Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 263: 115269, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478568

RESUMO

Chromium (Cr) pollution caused by the discharge of industrial wastewater into rivers poses a significant threat to the environment, aquatic and human life, as well as agricultural crops irrigated by these rivers. This paper employs artificial intelligence (AI) to introduce a new framework for modeling the fate, transport, and estimation of Cr from its point of discharge into the river until it is absorbed by agricultural products. The framework is demonstrated through its application to the case study River, which serves as the primary water resource for tomato production irrigation in Mashhad city, Iran. Measurements of Cr concentration are taken at three different river depths and in tomato leaves from agricultural lands irrigated by the river, allowing for the identification of bioaccumulation effects. By employing boundary conditions and smart algorithms, various aspects of control systems are evaluated. The concentration of Cr in crops exhibits an accumulative trend, reaching up to 1.29 µg/g by the time of harvest. Using data collected from the case study and exploring different scenarios, AI models are developed to estimate the Cr concentration in tomato leaves. The tested AI models include linear regression (LR), neural network (NN) classifier, and NN regressor, yielding goodness-of-fit values (R2) of 0.931, 0.874, and 0.946, respectively. These results indicate that the NN regressor is the most accurate model, followed by the LR, for estimating Cr levels in tomato leaves.


Assuntos
Cromo , Metais Pesados , Humanos , Cromo/análise , Rios , Metais Pesados/análise , Produtos Agrícolas , Inteligência Artificial , Irã (Geográfico) , Monitoramento Ambiental
2.
Mar Pollut Bull ; 199: 115951, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38150976

RESUMO

Due to the degradation-resistant and strong toxicity, heavy metals pose a serious threat to the safety of water environment and aquatic ecology. Rapid acquisition and prediction of heavy metal concentrations are of paramount importance for water resource management and environmental preservation. In this study, heavy metal concentrations (Cr, Ni, Cu, Pb, Zn, Cd) and physicochemical parameters of water quality including Temperature (Temp), pH, Oxygen redox potential (ORP), Dissolved oxygen (DO), Electrical conductivity (EC), Electrical resistivity (RES), Total dissolved solids (TDS), Salinity (SAL), Cyanobacteria (BGA-PE), and turbidity (NTU) were measured at seven stations in the Yangtze river estuary. Principal Component Analysis (PCA) and Spearman correlation analysis were employed to analyze the main factors and sources of heavy metals. Results of PCA revealed that the main sources of Cr, Ni, Zn, and Cd were steel industry wastewater, domestic and industrial sewage, whereas shipping and vessel emissions were typically considered sources of Pb and Cu. Spearman correlation analysis identified Temp, pH, ORP, EC, RES, TDS, and SAL as the key physicochemical parameters of water quality, exhibiting the strongest correlation with heavy metal concentrations in sediment and water samples. Based on these results, multiple linear regression as well as non-linear models (SVM and RF) were constructed for predicting heavy metal concentrations. The results showed that the results of the nonlinear model were more suitable for predicting the concentrations of most heavy metals than the linear model, with average R values of the SVM test set and RF test set being 0.83 and 0.90. The RF model showed better applicability for simulating the concentration of heavy metals along the Yangtze river estuary. It was demonstrated that non-linear research methods provided efficient and accurate predictions of heavy metal concentrations in a simple and rapid manner, thereby offering decision-making support for watershed managers.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Qualidade da Água , Estuários , Monitoramento Ambiental/métodos , Rios , Cádmio/análise , Chumbo/análise , Poluentes Químicos da Água/análise , Metais Pesados/análise , Oxigênio/análise , China , Sedimentos Geológicos , Medição de Risco
3.
Heliyon ; 9(8): e18415, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37520981

RESUMO

The Adaptive Neuro-Fuzzy Inference System (ANFIS) combines the strengths of both Artificial Neural Networks (ANNs) and Fuzzy Logic (FL) into a single framework. By doing so, it allows for quicker learning and adaptable interpretation capabilities, which are useful for modeling complex patterns and identifying nonlinear relationships. One significant challenge in assessing water quality is the difficulty and time-consuming nature of determining the various factors that impact it. Given this situation, predicting heavy metal levels in groundwater resources, both urban and rural, is essential. This paper investigates two methods, ANFIS-FCM and ANFIS-SUB, to determine their effectiveness in modeling Cadmium (Cd) in groundwater resources. The parameters to be considered are: dissolved solids (TDS), electroconductivity (EC), turbidity (TU), and pH were assumed to be the independent variables. A total of 51 sampling location were used with in the groundwater resource were used to develop the fuzzy models. For evaluating the performance of ANFIS-FCM and ANFIS-SUB models, three different performance criteria including the correlation coefficient, root mean square error, and sum square error were used for comparing the model outputs with actual outputs . Based on the obtained results from scatter plots of actual and predicted value by ANFIS-SUB and ANFIS- FCM models, the determination coefficient (R2) value for total data, test and train sets is equal to 0.978, 0.982, 0.993 and to 0.983, 0.999 and 0.998 respectively. This result proved the Cd predictions of the implemented ANFIS-FCM model was significantly close to the measured all experimental data with R2 of 0.983. The performance of the implemented ANFIS-FCM model was compared with the ANFIS-SUB model and it is found that the ANFIS-FCM provided slightly higher accuracy than the ANFIS-SUB model. Also, the results obtained from the comparison between the predicted and the actual data indicated that the ANFIS-FCM and ANFIS-SUB have a strong potential in estimating the heavy metals in the groundwater with a high degree of accuracy.

4.
J Hazard Mater ; 432: 128732, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35334271

RESUMO

The high concentrations of heavy metals in municipal industrial sewer networks will seriously impact the microorganisms of the activated sludge in the wastewater treatment plant (WWTP), thus deteriorating the effluent quality and destroying the stability of sewage treatment. Therefore, timely prediction and early warning of heavy metal concentrations in industrial sewer networks is crucial. However, due to the complex sources of heavy metals in industrial sewer networks, traditional physical modeling and linear methods cannot establish an accurate prediction model. Herein, we developed a Gated Recurrent Unit (GRU) neural network model based on a deep learning algorithm for predicting the concentrations of heavy metals in industrial sewer networks. To train the GRU model, we used low-cost and easy-to-obtain urban multi-source data, including socio-environmental indicator data, air environmental indicator data, water quantity indicator data, and easily measurable water quality indicator data. The model was applied to predict the concentrations of heavy metals (Cu, Zn, Ni, and Cr) in the sewer networks of an industrial area in southern China. The results are compared with the commonly used Artificial Neural Network (ANN) model. In this study, it was shown that the GRU had better prediction performance for Cu, Zn, Ni, and Cr concentrations, with the average R2 significantly increased by 12.35%, 11.94%, 9.21%, and 8.13%, respectively, compared to ANN predictions. The sensitivity analysis based on Shapley (SHAP) values revealed that conductivity (σ), temperature (T), pH, and sewage flow (Flow) contributed significantly to the prediction results of the model. Furthermore, the three input variables including air pressure (AP), land area (A), and population (Pop.) were removed without affecting the prediction performance of the model, which maximized the modeling efficiency and reduced the operational cost. This study provides an economical and feasible technical method for early warning of abnormal heavy metal concentrations in urban industrial sewer networks.


Assuntos
Aprendizado Profundo , Metais Pesados , Purificação da Água , China , Monitoramento Ambiental/métodos , Metais Pesados/análise , Esgotos/química , Zinco/análise
5.
Environ Pollut ; 268(Pt B): 115663, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120144

RESUMO

Hybrid artificial intelligence (AI) models are developed for sediment lead (Pb) prediction in two Bays (i.e., Bramble (BB) and Deception (DB)) stations, Australia. A feature selection (FS) algorithm called extreme gradient boosting (XGBoost) is proposed to abstract the correlated input parameters for the Pb prediction and validated against principal component of analysis (PCA), recursive feature elimination (RFE), and the genetic algorithm (GA). XGBoost model is applied using a grid search strategy (Grid-XGBoost) for predicting Pb and validated against the commonly used AI models, artificial neural network (ANN) and support vector machine (SVM). The input parameter selection approaches redimensioned the 21 parameters into 9-5 parameters without losing their learned information over the models' training phase. At the BB station, the mean absolute percentage error (MAPE) values (0.06, 0.32, 0.34, and 0.33) were achieved for the XGBoost-SVM, XGBoost-ANN, XGBoost-Grid-XGBoost, and Grid-XGBoost models, respectively. At the DB station, the lowest MAPE values, 0.25 and 0.24, were attained for the XGBoost-Grid-XGBoost and Grid-XGBoost models, respectively. Overall, the proposed hybrid AI models provided a reliable and robust computer aid technology for sediment Pb prediction that contribute to the best knowledge of environmental pollution monitoring and assessment.


Assuntos
Inteligência Artificial , Metais Pesados , Austrália , Baías , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA