Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287775

RESUMO

A whole-cell patch-clamp study was carried out to investigate membrane and synaptic properties of cholinergic interneurons in the striatum of aristaless-related homeobox gene (ARX) mutant mice. Brain slices were prepared from mice knocked in two types of ARX, P355L (PL) and 333ins (GCG)7 (GCG). The input resistance of cholinergic interneurons in PL or GCG mice was significantly smaller than that in wild type (WT), whereas resting membrane potential, threshold of action potentials, spontaneous firing rate, sag ratio or afterhyperpolarization of the mutant mice were not significantly different from those of WT mice. In GCG mice, NMDA/AMPA ratio of excitatory postsynaptic currents (EPSCs) evoked in cholinergic interneurons was significantly smaller than that in WT and PL mice, whereas the ratio between PL and WT mice was not significantly different. Although inhibitory effects induced by dopamine D2-like receptor activation on the inhibitory postsynaptic currents (IPSCs) were not significantly different between WT and PL or GCG mice, increase in the paired pulse ratio of IPSCs by dopamine D2-like receptor activation was abolished in PL and GCG mice. The present results have found abnormalities of neuronal activities as well as its modulation in the basal ganglia in ARX mutant mice, clarifying basic mechanisms underlying related disorders.

2.
J Pineal Res ; 76(3): e12950, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558122

RESUMO

Homeobox genes encode transcription factors that are widely known to control developmental processes. This is also the case in the pineal gland, a neuroendocrine brain structure devoted to nighttime synthesis of the hormone melatonin. Thus, in accordance with high prenatal gene expression, knockout studies have identified a specific set of homeobox genes that are essential for development of the pineal gland. However, as a special feature of the pineal gland, homeobox gene expression persists into adulthood, and gene product abundance exhibits 24 h circadian rhythms. Recent lines of evidence show that some homeobox genes even control expression of enzymes catalyzing melatonin synthesis. We here review current knowledge of homeobox genes in the rodent pineal gland and suggest a model for dual functions of homeobox gene-encoded transcription factors in developmental and circadian mature neuroendocrine function.


Assuntos
Melatonina , Glândula Pineal , Animais , Glândula Pineal/metabolismo , Genes Homeobox , Melatonina/metabolismo , Roedores/genética , Roedores/metabolismo , Fatores de Transcrição/metabolismo , Ritmo Circadiano
3.
Genes Dev ; 30(21): 2370-2375, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852629

RESUMO

Here we investigate mechanisms underlying the diversification of biological forms using crucifer leaf shape as an example. We show that evolution of an enhancer element in the homeobox gene REDUCED COMPLEXITY (RCO) altered leaf shape by changing gene expression from the distal leaf blade to its base. A single amino acid substitution evolved together with this regulatory change, which reduced RCO protein stability, preventing pleiotropic effects caused by its altered gene expression. We detected hallmarks of positive selection in these evolved regulatory and coding sequence variants and showed that modulating RCO activity can improve plant physiological performance. Therefore, interplay between enhancer and coding sequence evolution created a potentially adaptive path for morphological evolution.


Assuntos
Arabidopsis/fisiologia , Cardamine/anatomia & histologia , Cardamine/genética , Evolução Molecular , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Cardamine/classificação , Elementos Facilitadores Genéticos/genética , Perfilação da Expressão Gênica , Genes de Plantas/genética
4.
Plant Cell Environ ; 46(7): 2061-2077, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37128851

RESUMO

Abscisic acid (ABA) signalling triggers drought resistance mediated by SNF1-related kinase 2s (SnRK2s), which transmits stress signals through the phosphorylation of several downstream factors. However, these kinases and their downstream targets remain elusive in pepper plants. This study aimed to isolate interacting partners of CaSnRK2.6, a homologue of Arabidopsis SnRK2.6/OST1. Among the candidate proteins, we identified a homeodomain-leucine zipper (HD-Zip) class II protein and named it CaHAT1 (Capsicum annuum homeobox ABA signalling related- transcription factor 1). CaHAT1-silenced pepper and -overexpression (OE) transgenic Arabidopsis plants were generated to investigate the in vivo function of CaHAT1 in drought response. Following the application of drought stress, CaHAT1-silenced pepper plants exhibited drought-sensitive phenotypes with reduced ABA-mediated stomatal closure and lower expression of stress-responsive genes compared with control plants. In contrast, CaHAT1-OE transgenic Arabidopsis plants showed the opposite phenotypes, including increased drought resistance and ABA sensitivity. CaHAT1, particularly its N-terminal consensus sequences, was directly phosphorylated by CaSnRK2.6. Furthermore, CaSnRK2.6 kinase activity and CaSnRK2.6-mediated CaHAT1 phosphorylation levels were enhanced by treatment with ABA and drought stress. Taken together, our results indicated that CaHAT1, which is the target protein of CaSnRK2.6, is a positive regulator of drought stress response. This study advances our understanding of CaHAT1-CaSnRK2.6 mediated defence mechanisms in pepper plants against drought stress.


Assuntos
Ácido Abscísico , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Secas , Genes Homeobox , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas
5.
Semin Cell Dev Biol ; 100: 52-61, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31623926

RESUMO

Regeneration of cardiomyocytes, endothelial cells and vascular smooth muscle cells (three major lineages of cardiac tissues) following myocardial infarction is the critical step to recover the function of the damaged heart. Myeloid ecotropic viral integration site 1 (Meis1) was first discovered in leukemic mice in 1995 and its biological function has been extensively studied in leukemia, hematopoiesis, the embryonic pattering of body axis, eye development and various genetic diseases, such as restless leg syndrome. It was found that Meis1 is highly associated with Hox genes and their cofactors to exert its regulatory effects on multiple intracellular signaling pathways. Recently with the advent of bioinformatics, biochemical methods and advanced genetic engineering tools, new function of Meis1 has been found to be involved in the cell cycle regulation of cardiomyocytes and endothelial cells. For example, inhibition of Meis1 expression increases the proliferative capacity of neonatal mouse cardiomyocytes, whereas overexpression of Meis1 results in the reduction in the length of cardiomyocyte proliferative window. Interestingly, downregulation of one of the circular RNAs, which acts downstream of Meis1 in the cardiomyocytes, promotes angiogenesis and restores the myocardial blood supply, thus reinforcing better regeneration of the damaged heart. It appears that Meis1 may play double roles in modulating proliferation and regeneration of cardiomyocytes and endothelial cells post-myocardial infarction. In this review, we propose to summarize the major findings of Meis1 in modulating fetal development and adult abnormalities, especially focusing on the recent discoveries of Meis1 in controlling the fate of cardiomyocytes and endothelial cells.


Assuntos
Genes Homeobox , Proteína Meis1/genética , Proteína Meis1/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Regeneração , Animais , Humanos
6.
Clin Genet ; 101(2): 183-189, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34671974

RESUMO

The caudal type homeobox 2 (CDX2) gene encodes a developmental regulator involved in caudal body patterning. Only three pathogenic variants in human CDX2 have been described, in patients with persistent cloaca, sirenomelia and/or renal and anogenital malformations. We identified five patients with de novo or inherited pathogenic variants in CDX2 with clinical phenotypes that partially overlap with previous cases, that is, imperforate anus and renal, urogenital and limb abnormalities. However, additional clinical features were seen including vertebral agenesis and we describe considerable phenotypic variability, even in unrelated patients with the same recurrent p.(Arg237His) variant. We propose CDX2 variants as rare genetic cause for a multiple congenital anomaly syndrome that can include features of caudal regression syndrome and VACTERL. A causative role is further substantiated by the relationship between CDX2 and other proteins encoded by genes that were previously linked to caudal abnormalities in humans, for example, TBXT (sacral agenesis and other vertebral segmentation defects) and CDX1 (anorectal malformations). Our findings confirm the essential role of CDX2 in caudal morphogenesis and formation of cloacal derivatives in humans, which to date has only been well characterized in animals.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Fator de Transcrição CDX2/genética , Predisposição Genética para Doença , Mutação , Fenótipo , Região Sacrococcígea/anormalidades , Alelos , Criança , Feminino , Estudos de Associação Genética , Testes Genéticos , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Sequenciamento do Exoma
7.
Dev Growth Differ ; 64(4): 198-209, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35441397

RESUMO

Homeobox genes play essential roles in the early development of many animals. Although the repertoire of most homeobox genes, including three amino acid loop extension (TALE)-type homeobox genes, is conserved in animals, spiralian-TALE (SPILE) genes are a notable exception. In this study, SPILE genes were extracted from the genomic data of 22 mollusk species and classified into four clades (-A/C, -B, -D, and -E) to determine which SPILE genes exhibit dynamic repertoire changes. While SPILE-D and -E duplications were rarely observed, SPILE-B duplication was observed in the bivalve lineage and SPILE-A/C duplication was observed in multiple clades. Conversely, most or all SPILE genes were lost in cephalopods and in some gastropod lineages. SPILE gene expression patterns were also analyzed in multiple mollusk species using publicly available RNA-seq data. The majority of SPILE genes examined, particularly those in the A/C- and B-clades, were specifically expressed during early development, suggesting that most SPILE genes exert specific roles in early development. This comprehensive cataloging and characterization revealed a dynamic evolutionary history, including SPILE-A/C and -B gene duplications and the loss of SPILE genes in several lineages. Furthermore, this study provides a useful resource for studying the molecular mechanism of spiralian early development and the evolution of young and lineage-specific transcription factors.


Assuntos
Aminoácidos , Genes Homeobox , Animais , Evolução Molecular , Duplicação Gênica , Genes Homeobox/genética , Moluscos/genética , Filogenia
8.
Int J Mol Sci ; 23(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35456930

RESUMO

The TALE gene family is a subfamily of the homeobox gene family and has been implicated in regulating plant secondary growth. However, reports about the evolutionary history and function of the TALE gene family in bamboo are limited. Here, the homeobox gene families of moso bamboo Olyra latifolia and Bonia amplexicaulis were identified and compared. Many duplication events and obvious expansions were found in the TALE family of woody bamboo. PhTALEs were found to have high syntenies with TALE genes in rice. Through gene co-expression analysis and quantitative real-time PCR analysis, the candidate PhTALEs were thought to be involved in regulating secondary cell wall development of moso bamboo during the fast-growing stage. Among these candidate PhTALEs, orthologs of OsKNAT7, OSH15, and SH5 in moso bamboo may regulate xylan synthesis by regulating the expression of IRX-like genes. These results suggested that PhTALEs may participate in the secondary cell wall deposition in internodes during the fast-growing stage of moso bamboo. The expansion of the TALE gene family may be implicated in the increased lignification of woody bamboo when divergent from herbaceous bamboos.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Parede Celular/genética , Genes Homeobox , Oryza/genética , Poaceae/genética , Poaceae/metabolismo
9.
Zhonghua Zhong Liu Za Zhi ; 44(3): 228-237, 2022 Mar 23.
Artigo em Zh | MEDLINE | ID: mdl-35316872

RESUMO

Objective: To study the effects of Homeobox C10 (HOXC10) on biological characteristics such as migration, invasion and proliferation of glioma cancer cells and to explore the role of HOXC10 gene in glioma microenvironment. Methods: The expression level of HOXC10 in high grade glioma (glioblastoma) and low grade glioma and its effect on patient survival were analyzed by using The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) database. Hoxc10-siRNA-1, HOXC10-siRNA-2 and siRNA negative control (NC) were transfected into U251 cells according to the operation instructions of HOXC10-siRNA transfection. 100 ng/ mL recombinant protein chemokine ligand 2 (reCCL2) was added into the transfection group, and was labeled as HOXC10-siRNA-1+ reCCL2 and HOXC10-siRNA-2+ reCCL2 groups. The expressions of HOXC10 mRNA and target protein in each group was detected by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) and western blot. The proliferation ability of cells in each group was detected by cell counting kit 8 (CCK8) method. The migration ability of cells was detected by Transwell assay and Nick assay, and cell apoptosis was detected by flow cytometry. The expression of chemokines in each group was detected by multiple factors. Co-incubation assays were performed to determine the role of HOXC10 and chemokine ligand 2 (CCL2) in recruiting and polarizing tumor-associated macrophages (M2-type macrophages). Results: The median expression level of HOXC10 in high grade gliomas was 8.51, higher than 1.00 in low grade gliomas (P<0.001) in TCGA database. The median expression level of HOXC10 in high grade gliomas was 0.83, higher than 0.00 in low grade gliomas (P=0.002) in CGGA database. The 5-year survival rate of patients with high HOXC10 expression in TCGA database was 28.2%, lower than 78.7% of those with low HOXC10 expression (P<0.001), and the 5-year survival rate of patients with high HOXC10 expression in CGGA database was 20.3%, lower than 58.0% of those with low HOXC10 expression (P<0.001). The numbers of cell migration in HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (45±3) and (69±4) respectively, lower than (159±3) in NC group (P<0.05). The cell mobility of HOXC10-siRNA-1 group and HOXC10-siRNA-2 group at 48 hours were (15±2)% and (28±4)% respectively, lower than (80±5)% of NC group (P<0.05). The expressions of vimentin in HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (141 740.00±34 024.56) and (94 655.00±5 687.97), N-cadherin were (76 810.00±14.14) and (94 254.00±701.45), ß-catenin were (75 786.50±789.84) and (107 296.50±9 614.53), lower than (233 768.50±34 114.37), (237 154.50±24 715.50) and (192 449.50±24 178.10) of NC group (P<0.05). The A value of HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (0.44±0.05) and (0.32±0.02) at 96 hours, lower than 0.92±0.12 of NC group (P<0.05). The apoptosis rates of HOXC10-siRNA-1 group and HOXC10 siRNA-2 group were (10.23±1.24)% and (13.81±2.16)%, higher than (4.60±0.07)% of NC group (P<0.05). The expression levels of CCL2 in U251 cells in HOXC10-siRNA-1 and HOXC10-siRNA-2 groups were (271.63±44.27) and (371.66±50.21), lower than (933.93±29.84) in NC group (P<0.05). The expression levels of CCL5 (234.81±5.95 and 232.62±5.72), CXCL10 (544.13±48.14 and 500.87±15.65) and CXCL11 (215.75±15.30 and 176.18±16.49) in HOXC10-siRNA-1 and HOXC10-siRNA-2 groups were higher than those in NC group (9.98±0.71, 470.54±18.84 and 13.55±0.73, respectively, P<0.05). The recruited numbers of CD14(+) THP1 in HOXC10-siRNA-1 and HOXC10-siRNA-2 groups were (159.33±1.15) and (170.67±1.15), respectively, lower than (360.00±7.81) in NC group (P<0.05), while addition of reCCL2 promoted the recruitment of CD14(+) THP1 cells (287.00±3.61 and 280.67±2.31 in HOXC10-siRNA-1+ reCCL2 group and HOXC10-siRNA-2+ reCCL2 group, respectively, P<0.05). The expressions level of M2-type macrophage-related gene TGF-ß in HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (0.30±0.02) and (0.28±0.02), respectively, lower than (1.06±0.10) in NC group (P<0.05). The expressions level of M1-related gene NOS2 in HOXC10-siRNA-1 and HOXC10-siRNA-2 were (11 413.95±1 911.85) and (5 894.00±945.21), respectively, higher than (13.39±4.32) in NC group (P<0.05). Conclusions: The expression of HOXC10 in glioma is high and positively correlated with the poor prognosis of glioma patients. Knockdown of HOXC10 can inhibit the proliferation, migration and metastasis of human glioma U251 cells. HOXC10 may play an immunosuppressive role in glioma microenvironment by promoting the expression of CCL2 and recruiting and polarizing tumor-associated macrophages (M2 macrophages).


Assuntos
Genes Homeobox , Glioma , Proteínas de Homeodomínio , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Invasividade Neoplásica/genética , Microambiente Tumoral
10.
Genome ; 64(8): 761-776, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33493082

RESUMO

WUSCHEL-related homeobox (WOX) proteins are plant-specific transcription factors that are profoundly involved in regulation of plant development and stress responses. In this study, we totally identified 11 WOX transcription factor family members in cucumber (Cucumis sativus, CsWOX) genome and classified them into three clades with nine subclades based on phylogenetic analysis results. Alignment of amino acid sequences revealed that all WOX members in cucumber contained the typical homeodomain, which consists of 60-66 amino acids and is folded into a helix-turn-helix structure. Gene duplication event analysis indicated that CsWOX1a and CsWOX1b were a segment duplication pair, which might affect the number of WOX members in cucumber genome. The expression profiles of CsWOX genes in different tissues demonstrated that the members sorted into the ancient clade (CsWOX13a and CsWOX13b) were constitutively expressed at higher levels in comparison to the others. Cis-element analysis in promoter regions suggested that the expression of CsWOX genes was associated with phytohormone pathways and stress responses, which was further supported by RNA-seq data. Taken together, our results provide new insights into the evolution of cucumber WOX genes and improve our understanding about the biological functions of the CsWOX gene family.


Assuntos
Cucumis sativus , Genes de Plantas , Família Multigênica , Fatores de Transcrição , Cucumis sativus/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Arch Insect Biochem Physiol ; 108(1): e21833, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34288091

RESUMO

The homeobox family is a large and diverse superclass of genes, many of which act as transcription factors that play important roles in tissue differentiation and embryogenesis in animals. The brown planthopper (BPH), Nilaparvata lugens, is the most destructive pest of rice in Asia, and high fecundity contributes significantly to its ecological success in natural and agricultural habits. Here, we identified 94 homeobox genes in BPH, which could be divided into 75 gene families and 9 classes. This number is comparable to the number of homeobox genes found in the honeybee Apis mellifera, but is slightly less than in Drosophila or the red flour beetle Tribolium castaneum. A spatio-temporal analysis indicated that most BPH homeobox genes were expressed in a development and tissue-specific manner, of which 21 genes were highly expressed in ovaries. RNA interference (RNAi)-mediated functional assay showed that 22 homeobox genes were important for nymph development and the nymph to adult transition, whereas 67 genes were dispensable during this process. Fecundity assay showed that knockdown of 13 ovary-biased genes (zfh1, schlank, abd-A, Lim3_2, Lmxb, Prop, ap_1, Not, lab, Hmx, vis, Pknox, and C15) led to the reproductive defect. This is the first comprehensive investigation into homeobox genes in a hemipteran insect and thus helps us to understand the functional significance of homeobox genes in insect reproduction.


Assuntos
Fertilidade/genética , Genes Homeobox , Hemípteros/genética , Animais , Perfilação da Expressão Gênica/métodos , Genes de Insetos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Ninfa/genética , Controle de Pragas , Interferência de RNA , Reprodução/genética
12.
J Mammary Gland Biol Neoplasia ; 25(2): 145-162, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32705545

RESUMO

Targeted disruption of the murine Hoxd10 gene (ΔHoxd10) leads to a high frequency of localized (gland-to-gland or regionally within a gland) lactation impairment in homozygous mutant mice as a single gene mutation. The effect of Hoxd10 disruption was enhanced by simultaneous disruption of Hoxd9 (ΔHoxd9/d10), a mutation shown previously to have no effect on mammary function as a single gene alteration. Mammary glands of homozygous ΔHoxd10 and ΔHoxd9/d10 females were indistinguishable from those of wild type littermate and age-matched control mice in late pregnancy. However, in lactation, 47% of homozygous ΔHoxd10 females, and 100% of homozygous ΔHoxd9/d10 females, showed localized or complete failure of two or more glands to undergo lactation-associated morphological changes and to secrete milk. Affected regions of ΔHoxd10 and ΔHoxd9/d10 mutants showed reduced prolactin receptor expression, reduced signal transducer and activator transcription protein 5 (STAT5) phosphorylation, reduced expression of downstream milk proteins, mislocalized glucose transporter 1 (GLUT1), increased STAT3 expression and phosphorylation, recruitment of leukocytes, altered cell cycle status, and increased apoptosis relative to unaffected regions and wild type control glands. Despite these local effects on alveolar function, transplantation results and hormone analysis indicate that Hoxd10 primarily has systemic functions that confer attenuated STAT5 phosphorylation on both wild type and ΔHoxd10 transplants when placed in ΔHoxd10 hosts, thereby exacerbating an underlying propensity for lactation failure in C57Bl/6 mice.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Células Epiteliais/metabolismo , Proteínas de Homeodomínio/fisiologia , Lactação , Glândulas Mamárias Animais/metabolismo , Proteínas do Leite/metabolismo , Proteínas de Neoplasias/fisiologia , Fatores de Transcrição/fisiologia , Animais , Células Epiteliais/patologia , Feminino , Hormônios/sangue , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez
13.
Hum Mutat ; 41(1): 196-202, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31498527

RESUMO

Idiopathic intestinal varicosis is a developmental disorder defined by dilated and convoluted submucosal veins in the colon or small bowel. A limited number of families with idiopathic intestinal varices has been reported, but the genetic cause has not yet been identified. We performed whole-exome and targeted Sanger sequencing of candidate genes in five intestinal varicosis families. In four families, mutations in the RPSA gene were found, a gene previously linked to congenital asplenia. Individuals in these pedigrees had intestinal varicose veins and angiodysplasia, often in combination with asplenia. In a further four-generation pedigree that only showed intestinal varicosities, the RPSA gene was normal. Instead, a nonsense mutation in the homeobox gene NKX2-3 was detected which cosegregated with the disease in this large family with a LOD (logarithm of the odds) score of 3.3. NKX2-3 is a component of a molecular pathway underlying spleen and gut vasculature development in mice. Our results provide a molecular basis for familial idiopathic intestinal varices. We provide evidence for a relationship between the molecular pathways underlying the development of the spleen and intestinal mucosal vasculature that is conserved between humans and mice. We propose that clinical management of intestinal varices, should include assessment of a functional spleen.


Assuntos
Vasos Sanguíneos/anormalidades , Proteínas de Homeodomínio/genética , Intestinos/irrigação sanguínea , Mutação , Organogênese/genética , Receptores de Laminina/genética , Proteínas Ribossômicas/genética , Baço/irrigação sanguínea , Fatores de Transcrição/genética , Vasos Sanguíneos/metabolismo , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Humanos , Masculino , Linhagem , Análise de Sequência de DNA , Sequenciamento do Exoma
14.
Plant J ; 98(3): 465-478, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30657229

RESUMO

Inflorescence architecture is diverse in angiosperms, and is mainly determined by the arrangement of the branches and flowers, known as phyllotaxy. In rice (Oryza sativa), the main inflorescence axis, called the rachis, generates primary branches in a spiral phyllotaxy, and flowers (spikelets) are formed on these branches. Here, we have studied a classical mutant, named verticillate rachis (ri), which produces branches in a partially whorled phyllotaxy. Gene isolation revealed that RI encodes a BELL1-type homeodomain transcription factor, similar to Arabidopsis PENNYWISE/BELLRINGER/REPLUMLESS, and is expressed in the specific regions within the inflorescence and branch meristems where their descendant meristems would soon initiate. Genetic combination of an ri homozygote and a mutant allele of RI-LIKE1 (RIL1) (designated ri ril1/+ plant), a close paralog of RI, enhanced the ri inflorescence phenotype, including the abnormalities in branch phyllotaxy and rachis internode patterning. During early inflorescence development, the timing and arrangement of primary branch meristem (pBM) initiation were disturbed in both ri and ri ril1/+ plants. These findings suggest that RI and RIL1 were involved in regulating the phyllotactic pattern of the pBMs to form normal inflorescences. In addition, both RI and RIL1 seem to be involved in meristem maintenance, because the ri ril1 double-mutant failed to establish or maintain the shoot apical meristem during embryogenesis.


Assuntos
Inflorescência/embriologia , Inflorescência/metabolismo , Meristema/embriologia , Meristema/metabolismo , Oryza/embriologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Inflorescência/genética , Meristema/genética , Oryza/genética , Proteínas de Plantas/genética
15.
BMC Genomics ; 20(1): 317, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31023229

RESUMO

BACKGROUND: WUSCHEL-related homeobox (WOX) genes encoding plant-specific homeobox (HB) transcription factors play important roles in the growth and development of plants. To date, WOX genes has been identified and analyzed in many polyploids (such as cotton and tobacco), but the evolutionary analysis of them during polyploidization is rare. With the completion of genome sequencing, allotetraploid Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are a good system for studying this question. RESULTS: In this study, 52, 25 and 29 WOX genes were identified in allotetraploid B. napus (2n = 4x = 38, AnCn), the An genome donor B. rapa (2n = 2x = 20, Ar) and the Cn genome donor B. oleracea (2n = 2x = 18, Co), respectively. All identified WOX genes in B. napus and its diploid progenitors were divided into three clades, and these genes were selected to perform gene structure and chromosome location analysis. The results showed that at least 70 and 67% of WOX genes maintained the same gene structure and relative position on chromosomes, respectively, indicating that WOX genes in B. napus were highly conserved at the DNA level during polyploidization. In addition, the analysis of duplicated genes and transposable elements (TEs) near WOX genes showed that whole-genome triplication (WGT) events, segmental duplication and abundant TEs played important roles in the expansion of the WOX gene family in B. napus. Moreover, the analysis of the expression profiles of WOX gene pairs with evolutionary relationships suggested that the WOX gene family may have changed at the transcriptional regulation level during polyploidization. CONCLUSIONS: The results of this study increased our understanding of the WOX genes in B. napus and its diploid progenitors, providing a rich resource for further study of WOX genes in these species. In addition, the changes in WOX genes during the process of polyploidization were discussed from the aspects of gene number, gene structure, gene relative location and gene expression, which provides a reference for future polyploidization analysis.


Assuntos
Brassica napus/genética , Genoma de Planta , Proteínas de Homeodomínio/genética , Mapeamento Cromossômico , Elementos de DNA Transponíveis/genética , Diploide , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/classificação , Família Multigênica , Filogenia , Poliploidia
16.
Biochem Biophys Res Commun ; 516(3): 851-857, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31266633

RESUMO

A number of homeobox genes are implicated in the malignancy of various cancers. Here, we investigated the role of the homeobox gene SIX4 in non-small-cell lung cancer (NSCLC). The sine oculis homeobox (SIX4) gene was found to be highly expressed at both mRNA and protein levels in NSCLC tumor tissues as compared with matching normal counterparts. In this study, the SIX4 gene of two human NSCLC cell lines (A549 and PC9) was overexpressed or silenced using the lentiviral system. We evaluated the malignancy-associated phenotype of transfected cells, which demonstrated that exogenous expression of the SIX4 gene greatly enhanced the proliferation, migration, and invasion of NSCLC cells. The opposite was true in the SIX4-silenced cells. Transcriptomic profiling analysis revealed that the SIX4 gene modulated the expression of hundreds of downstream target genes in a cell context-dependent manner. Most notably, the SIX4 gene controls the expression of crucial genes with evidently oncogenic function. We conclude that SIX4 plays an oncogenic role and may be potentially utilized as a diagnostic and therapeutic marker for NSCLC.


Assuntos
Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Neoplasias Pulmonares/genética , Proteínas de Neoplasias/genética , Transativadores/genética , Células A549 , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Perfilação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Homeodomínio/agonistas , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/metabolismo , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Proteínas de Neoplasias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Transativadores/agonistas , Transativadores/antagonistas & inibidores , Transativadores/metabolismo
17.
Development ; 143(19): 3459-3469, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27578796

RESUMO

Leucine twenty homeobox (LEUTX) is a paired (PRD)-like homeobox gene that is expressed almost exclusively in human embryos during preimplantation development. We previously identified a novel transcription start site for the predicted human LEUTX gene based on the transcriptional analysis of human preimplantation embryos. The novel variant encodes a protein with a complete homeodomain. Here, we provide a detailed description of the molecular cloning of the complete homeodomain-containing LEUTX Using a human embryonic stem cell overexpression model we show that the complete homeodomain isoform is functional and sufficient to activate the transcription of a large proportion of the genes that are upregulated in human embryo genome activation (EGA), whereas the previously predicted partial homeodomain isoform is largely inactive. Another PRD-like transcription factor, DPRX, is then upregulated as a powerful repressor of transcription. We propose a two-stage model of human EGA in which LEUTX acts as a transcriptional activator at the 4-cell stage, and DPRX as a balancing repressor at the 8-cell stage. We conclude that LEUTX is a candidate regulator of human EGA.


Assuntos
Blastocisto/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/metabolismo , Isoformas de Proteínas/metabolismo , Animais , Linhagem Celular , Ensaio de Desvio de Mobilidade Eletroforética , Técnica Indireta de Fluorescência para Anticorpo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Reação em Cadeia da Polimerase , Isoformas de Proteínas/genética
18.
Appl Microbiol Biotechnol ; 103(5): 2251-2262, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30631896

RESUMO

Conidiation capacity and conidial quality are very important for the production and application of mycopesticides. Most filamentous ascomycetous fungi have two distinct patterns of conidiation. Conidiation through microcycle conidiation proceeds to more rapidly achieve a maximum of conidial yield than normal conidiation and hence is of greater merit for exploitation in mass production of fungal insect pathogens, such as Metarhizium acridum. In this study, the mechanism underlying the conidiation pattern shift in M. acridum was explored by characterization of the fungal homeobox gene MaH1. MaH1 was evidently localized to the nuclei of hyphae and transcriptionally expressed at a maximal level when conidiation began. Intriguingly, deletion of MaH1 in M. acridum resulted in a shift of normal conidiation to microcycle conidiation on one-quarter strength Sabouraud's dextrose agar medium, and hence accelerated conidiation and increased conidial yield. In the deletion mutant, moreover, conidia became larger in size and hyphae cells were shorter in length while conidial virulence and stress tolerance were not altered. As revealed by digital gene expression profiling, MaH1 controlled the shift of conidiation patterns by mediating transcription of a set of genes related to hyphal growth, cell differentiation, conidiation, and some important signaling pathways. These findings indicate that MaH1 and its downstream genes can be exploited to increase the conidial yield for more efficient production of mycopesticides.


Assuntos
Agentes de Controle Biológico/metabolismo , Genes Homeobox/genética , Insetos/microbiologia , Metarhizium/genética , Metarhizium/metabolismo , Controle Biológico de Vetores/métodos , Esporos Fúngicos/crescimento & desenvolvimento , Sequência de Aminoácidos/genética , Animais , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/genética , Hifas/crescimento & desenvolvimento , Inseticidas/farmacologia , Esporos Fúngicos/genética
19.
Int J Mol Sci ; 20(15)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349607

RESUMO

Molecular mechanisms governing cell fate decision events in bone marrow mesenchymal stromal cells (MSC) are still poorly understood. Herein, we investigated the homeobox gene Prep1 as a candidate regulatory molecule, by adopting Prep1 hypomorphic mice as a model to investigate the effects of Prep1 downregulation, using in vitro and in vivo assays, including the innovative single cell RNA sequencing technology. Taken together, our findings indicate that low levels of Prep1 are associated to enhanced adipogenesis and a concomitant reduced osteogenesis in the bone marrow, suggesting Prep1 as a potential regulator of the adipo-osteogenic differentiation of mesenchymal stromal cells. Furthermore, our data suggest that in vivo decreased Prep1 gene dosage favors a pro-adipogenic phenotype and induces a "browning" effect in all fat tissues.


Assuntos
Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Adipogenia/genética , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/metabolismo , Animais , Medula Óssea/diagnóstico por imagem , Medula Óssea/metabolismo , Diferenciação Celular/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/metabolismo , Camundongos , Osteogênese/genética , Análise de Célula Única , Microtomografia por Raio-X
20.
Dev Dyn ; 247(11): 1199-1210, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30311321

RESUMO

BACKGROUND: The retinal homeobox (rx/rax) gene is a transcription factor expressed in the developing eye field that is necessary for normal eye development. rax is necessary for retinal specification and stem cell development. The genetic program of early retinal development, including rax expression, can be induced in naïve ectoderm by activation of insulin-like growth factor (IGF) signaling. We have undertaken a microarray-based approach to identify rax-dependent IGF-induced genes. RESULTS: We identified 21 IGF-induced genes that exhibit at least a two-fold decrease in expression when rax expression is knocked down. Ten of these genes were expressed in the developing eye, eight were expressed in the ciliary marginal zone of the mature tadpole retina, and four could significantly rescue the rax knockdown phenotype. One of these, the nei endonuclease VIII-like 3 (neil3) gene, rescued the rax knockdown phenotype to a remarkable degree. We found that neil3 is necessary for normal retinal lamination and retinal neuron differentiation. CONCLUSIONS: We have identified neil3 as a component of the rax genetic pathway necessary for normal retinal progenitor cell development. neil3 is involved in the base excision DNA repair pathway, suggesting that this pathway is essential for normal rax-dependent progenitor cell development in the mature retina. Developmental Dynamics 247:1199-1210, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Proteínas do Olho/genética , N-Glicosil Hidrolases/genética , Proteínas de Xenopus/genética , Animais , Proteínas do Olho/análise , Proteínas de Homeodomínio/genética , Larva/crescimento & desenvolvimento , Análise Serial de Proteínas , Retina/química , Retina/citologia , Células-Tronco , Proteínas de Xenopus/análise , Xenopus laevis/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA