Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2315058121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466839

RESUMO

Mercury (Hg) is a contaminant of global concern, and an accurate understanding of its atmospheric fate is needed to assess its risks to humans and ecosystem health. Atmospheric oxidation of Hg is key to the deposition of this toxic metal to the Earth's surface. Short-lived halogens (SLHs) can provide halogen radicals to directly oxidize Hg and perturb the budget of other Hg oxidants (e.g., OH and O3). In addition to known ocean emissions of halogens, recent observational evidence has revealed abundant anthropogenic emissions of SLHs over continental areas. However, the impacts of anthropogenic SLHs emissions on the atmospheric fate of Hg and human exposure to Hg contamination remain unknown. Here, we show that the inclusion of anthropogenic SLHs substantially increased local Hg oxidation and, consequently, deposition in/near Hg continental source regions by up to 20%, thereby decreasing Hg export from source regions to clean environments. Our modeling results indicated that the inclusion of anthropogenic SLHs can lead to higher Hg exposure in/near Hg source regions than estimated in previous assessments, e.g., with increases of 8.7% and 7.5% in China and India, respectively, consequently leading to higher Hg-related human health risks. These results highlight the urgent need for policymakers to reduce local Hg and SLHs emissions. We conclude that the substantial impacts of anthropogenic SLHs emissions should be included in model assessments of the Hg budget and associated health risks at local and global scales.


Assuntos
Mercúrio , Humanos , Mercúrio/toxicidade , Mercúrio/análise , Monitoramento Ambiental/métodos , Ecossistema , China , Índia
2.
Molecules ; 29(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38999133

RESUMO

A new type of catalyst containing magnesium oxide modified with various modifiers ranging from bromine and iodine, to interhalogen compounds, hydrohalogenic acids, and alkyl halides have been prepared using chemical vapor deposition (CVD) and wet impregnation methods. The obtained systems were characterized using a number of methods: determination of the concentration of X- ions, surface area determination, powder X-ray diffraction (PXRD), surface acid-base strength measurements, TPD of probe molecules (acetonitrile, pivalonitrile, triethylamine, and n-butylamine), TPD-MS of reaction products of methyl iodide with MgO, and Fourier transform infrared spectroscopy (FTIR). The catalysts' activity and chemoselectivity during transfer hydrogenation from ethanol to acrolein to allyl alcohol was measured. A significant increase in the activity of modified MgO (up to 80% conversion) in the transfer hydrogenation of acrolein was found, while maintaining high chemoselectivity (>90%) to allyl alcohol. As a general conclusion, it was shown that the modification of MgO results in the suppression of strong basic sites of the oxide, with a simultaneous appearance of Brønsted acidic sites on its surface. Independently, extensive research on the reaction progress of thirty alkyl halides with MgO was also performed in order to determine its ability to neutralize chlorinated wastes.

3.
Wilderness Environ Med ; 35(1_suppl): 45S-66S, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38379474

RESUMO

To provide guidance to medical providers, wilderness users, and travelers, the Wilderness Medical Society convened an expert panel to develop evidence-based guidelines for treating water in situations where the potability of available water is not assured, including wilderness and international travel, areas impacted by disaster, and other areas without adequate sanitation. The guidelines present the available methods for reducing or eliminating microbiological contamination of water for individuals, groups, or households; evaluation of their effectiveness; and practical considerations. The evidence base includes both laboratory and clinical publications. The panel graded the recommendations based on the quality of supporting evidence and the balance between benefits and risks/burdens according to the criteria published by the American College of Chest Physicians.


Assuntos
Desastres , Medicina Selvagem , Humanos , Sociedades Médicas
4.
Environ Monit Assess ; 196(3): 275, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363444

RESUMO

The economic development of a country directly depends upon industries. But this economic development should not be at the cost of our natural environment. A substantial amount of water is spent during paper production, creating water scarcity and generating wastewater. Therefore, the Pollution Control Board classifies this industry into red category. Water is used in different papermaking stages such as debarking, pulping or bleaching, washing, and finishing. The wastewater thus generated contains lignin and xenobiotic compounds such as resin acids, chlorinated lignin, phenols, furans, dioxins, chlorophenols, adsorbable organic halogens (AOX), extractable organic halogens (EOCs), polychlorinated biphenyls, plasticizers, and polychlorinated dibenzodioxins. Nowadays, several microorganisms are used in the detoxification of these hazardous effluents. Researchers have found that microbial degradation is the most promising treatment method to remove high biological oxygen demand (BOD) and chemical oxygen demand (COD) from wastewater. Microorganisms also remove AOX toxicity, chlorinated compounds, suspended solids, color, lignin, derivatives, etc. from the pulp and paper mill effluents. But in the current scenario, mill effluents are known to deteriorate the environment and therefore it is highly desirable to deploy advanced technologies for effluent treatment. This review summarizes the eco-friendly advanced treatment technologies for effluents generated from pulp and paper mills.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos , Lignina , Descontaminação , Monitoramento Ambiental , Halogênios , Água , Resíduos Industriais/análise , Papel
5.
Angew Chem Int Ed Engl ; : e202409779, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989722

RESUMO

Bromine chemistry is responsible for the catalytic ozone destruction in the atmosphere. The heterogeneous reactions of sea-salt aerosols are the main abiotic sources of reactive bromine in the atmosphere. Here, we present a novel mechanism for the activation of bromide ions (Br-) by O2 and H2O in the absence of additional oxidants. The laboratory and theoretical calculation results demonstrated that under dark conditions, Br-, O2 and H3O+ could spontaneously generate Br and HO2 radicals through a proton-electron transfer process at the air‒water interface and in the liquid phase. Our results also showed that light and acidity could significantly promote the activation of Br- and the production of Br2. The estimated gaseous Br2 production rate under light conditions was up to 1.55×1010 molecules·cm-2·s-1 under light and acidic conditions; these results showed a significant contribution to the atmospheric reactive bromine budget. The reactive oxygen species (ROS) generated during Br- activation could promote the multiphase oxidation of SO2 to produce sulfuric acid, while the increase in acidity had a positive feedback effect on Br- activation. Our findings highlight the crucial role of the proton-electron transfer process in Br2 production.

6.
Angew Chem Int Ed Engl ; 63(3): e202316998, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38017354

RESUMO

H2 O2 is a widely used eco-friendly oxidant and a potential energy carrier. Photocatalytic H2 O2 production from water and O2 is an ideal approach with the potential to address the current energy crisis and environmental issues. Three zig-zag two-dimensional coordination polymers (2D CPs), named CuX-dptz, were synthesized by a rapid and facile method at room temperature, showing preeminent H2 O2 photoproduction performance under pure water and open air without any additives. CuBr-dptz exhibits a H2 O2 production rate high up to 1874 µmol g-1 h-1 , exceeding most reported photocatalysts under this condition, even comparable to those supported by sacrificial agents and O2 . The coordination environment of Cu can be modulated by halogen atoms (X=Cl, Br, I), which in turn affects the electron transfer process and finally determines the reaction activity. This is the first time that 2D CPs have been used for photocatalytic H2 O2 production in such challenging conditions, which provides a new pathway for the development of portable in situ H2 O2 photosynthesis devices.

7.
J Comput Chem ; 44(10): 1073-1087, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36578228

RESUMO

Modern Density Functional Theory models are now suitable for many molecular and condensed phase studies. The study of noncovalent interactions, a well-known drawback, is no longer an insurmountable obstacle through design and empirical corrections. However, using empirical corrections as in the DFT-D methods might not be an all-in-one solution. This work uses a simple system, X2 -H2 O with X = Cl or Br, with two different interactions, halogen-bonded (XB) and hydrogen-halogen (HX), to investigate the capability of current density functional approximations (DFA) in predicting interaction energies with eight different exchange-correlation functionals. SAPT(DFT) provides, for all the studied cases, better predictions than the widely used supermolecular approach. In addition, the components of the interaction energy suggest where some of the shortcomings originate in each DFA. The analysis of the functionals used confirms that PBE0 and ω-B97X-D have a physically correct behavior. Using SAPT(DFT) and PBE0, and ω-B97X-D, we obtained the interaction energy of Cl2 and Br2 inside different clathrate cages and satisfactorily compared with wavefunction results; hence, the lower and upper limits of this value are defined: Cl2 @512 , -5.3 ± 0.3 kcal/mol; Cl2 @512 62 , -5.5 ± 0.1 kcal/mol; Br2 @512 62 , -7.6 ± 1.0 kcal/mol; Br2 @512 63 , -10.6 ± 1.0 kcal/mol; Br2 @512 64 , -10.9 ± 0.8 kcal/mol.

8.
Small ; 19(47): e2303430, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37490528

RESUMO

Halogens, especially Br2 and I2 , as cathode materials for lithium-ion batteries exhibit high energy density with low cost, but poor cycling performance due to their high solubility in electrolyte solution. Herein, viologen-based cationic porous organic polymers (TpVXs, X = Cl, Br, or I) with abundant pores and ionic redox-active moieties are designed to immobilize halogen anions stoichiometrically. TpVBr and TpVI electrodes exhibit high initial specific capacity (116 and 132 mAh g-1 at 0.2 C) and high average discharge voltage (≈3.0 V) without any host materials. Notably, benefiting from the porous and ionic structure, TpVBr and TpVI present excellent long-term cycling stability (86% and 98% capacity retention after 600 cycles at 0.5 C), which are far superior to those of the state-of-the-art halogen electrodes. In addition, the charge storage mechanism is investigated by in situ Raman and ex situ X-ray photoelectron spectroscopy.

9.
Chemphyschem ; 24(22): e202300510, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37609858

RESUMO

This study addresses a fundamental question in surface science: the adsorption of halogens on metal surfaces. Using synchrotron radiation-based high-resolution X-ray photoelectron spectroscopy (XPS), temperature-programmed XPS, low-energy electron diffraction (LEED) and density functional theory (DFT) calculations, we investigated the adsorption and thermal stability of bromine on Rh(111) in detail. The adsorption of elemental bromine on Rh(111) at 170 K was followed in situ by XPS in the Br 3d region, revealing two individual, coverage-dependent species, which we assign to fcc hollow- and bridge-bound atomic bromine. In addition, we find a significant shift in binding energy upon increasing coverage due to adsorbate-adsorbate interactions. Subsequent heating shows a high thermal stability of bromine on Rh(111) up to above 1000 K, indicating strong covalent bonding. To complement the XPS data, LEED was used to study the long-range order of bromine on Rh(111): we observe a (√3×√3)R30° structure for low coverages (≤0.33 ML) and a star-shaped compression structure for higher coverages (0.33-0.43 ML). Combining LEED and DFT calculations, we were able to visualize bromine adsorption on Rh(111) in real space for varying coverages.

10.
Environ Sci Technol ; 57(5): 1870-1881, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36695819

RESUMO

We report aircraft observations of extreme levels of HCl and the dihalogens Cl2, Br2, and BrCl in an industrial plume near the Great Salt Lake, Utah. Complete depletion of O3 was observed concurrently with halogen enhancements as a direct result of photochemically produced halogen radicals. Observed fluxes for Cl2, HCl, and NOx agreed with facility-reported emissions inventories. Bromine emissions are not required to be reported in the inventory, but are estimated as 173 Mg year-1 Br2 and 949 Mg year-1 BrCl, representing a major uncounted oxidant source. A zero-dimensional photochemical box model reproduced the observed O3 depletions and demonstrated that bromine radical cycling was principally responsible for the rapid O3 depletion. Inclusion of observed halogen emissions in both the box model and a 3D chemical model showed significant increases in oxidants and particulate matter (PM2.5) in the populated regions of the Great Salt Lake Basin, where winter PM2.5 is among the most severe air quality issues in the U.S. The model shows regional PM2.5 increases of 10%-25% attributable to this single industrial halogen source, demonstrating the impact of underreported industrial bromine emissions on oxidation sources and air quality within a major urban area of the western U.S.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Perda de Ozônio , Ozônio , Poluentes Atmosféricos/análise , Halogênios , Ozônio/análise , Bromo , Lagos , Poluição do Ar/análise , Material Particulado/análise , Oxidantes
11.
Environ Res ; 239(Pt 1): 117344, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37821067

RESUMO

During the East Antarctic International Ice Sheet Traverse (Eaiist, december 2019), in an unexplored part of the East Antarctic Plateau, snow samples were collected to expand our knowledge of the latitudinal variability of iodine, bromine and sodium as well as their relation in connection with emission processes and photochemical activation in this unexplored area. A total of 32 surface (0-5 cm) and 32 bulk (average of 1 m depth) samples were taken and analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Our results show that there is no relevant latitudinal trend for bromine and sodium. For bromine they also show that it has no significant post-depositional mechanisms while its inland surface snow concentration is influenced by spring coastal bromine explosions. Iodine concentrations are several orders of magnitude lower than bromine and sodium and they show a decreasing trend in the surface samples concentration moving southward. This suggests that other processes affect its accumulation in surface snow, probably related to the radial reduction in the ozone layer moving towards central Antarctica. Even though all iodine, bromine and sodium present similar long-range transport from the dominant coastal Antarctic sources, the annual seasonal cycle of the ozone hole over Antarctica increases the amount of UV radiation (in the 280-320 nm range) reaching the surface, thereby affecting the surface snow photoactivation of iodine. A comparison between the bulk and surface samples supports the conclusion that iodine undergoes spring and summer snow recycling that increases its atmospheric lifetime, while it tends to accumulate during the winter months when photochemistry ceases.


Assuntos
Iodo , Bromo , Neve , Sódio , Regiões Antárticas
12.
Proc Natl Acad Sci U S A ; 117(38): 23418-23425, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900968

RESUMO

Lunar mare basalts are depleted in F and Cl by approximately an order of magnitude relative to mid-ocean ridge basalts and contain two Cl-bearing components with elevated isotopic compositions relative to the bulk-Earth value of ∼0‰. The first is a water-soluble chloride constituting 65 ± 10% of total Cl with δ37Cl values averaging 3.0 ± 4.3‰. The second is structurally bound chloride with δ37Cl values averaging 7.3 ± 3.5‰. These high and distinctly different isotopic values are inconsistent with equilibrium fractionation processes and instead suggest early and extensive degassing of an isotopically light vapor. No relationship is observed between F/Cl ratios and δ37Cl values, which suggests that lunar halogen depletion largely resulted from the Moon-forming Giant Impact. The δ37Cl values of apatite are generally higher than the structurally bound Cl, and ubiquitously higher than the calculated bulk δ37Cl values of 4.1 ± 4.0‰. The apatite grains are not representative of the bulk rock, and instead record localized degassing during the final stages of lunar magma ocean (LMO) or later melt crystallization. The large variability in the δ37Cl values of apatite within individual thin sections further supports this conclusion. While urKREEP (primeval KREEP [potassium/rare-earth elements/phosphorus]) has been proposed to be the source of the Moon's high Cl isotope values, the ferroan anorthosites (FANs) have the highest δ37Cl values and have a positive correlation with Cl content, and yet do not contain apatite, nor evidence of a KREEP component. The high δ37Cl values in this lithology are explained by the incorporation of a >30‰ HCl vapor from a highly evolved LMO.

13.
J Environ Manage ; 345: 118593, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442041

RESUMO

Recycling and disposing wastewater from the pharmaceutical industry are of utmost importance in mitigating chemical waste generation, where unmanaged hazardous waste fluxes could cause massive environmental damage. Air stripping, steam stripping, distillation, and incineration offer significant emission reduction potentials for pharmaceutical applications; however, selecting specific process units is a complicated task due to the high number of influencing screening criteria. The mentioned chemical processes are modelled with the Aspen Plus program. This study examines the environmental impacts of adsorbable organic halogens (AOX) containing pharmaceutical process wastewater disposal by conducting life cycle impact assessments using the Product Environmental Footprint (PEF), IMPACT World + Endpoint V1.01, and Recipe 2016 Endpoint (H) V1.06 methods. The results show that the distillation-based separation of AOX compounds is characterized by the most favourable climate change impact and outranks the PEF single score of air stripping, steam stripping, and incineration by 6.3%, 29.1%, 52.0%, respectively. The energy-intensive distillation technology is further evaluated by considering a wide selection of energy sources (i.e., fossil fuel, nuclear, solar, wind onshore, and wind offshore) using PESTLE (Political, Economic, Social, Technological, Legal, Environmental) analysis combined with multi-criteria decision support to determine the most beneficial AOX disposal scenario. The best overall AOX regeneration performance and lowest climate change impact (7.25 × 10-3 kg CO2-eq (1 kg purified wastewater)-1) are obtained by supplying variable renewable electricity from onshore wind turbines, reaching 64.87% carbon emission reduction compared to the baseline fossil fuel-based process alternative.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Vapor , Compostos Orgânicos , Halogênios , Técnicas de Apoio para a Decisão , Preparações Farmacêuticas
14.
Molecules ; 28(10)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37241959

RESUMO

The dynamic and static nature of the XH-∗-π and YX-∗-π (X = F, Cl, Br, and I; Y = X and F) interactions in the distorted π-system of corannulene (π(C20H10)) is elucidated with a QTAIM dual functional analysis (QTAIM-DFA), where asterisks emphasize the presence of bond critical points (BCPs) on the interactions. The static and dynamic nature originates from the data of the fully optimized and perturbed structures, respectively, in QTAIM-DFA. On the convex side, H in F-H-∗-π(C20H10) and each X in Y-X-∗-π(C20H10) join to C of the central five-membered ring in π(C20H10) through a bond path (BP), while each H in X-H-∗-π(C20H10) does so to the midpoint of C=C in the central five-membered ring for X = Cl, Br, or I. On the concave side, each X in F-X-∗-π(C20H10) also joins to C of the central five-membered ring with a BP for X = H, Cl, Br, and I; however, the interactions in other adducts are more complex than those on the convex side. Both H and X in X-H-∗-π(C20H10) (X = Cl and Br) and both Fs in F-F-∗-π(C20H10) connect to the three C atoms in each central five-membered ring (with three BPs). Two, three, and five BPs were detected for the Cl-Cl, I-H, Br-Br, and I-I adducts, where some BPs do not stay on the central five-membered ring in π(C20H10). The interactions are predicted to have a vdW to CT-MC nature. The interactions on the concave side seem weaker than those on the convex side for X-H-∗-π(C20H10), whereas the inverse trend is observed for Y-X-∗-π(C20H10) as a whole. The nature of the interactions in the π(C20H10) adducts of the convex and concave sides is examined in more detail, employing the adducts with X-H and F-X placed on their molecular axis together with the π(C24H12) and π(C6H6) adducts.

15.
Angew Chem Int Ed Engl ; 62(38): e202309682, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37470309

RESUMO

Crystallographic and computational studies suggest the occurrence of favourable interactions between polarizable arenes and halogen atoms. However, the systematic experimental quantification of halogen⋅⋅⋅arene interactions in solution has been hindered by the large variance in the steric demands of the halogens. Here we have synthesized molecular balances to quantify halogen⋅⋅⋅arene contacts in 17 solvents and solvent mixtures using 1 H NMR spectroscopy. Calculations indicate that favourable halogen⋅⋅⋅arene interactions arise from London dispersion in the gas phase. In contrast, comparison of our experimental measurements with partitioned SAPT0 energies indicate that dispersion is sufficiently attenuated by the solvent that the halogen⋅⋅⋅arene interaction trend was instead aligned with increasing exchange repulsion as the halogen increased in size (ΔGX ⋅⋅⋅Ph =0 to +1.5 kJ mol-1 ). Halogen⋅⋅⋅arene contacts were slightly less disfavoured in solvents with higher solvophobicities and lower polarizabilities, but strikingly, were always less favoured than CH3 ⋅⋅⋅arene contacts (ΔGMe ⋅⋅⋅Ph =0 to -1.4 kJ mol-1 ).

16.
Beilstein J Org Chem ; 19: 575-581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153645

RESUMO

A light-driven metal-free protocol for the synthesis of sulfone-containing indoles under mild conditions is reported. Specifically, the process is driven by the photochemical activity of halogen-bonded complexes formed upon complexation of a sacrificial donor, namely 1,4-diazabicyclo[2.2.2]octane (DABCO), with α-iodosulfones. The reaction provides a variety of densely functionalized products in good yields (up to 96% yield). Mechanistic investigations are reported. These studies provide convincing evidences for the photochemical formation of reactive open-shell species.

17.
Ecotoxicol Environ Saf ; 244: 114036, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049334

RESUMO

Breakpoint chlorination is a generally accepted method for removing ammonium ion from source waters in drinking water treatment technologies. This process is often accompanied by the formation of halogenated organic byproducts. The presence of these compounds in potable water is of primary concern. In this paper, we demonstrate that the concentration of the precursors of the halogenated species can sufficiently be decreased by oxidizing the organic pollutants with the Fe(II)/Fe(III) - S(IV) - air system. Pre-oxidative treatment of the source waters results in a substantial reduction of chemical oxygen demand, while the ammonium ion concentration remains unaffected. The breakpoint chlorination produces substantially less trihalomethanes (THMs) and adsorbable halogenated organic compounds (AOXs) in oxidatively pre-treated source waters than in raw waters. These results offer a possibility to improve drinking water treatment technologies for better controlling the formation of antagonistic byproducts. It is demonstrated that reaching the regulated concentration levels of THMs is feasible with this method even in source waters containing organic pollutants at relatively high concentration levels. The main advantage of the procedure is that the reagents used for the oxidative pre-treatment are converted into non-toxic products (Fe(III) and SO42-) by the end of the process.


Assuntos
Compostos de Amônio , Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Compostos Férricos , Compostos Ferrosos , Halogenação , Oxirredução , Estresse Oxidativo , Trialometanos/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos
18.
Molecules ; 27(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35268744

RESUMO

This review describes the recent Food and Drug Administration (FDA)-approved drugs (in the year 2021) containing at least one halogen atom (covalently bound). The structures proposed throughout this work are grouped according to their therapeutical use. Their synthesis is presented as well. The number of halogenated molecules that are reaching the market is regularly preserved, and 14 of the 50 molecules approved by the FDA in the last year contain halogens. This underlines the emergent role of halogens and, in particular, of fluorine and chlorine in the preparation of drugs for the treatment of several diseases such as viral infections, several types of cancer, cardiovascular disease, multiple sclerosis, migraine and inflammatory diseases such as vasculitis.


Assuntos
Halogênios
19.
Molecules ; 27(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745085

RESUMO

The high expression of 17ß-hydroxysteroid dehydrogenase type 1 (17ß-HSD1) mRNA has been found in breast cancer tissues and endometriosis. The current research focuses on preparing a range of organic molecules as 17ß-HSD1 inhibitors. Among them, the derivatives of hydroxyphenyl naphthol steroidomimetics are reported as one of the potential groups of inhibitors for treating estrogen-dependent disorders. Looking at the recent trends in drug design, many halogen-based drugs have been approved by the FDA in the last few years. Here, we propose sixteen potential hydroxyphenyl naphthol steroidomimetics-based inhibitors through halogen substitution. Our Frontier Molecular Orbitals (FMO) analysis reveals that the halogen atom significantly lowers the Lowest Unoccupied Molecular Orbital (LUMO) level, and iodine shows an excellent capability to reduce the LUMO in particular. Tri-halogen substitution shows more chemical reactivity via a reduced HOMO-LUMO gap. Furthermore, the computed DFT descriptors highlight the structure-property relationship towards their binding ability to the 17ß-HSD1 protein. We analyze the nature of different noncovalent interactions between these molecules and the 17ß-HSD1 using molecular docking analysis. The halogen-derived molecules showed binding energy ranging from -10.26 to -11.94 kcal/mol. Furthermore, the molecular dynamics (MD) simulations show that the newly proposed compounds provide good stability with 17ß-HSD1. The information obtained from this investigation will advance our knowledge of the 17ß-HSD1 inhibitors and offer clues to developing new 17ß-HSD1 inhibitors for future applications.


Assuntos
Halogênios , Simulação de Dinâmica Molecular , 17-Hidroxiesteroide Desidrogenases , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Simulação de Acoplamento Molecular , Naftóis , Relação Estrutura-Atividade
20.
Chemistry ; 27(14): 4517-4530, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-32893376

RESUMO

The dihalogenation of alkenes is one of the classic reactions in organic chemistry and a prime example of an electrophilic addition reaction. The often observed anti-selectivity in this addition reaction can be explained by the formation of a haliranium-ion intermediate. Although dihalogenations have been studied for more than a century, the development of reagent-controlled, enantioselective dihalogenation has proved to be very difficult. Only recently, significant progress has been achieved. In this review, an overview on current method development in enantioselective dihalogenation is provided and mechanistic aspects that render this transformation challenging are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA