RESUMO
BACKGROUND: In Taiwan, the vaccination program started in March 2021, with ChAdOx1-S being the first available WHO-approved COVID-19 vaccine, followed by Moderna vaccine. This study aimed to investigate the immunogenicity and safety of homologous and heterologous prime-boost regimens with ChAdOx1-S and mRNA-1273. METHODS: From March to November 2021, homologous or heterologous regimens with ChAdOx1-S and mRNA-1273 vaccination (ChAdOx1-S/ChAdOx1-S, mRNA-1273/mRNA-1273, ChAdOx1-S/mRNA-1273) were given to 945 healthy participants. Serum samples were collected at designated time points. The anti-RBD/S1 antibody titers and neutralizing ability were measured by three different immunoassays: Elecsys® Anti-SARS-CoV-2 S (Roche Diagnostics, Mannheim, Germany), AdviseDx SARS-CoV-2 IgG II (Abbott Diagnostics Division, Sligo, Ireland), and cPass™ SARS-CoV-2 Neutralization Antibody Detection Kit (GenScript, New Jersey, USA). RESULTS: We found that heterologous vaccination with ChAdOx1-S/mRNA-1273 had an acceptable safety profile and induced higher total anti-RBD/S1 antibody production (p < 0.0001), yet lower anti-RBD/S1 IgG titer (p < 0.0001) and neutralizing ability (p = 0.0101) than mRNA-1273/mRNA-1273 group. Both regimens showed higher antibody titers and superior neutralizing abilities than ChAdOx1-S/ChAdOx1-S. An age-dependent antibody response to ChAdOx1-S/mRNA-1273 was shown after both the priming and the booster doses. Younger age was associated with higher antibody production and neutralizing ability. CONCLUSIONS: Heterologous ChAdOx1-S/mRNA-1273 vaccination regimen is generally safe and induces a robust humoral immune response that is non-inferior to that of mRNA-1273/mRNA-1273.
Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , COVID-19 , ChAdOx1 nCoV-19 , Imunogenicidade da Vacina , Vacina de mRNA-1273 contra 2019-nCoV/efeitos adversos , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Adulto , Anticorpos Antivirais , COVID-19/prevenção & controle , ChAdOx1 nCoV-19/efeitos adversos , ChAdOx1 nCoV-19/imunologia , Humanos , Imunoglobulina G , SARS-CoV-2 , Taiwan , VacinaçãoRESUMO
Malaria remains a considerable burden on public health. In 2015, the WHO estimates there were 212 million malaria cases causing nearly 429,000 deaths globally. A highly effective malaria vaccine is needed to reduce the burden of this disease. We have developed an experimental vaccine candidate (PyCMP) based on pre-erythrocytic (CSP) and erythrocytic (MSP1) stage antigens derived from the rodent malaria parasite P. yoelii. Our protein-based vaccine construct induces protective antibodies and CD4+ T cell responses. Based on evidence that viral vectors increase CD8+ T cell-mediated immunity, we also have tested heterologous prime-boost immunization regimens that included human adenovirus serotype 5 vector (Ad5), obtaining protective CD8+ T cell responses. While Ad5 is commonly used for vaccine studies, the high prevalence of pre-existing immunity to Ad5 severely compromises its utility. Here, we report the use of the novel simian adenovirus 36 (SAd36) as a candidate for a vectored malaria vaccine since this virus is not known to infect humans, and it is not neutralized by anti-Ad5 antibodies. Our study shows that the recombinant SAd36PyCMP can enhance specific CD8+ T cell response and elicit similar antibody titers when compared to an immunization regimen including the recombinant Ad5PyCMP. The robust immune responses induced by SAd36PyCMP are translated into a lower parasite load following P. yoelii infectious challenge when compared to mice immunized with Ad5PyCMP.