Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 68(4): 786-796.e6, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149599

RESUMO

Autophagy allows the degradation of cytosolic endogenous and exogenous material in the lysosome. Substrates are engulfed by double-membrane vesicles, coined autophagosomes, which subsequently fuse with lysosomes. Depending on the involvement of specific receptor proteins, autophagy occurs in a selective or nonselective manner. While this process is well understood at the level of bulky cargo such as mitochondria and bacteria, we know very little about individual proteins and protein complexes that are engulfed and degraded by autophagy. In contrast to the critical role of autophagy in balancing proteostasis, our current knowledge of the autophagic degradome is very limited. Here, we combined proximity labeling with quantitative proteomics to systematically map the protein inventory of autophagosomes. Using this strategy, we uncovered a basal, housekeeping mitophagy pathway that involves piecemeal degradation of mitochondrial proteins in a LC3C- and p62-dependent manner and contributes to mitochondrial homeostasis maintenance when cells rely on oxidative phosphorylation.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Mitofagia/fisiologia , Fosforilação Oxidativa , Fagossomos/metabolismo , Proteólise , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Fagossomos/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
Cell Mol Life Sci ; 80(2): 56, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36729310

RESUMO

In macroautophagy, the autophagosome (AP) engulfs portions of cytoplasm to allow their lysosomal degradation. AP formation in humans requires the concerted action of the ATG12 and LC3/GABARAP conjugation systems. The ATG12-ATG5-ATG16L1 or E3-like complex (E3 for short) acts as a ubiquitin-like E3 enzyme, promoting LC3/GABARAP proteins anchoring to the AP membrane. Their role in the AP expansion process is still unclear, in part because there are no studies comparing six LC3/GABARAP family member roles under the same conditions, and also because the full human E3 was only recently available. In the present study, the lipidation of six members of the LC3/GABARAP family has been reconstituted in the presence and absence of E3, and the mechanisms by which E3 and LC3/GABARAP proteins participate in vesicle tethering and fusion have been investigated. In the absence of E3, GABARAP and GABARAPL1 showed the highest activities. Differences found within LC3/GABARAP proteins suggest the existence of a lipidation threshold, lower for the GABARAP subfamily, as a requisite for tethering and inter-vesicular lipid mixing. E3 increases and speeds up lipidation and LC3/GABARAP-promoted tethering. However, E3 hampers LC3/GABARAP capacity to induce inter-vesicular lipid mixing or subsequent fusion, presumably through the formation of a rigid scaffold on the vesicle surface. Our results suggest a model of AP expansion in which the growing regions would be areas where the LC3/GABARAP proteins involved should be susceptible to lipidation in the absence of E3, or else a regulatory mechanism would allow vesicle incorporation and phagophore growth when E3 is present.


Assuntos
Autofagia , Proteínas Associadas aos Microtúbulos , Humanos , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Autofagossomos/metabolismo , Lipídeos , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 12 Relacionada à Autofagia , Proteína 5 Relacionada à Autofagia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA