Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Animals (Basel) ; 12(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35327102

RESUMO

Maternal lineages are considered an important factor in breeding. Mitochondrial DNA (mtDNA) is maternally inherited and plays an important role in energy metabolism. It has already been associated with energy consumption and performances, e.g., stamina in humans and racehorses. For now, corresponding studies are lacking for sport performance of warmblood breeds. MtDNA sequences were available for 271 Holstein mares from 75 maternal lineages. As all mares within a lineage showed identical haplotypes regarding the non-synonymous variants, we expanded our data set by also including non-sequenced mares and assigning them to the lineage-specific haplotype. This sample consisting of 6334 to 16,447 mares was used to perform mitochondrial association analyses using breeding values (EBVs) estimated on behalf of the Fédération Équestre Nationale (FN) and on behalf of the Holstein Breeding Association (HOL). The association analyses revealed 20 mitochondrial SNPs (mtSNPs) significantly associated with FN-EBVs and partly overlapping 20 mtSNPs associated with HOL-EBVs. The results indicated that mtDNA contributes to performance differences between maternal lineages. Certain mitochondrial haplogroups were associated with special talents for dressage or show jumping. The findings encourage to set up innovative genetic evaluation models that also consider information on maternal lineages.

2.
Front Genet ; 12: 632500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335677

RESUMO

Maternal lineages are important for the breeding decision in the Holstein horse breed. To investigate the genetic diversity of the maternal lineages and the relationships between founder mares, the maternal inherited mitochondrial genome (except the repetitive part of the non-coding region) of 271 mares representing 75 lineages was sequenced. The sequencing predominantly revealed complete homology in the nucleotide sequences between mares from one lineage with exceptions in 13 lineages, where differences in one to three positions are probably caused by de novo mutations or alternate fixation of heteroplasmy. We found 78 distinct haplotypes that have not yet been described in other breeds. Six of these occurred in two or three different lineages indicating a common ancestry. Haplotypes can be divided into eight clusters with all mares from one lineage belonging to the same cluster. Within a cluster, the average number of pairwise differences ranged from zero to 16.49 suggesting close maternal relationships between these mares. The results showed that the current breeding population originated from at least eight ancestral founder mares.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA