Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Genes Dev ; 38(17-20): 887-914, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39362773

RESUMO

During B-cell development, cells progress through multiple developmental stages, with the pro-B-cell stage defining commitment to the B-cell lineage. YY1 is a ubiquitous transcription factor that is capable of both activation and repression functions. We found here that knockout of YY1 at the pro-B-cell stage eliminates B lineage commitment. YY1 knockout pro-B cells can generate T lineage cells in vitro using the OP9-DL4 feeder system and in vivo after injection into sublethally irradiated Rag1-/- mice. These T lineage-like cells lose their B lineage transcript profile and gain a T-cell lineage profile. Single-cell RNA-seq experiments showed that as YY1 knockout pro-B cells transition into T lineage cells in vitro, various cell clusters adopt transcript profiles representing a multiplicity of hematopoietic lineages, indicating unusual lineage plasticity. In addition, YY1 KO pro-B cells in vivo can give rise to other hematopoietic lineages in vivo. Evaluation of RNA-seq, scRNA-seq, ChIP-seq, and scATAC-seq data indicates that YY1 controls numerous chromatin-modifying proteins leading to increased accessibility of alternative lineage genes in YY1 knockout pro-B cells. Given the ubiquitous nature of YY1 and its dual activation and repression functions, YY1 may regulate commitment in multiple cell lineages.


Assuntos
Linhagem da Célula , Células Precursoras de Linfócitos B , Fator de Transcrição YY1 , Animais , Camundongos , Linfócitos B/citologia , Linfócitos B/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Técnicas de Inativação de Genes , Hematopoese/genética , Camundongos Knockout , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/metabolismo , Linfócitos T/citologia , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
2.
J Reprod Dev ; 69(6): 317-327, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37880086

RESUMO

Induced pluripotent stem (iPS) cells are generated from somatic cells and can differentiate into various cell types. Therefore, these cells are expected to be a powerful tool for modeling diseases and transplantation therapy. Generation of domestic cat iPS cells depending on leukemia inhibitory factor has been reported; however, this strategy may not be optimized. Considering that domestic cats are excellent models for studying spontaneous diseases, iPS cell generation is crucial. In this study, we aimed to derive iPS cells from cat embryonic fibroblasts retrovirally transfected with mouse Oct3/4, Klf4, Sox2, and c-Myc. After transfection, embryonic fibroblasts were reseeded onto inactivated SNL 76/7 and cultured in a medium supplemented with basic fibroblast growth factor. Flat, compact, primary colonies resembling human iPS colonies were observed. Additionally, primary colonies were more frequently observed in the KnockOut Serum Replacement medium than in the fetal bovine serum (FBS) medium. However, enhanced maintenance and proliferation of iPS-like cells occurred in the FBS medium. These iPS-like cells expressed embryonic stem cell markers, had normal karyotypes, proliferated beyond 45 passages, and differentiated into all three germ layers in vitro. Notably, expression of exogenous Oct3/4, Klf4, and Sox2 was silenced in these cells. However, the iPS-like cells failed to form teratomas. In conclusion, this is the first study to establish and characterize cat iPS-like cells, which can differentiate into different cell types depending on the basic fibroblast growth factor.


Assuntos
Células-Tronco Pluripotentes Induzidas , Gatos , Camundongos , Humanos , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Diferenciação Celular , Fibroblastos/metabolismo , Células-Tronco Embrionárias/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo
3.
J Membr Biol ; 253(3): 257-270, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32415382

RESUMO

Cellular secreted proteins (secretome), together with cellular membrane proteins, collectively referred to as secretory and membrane proteins (SMPs) are a large potential source of biomarkers as they can be used to indicate cell types and conditions. SMPs have been shown to be ideal candidates for several clinically approved drug regimens including for cancer. This study aimed at performing a functional analysis of SMPs within different cancer subtypes to provide great clinical targets for potential prognostic, diagnostic and the therapeutics use. Using an innovative majority decision-based algorithm and transcriptomic data spanning 5 cancer types and over 3000 samples, we quantified the relative difference in SMPs gene expression compared to normal adjacent tissue. A detailed deep data mining analysis revealed a consistent group of downregulated SMP isoforms, enriched in hematopoietic cell lineages (HCL), in multiple cancer types. HCL-associated genes were frequently downregulated in successive cancer stages and high expression was associated with good patient prognosis. In addition, we suggest a potential mechanism by which cancer cells suppress HCL signaling by reducing the expression of immune-related genes. Our data identified potential biomarkers for the cancer immunotherapy. We conclude that our approach may be applicable for the delineation of other types of cancer and illuminate specific targets for therapeutics and diagnostics.


Assuntos
Biomarcadores Tumorais , Biologia Computacional , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Proteoma , Proteômica , Biologia Computacional/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Proteômica/métodos , Transdução de Sinais
4.
Med Microbiol Immunol ; 208(3-4): 391-403, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31011793

RESUMO

Cytomegaloviruses (CMVs), members of the ß-subfamily of the herpesvirus family, have co-speciated with their respective mammalian hosts resulting in a mutual virus-host adaptation reflected by sets of 'private' viral genes that a particular CMV species does not share with other CMVs and that define the host-species specificity of CMVs. Nonetheless, based on "biological convergence" in evolution, fundamental rules in viral pathogenesis and immune control are functionally analogous between different virus-host pairs. Therefore, the mouse model of infection with murine CMV (mCMV) has revealed generally valid principles of CMV-host interactions. Specifically, the mouse model has paved the way to cellular immunotherapy of CMV disease in immunocompromised recipients of hematopoietic cell transplantation (HCT). Precisely in the context of HCT, however, current view assumes that there exists a major difference between hCMV and mCMV regarding "latent virus reservoirs" in that only hCMV establishes latency in hematopoietic lineage cells (HLCs), whereas mCMV establishes latency in endothelial cells. This would imply that only hCMV can reactivate from transplanted HLCs of a latently infected donor. In addition, as viral transcriptional activity during latency is discussed as a driver of clonal T-cell expansion over lifetime, a phenomenon known as "memory inflation", it is important to know if hCMV and mCMV establish latency in the same cell type(s) for imprinting the immune system. Here, we review the currently available evidence to propose that the alleged difference in latent virus reservoirs between hCMV and mCMV may rather relate to a difference in the focus of research. While studies on hCMV latency in HLCs likely described a non-canonical, transient type-2 latency, studies in the mouse model focussed on canonical, lifelong type-1 latency.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/crescimento & desenvolvimento , Citomegalovirus/imunologia , Células Endoteliais/virologia , Interações Hospedeiro-Patógeno , Latência Viral , Animais , Humanos , Camundongos
5.
Biologicals ; 44(3): 170-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26928674

RESUMO

Ex-vivo gene therapy of hemophilias requires suitable bioreactors for secretion of hFIX into the circulation and stem cells hold great potentials in this regard. Viral vectors are widely manipulated and used to transfer hFIX gene into stem cells. However, little attention has been paid to the manipulation of hFIX transgene itself. Concurrently, the efficacy of such a therapeutic approach depends on determination of which vectors give maximal transgene expression. With this in mind, TF-1 (primary hematopoietic lineage) and rat-bone marrow mesenchymal stem cells (BMSCs) were transfected with five hFIX-expressing plasmids containing different combinations of two human ß-globin (hBG) introns inside the hFIX-cDNA and Kozak element and hFIX expression was evaluated by different methods. In BMSCs and TF-1 cells, the highest hFIX level was obtained from the intron-less and hBG intron-I,II containing plasmids respectively. The highest hFIX activity was obtained from the cells that carrying the hBG intron-I,II containing plasmids. BMSCs were able to produce higher hFIX by 1.4 to 4.7-fold increase with activity by 2.4 to 4.4-fold increase compared to TF-1 cells transfected with the same constructs. BMSCs and TF-1 cells could be effectively bioengineered without the use of viral vectors and hFIX minigene containing hBG introns could represent a particular interest in stem cell-based gene therapy of hemophilias.


Assuntos
Células da Medula Óssea/metabolismo , Fator IX/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Plasmídeos/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , Fator IX/metabolismo , Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos/genética , Hemofilia A/genética , Hemofilia A/terapia , Humanos , Íntrons/genética , DNA Polimerase Dirigida por RNA , Ratos , Transfecção/métodos , Globinas beta/genética
6.
Cell Rep ; 43(8): 114558, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39088321

RESUMO

Chromatin priming promotes cell-type-specific gene expression, lineage differentiation, and development. The mechanism of chromatin priming has not been fully understood. Here, we report that mouse hematopoietic stem and progenitor cells (HSPCs) lacking the Baf155 subunit of the BAF (BRG1/BRM-associated factor) chromatin remodeling complex produce a significantly reduced number of mature blood cells, leading to a failure of hematopoietic regeneration upon transplantation and 5-fluorouracil (5-FU) injury. Baf155-deficient HSPCs generate particularly fewer neutrophils, B cells, and CD8+ T cells at homeostasis, supporting a more immune-suppressive tumor microenvironment and enhanced tumor growth. Single-nucleus multiomics analysis reveals that Baf155-deficient HSPCs fail to establish accessible chromatin in selected regions that are enriched for putative enhancers and binding motifs of hematopoietic lineage transcription factors. Our study provides a fundamental mechanistic understanding of the role of Baf155 in hematopoietic lineage chromatin priming and the functional consequences of Baf155 deficiency in regeneration and tumor immunity.


Assuntos
Diferenciação Celular , Cromatina , Hematopoese , Células-Tronco Hematopoéticas , Animais , Camundongos , Cromatina/metabolismo , Fluoruracila/farmacologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Camundongos Endogâmicos C57BL , Regeneração , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
7.
Blood Cells Mol Dis ; 51(3): 163-73, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23714230

RESUMO

Endothelial progenitor cells circulating in the peripheral blood (PB) contribute to vascular repair. This study aimed to evaluate the potential of a 'cocktail' consisting of erythropoietin, granulocyte colony-stimulating factor and tetrahydrobiopterin to mobilize hematopoietic lineage negative/vascular endothelial growth factor receptor 2 positive (Lin(-)/VEGF-R2(+)) cells from the bone marrow (BM) to PB in non-diabetic and diabetic mice. Diabetes was induced in mice by intraperitoneal injection of streptozotocin. Diabetic mice were studied after 16weeks of hyperglycemia. Half the mice in each group (non-diabetic and diabetic) received daily intraperitoneal injections of the cocktail for 6 consecutive days while the other half received vehicle buffer. Mobilization of Lin(-)/VEGF-R2(+) cells, which were expanded in MCP301 medium, was evaluated after isolating them from BM and PB and their phenotypic and morphological properties were studied. We found that 16weeks of diabetes affected neither the total number of BM mononucleated cells nor the number of Lin(-)/VEGF-R2(+) cells in BM compared with non-diabetic controls. In non-diabetic mice, cocktail treatment resulted in a significant decrease in BM Lin(-)/VEGF-R2(+) cells, paralleled by a significant increase of these cells in PB. Such changes in the number of Lin(-)/VEGF-R2(+) cells in BM and PB after the cocktail treatment were less marked in diabetic mice. In vitro studies of BM Lin(-)/VEGF-R2(+) cells from diabetic and non-diabetic mice did not reveal any differences in either phenotypes or colony forming potential. These findings indicate that diabetes impairs the mobilization of Lin(-)/VEGF-R2(+) cells from BM to PB. Impaired mobilization of BM Lin(-)/VEGF-R2(+) cells soon after the onset of diabetes may contribute to complications such as diabetic retinopathy.


Assuntos
Células da Medula Óssea/metabolismo , Diabetes Mellitus Experimental/metabolismo , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco/metabolismo , Animais , Glicemia , Barreira Hematorretiniana/patologia , Peso Corporal , Diabetes Mellitus Experimental/sangue , Índices de Eritrócitos , Imunofenotipagem , Masculino , Camundongos , Fenótipo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
Int J Med Sci ; 5(2): 73-9, 2008 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-18392144

RESUMO

Micro-RNAs (miRNAs) are 19-24 nucleotide long non-coding RNAs that posttranscriptionally modulate gene expression. They are found in almost all species: viruses, plants, nematodes, fly, fish, mouse, human, and are implicated in a wide array of cellular and developmental processes. Microarray-based miRNA profiling brought to the discovery of miRNAs specific to different hematopoietic lineages. Furthermore, the functional assays performed in tissue cultures to discover miRNAs involved in immune responses in combination with the reports of miRNA-transgenic or miRNA -knockout mouse models has helped elucidating the miRNA roles in the development and function of immune system. Abnormal patterns of hematopoietic-specific miRNAs have been found in different types of cancer and miRNA based gene therapy is being considered as a potential technology of choice in immunological disorders and cancer. The purpose of this review is to discuss recent findings related with the expression and function of miRNAs in hematopoietic lineages.


Assuntos
Sistema Hematopoético/metabolismo , Sistema Imunitário/metabolismo , MicroRNAs/metabolismo , Neoplasias/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Terapia Genética , Humanos , MicroRNAs/biossíntese
9.
Oncol Lett ; 15(6): 9406-9412, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29805664

RESUMO

Hematopoietic lineage cell-specific protein 1 (HS1) is a 75-kDa intracellular protein that is expressed primarily in hematopoietic cells. Several previous studies have demonstrated the association between HS1 expression and a poor prognosis in hematopoietic malignancies; however, in solid tumors, no studies not been reported. The present study examined the distribution and expression of HS1 in human epithelial ovarian carcinoma (EOC) to determine its clinical significance. Paraffin sections were obtained from EOC tissues and immunostained with HS1 antibody, and then the staining intensities were evaluated. Overall survival (OS) was determined using the Kaplan-Meier estimator method, and multivariate analysis was performed using the Cox proportional hazards analysis. In total, 195 patients with EOC (median age, 56 years) were enrolled into the present study. HS1 immunoreactivity was categorized based on expression levels: Low (89/195; 45.6%) and high (106/195; 54.4%). Results demonstrated no association between expression level(s) and any clinicopathological parameter including age, International Federation of Gynecology and Obstetrics (FIGO) staging, type of chemotherapy or type of surgery received. The 5-year OS rates of patients who demonstrated low (n=89) and high (n=106) HS1 expression were 90.4 and 66.7%, respectively. The OS times for patients with high HS1 expression were significantly shorter compared with those for patients exhibiting low HS1 expression (P=0.0065). Results obtained from the multivariate analysis demonstrated that the FIGO stage and the amount of HS1 expressed were significant independent prognostic markers for poorer OS (hazard ratio, 3.539; 95% confidence interval, 1.221-12.811; P=0.0187). High HS1 expression levels may serve as a useful biomarker in patients with EOC who are likely to exhibit an unfavorable clinical outcome.

10.
Fertil Steril ; 107(2): 510-519.e3, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27887719

RESUMO

OBJECTIVE: To study, isolate and characterize leucine-rich repeat-containing heterotrimeric guanine nucleotide-binding protein-coupled receptor 5 (LGR5)-positive cells from human endometrium to determine their functional relevance. DESIGN: Prospective experimental animal study. SETTING: University research laboratories. ANIMAL(S): Nonobese diabetic mice (NOD-SCID) (strain code 394; NOD.CB17-Prkdcscid/NcrCrl). INTERVENTION(S): Human LGR5+ cells were labeled with superparamagnetic iron oxide nanoparticles (SPIOs) and injected under the kidney capsule in immunocompromised mice. MAIN OUTCOME MEASURE(S): Epithelial and stromal LGR5+ cells were isolated from human endometrium by means of fluorescence-activated cell sorting, and phenotypic characterization was performed by means of flow cytometry with the use of hematopoietic and mesenchymal markers. Engrafted SPIO-labeled LGR5+ cells were localized with the use of Prussian blue staining and immunohistochemistry against CD9 and Vimentin. Deep transcriptomic profiling of LGR5+ cells was performed with the use of microarrays and RNA sequencing. RESULT(S): The percentage of LGR5+ cells in human endometrium represented 1.08 ± 0.73% and 0.82 ± 0.76% of total cells in the epithelial and stromal compartments, respectively. LGR5+ cells were phenotypically characterized by abundant expression of CD45 hematopoietic marker and no expression of surface markers CD31, CD34, CD133, CD73, and CD90. Coexpression with the macrophage marker CD163 was detected. Xenotransplantation of labeled LGR5+ cells into the kidney capsules of immunocompromised mice resulted in a weak endometrial reconstitution from this cell of origin. Transcriptomic profiling revealed new attributes for LGR5+ cells related to their putative hematopoietic origin. CONCLUSION(S): These data suggest that endometrial LGR5 is not an endogenous stem cell marker. Instead, LGR5+ cells appear to be recruited from blood to be part of the stem cell niche at the perivascular microenvironment to activate the endogenous niche.


Assuntos
Endométrio/metabolismo , Células Epiteliais/metabolismo , Rim/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Nicho de Células-Tronco , Células-Tronco/metabolismo , Células Estromais/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem da Célula , Separação Celular/métodos , Células Cultivadas , Endométrio/transplante , Células Epiteliais/transplante , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica , Xenoenxertos , Humanos , Rim/cirurgia , Camundongos Endogâmicos NOD , Camundongos SCID , Fenótipo , Receptores Acoplados a Proteínas G/genética , Transplante de Células-Tronco , Células Estromais/transplante , Transcriptoma
11.
Exp Gerontol ; 72: 251-60, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26523501

RESUMO

A deletion of a telomerase RNA component (Terc(-/-)) in C57BL/6 (B6) mice resulted in hematopoietic lineage skewing with increased neutrophils and CD11b(+) myeloid cells and decreased red blood cells and CD45R(+) B lymphocytes when animals reach ages older than 12 months. There was no decline in bone marrow (BM) c-Kit(+)Sca-1(+)Lin(-) (KSL) cells in old Terc(-/-) mice, and the lineage skewing phenomenon was not transferred when BM cells from old Terc(-/-) donors were transplanted into young B6 recipients. Necropsy and histological examinations found minimal to no change in the lung, spleen and liver but detected severe epithelia degeneration, ulceration and infection in small and large intestines, leading to enteritis, typhlitis and colitis in old Terc(-/-) mice. In a mouse model of dextran-sulfate-sodium-induced typhlitis and colitis, development of intestinal pathology was associated with increases in neutrophils and CD11b(+) myeloid cells and a decrease in CD45R(+) B cells, similar to those observed in old Terc(-/-) mice. Treatment of 11-13 month old Terc(-/-) mice with antibiotic trimethoprim-sulfa water reduced neutrophils and myeloid cells and increased B lymphocytes in the blood, indicating that mitigation of intestinal infection and inflammation could alleviate hematological abnormalities in old Terc(-/-) animals.


Assuntos
Envelhecimento/genética , Medula Óssea/patologia , Linhagem da Célula/genética , Mucosa Intestinal/patologia , RNA/genética , Telomerase/genética , Animais , Linfócitos B/efeitos dos fármacos , Transplante de Medula Óssea , Colite/induzido quimicamente , Colite/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Deleção de Sequência , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA