enzimologia , Halobacillus/genética , Halobacillus/isolamento & purificação
18.
Front Microbiol ; 8: 2054, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104571

RESUMO

Halobacillus halophilus, a moderately halophilic bacterium, accumulates a variety of compatible solutes including glycine betaine, glutamate, glutamine, proline, and ectoine to cope with osmotic stress. Non-targeted analysis of intracellular organic compounds using 1H-NMR showed that a large amount of trans-4-hydroxy-L-proline (Hyp), which has not been reported as a compatible solute in H. halophilus, was accumulated in response to high NaCl salinity, suggesting that Hyp may be an important compatible solute in H. halophilus. Candidate genes encoding proline 4-hydroxylase (PH-4), which hydroxylates L-proline to generate Hyp, were retrieved from the genome of H. halophilus through domain searches based on the sequences of known PH-4 proteins. A gene, HBHAL_RS11735, which was annotated as a multidrug DMT transporter permease in GenBank, was identified as the PH-4 gene through protein expression analysis in Escherichia coli. The PH-4 gene constituted a transcriptional unit with a promoter and a rho-independent terminator, and it was distantly located from the proline biosynthetic gene cluster (pro operon). Transcriptional analysis showed that PH-4 gene expression was NaCl concentration-dependent, and was specifically induced by chloride anion, similar to the pro operon. Accumulation of intracellular Hyp was also observed in other bacteria, suggesting that Hyp may be a widespread compatible solute in halophilic and halotolerant bacteria.

19.
Front Microbiol ; 5: 168, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24782854

RESUMO

Halobacillus halophilus, a moderately halophilic bacterium isolated from salt marshes, produces various compatible solutes to cope with osmotic stress. Glutamate and glutamine are dominant compatible solutes at mild salinities. Glutamine synthetase activity in cell suspensions of Halobacillus halophilus wild type was shown to be salt dependent and chloride modulated. A possible candidate to catalyze glutamine synthesis is glutamine synthetase A2, whose transcription is stimulated by chloride. To address the role of GlnA2 in the biosynthesis of the osmolytes glutamate and glutamine, a deletion mutant (ΔglnA2) was generated and characterized in detail. We compared the pool of compatible solutes and performed transcriptional analyses of the principal genes controlling the solute production in the wild type strain and the deletion mutant. These measurements did not confirm the hypothesized role of GlnA2 in the osmolyte production. Most likely the presence of another, yet to be identified enzyme has the main contribution in the measured activity in crude extracts and probably determines the total chloride-modulated profile. The role of GlnA2 remains to be elucidated.

20.
Mol Biol Res Commun ; 3(1): 1-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27843972

RESUMO

The histone-like protein HU is the most-abundant DNA-binding protein in bacteria. The HU protein non-specifically binds and bends DNA as a hetero- or homodimer, and can participate in DNA supercoiling and DNA condensation. It also takes part in DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows a certain degree of specificity to cruciform DNA and repair intermediates such as nick, gap, bulge, etc. To understand the features of HU binding to DNA and repair intermediates, a fast and easy HU protein purification method is required. Here we report a two-step purification procedure of HU from Halobacillus karajensis (the gram positive and moderately halophilic bacteria isolated from Karaj surface soil). The method of HU purification allows obtaining a pure non-tagged protein. Salting out and ion exchange chromatography were applied for purification, and the purified protein was identified by immunoblotting. Results showed that the molecular weight of the purified protein was approximately 11 kDa which is immunologically similar to the Bacillus subtilis HU protein (HBsu).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA