Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 361: 121194, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38820794

RESUMO

This study provides a comprehensive analysis of the potential impact of hydrothermal pretreatment (HTP) on municipal thickened waste-activated sludge (TWAS) and its integration with anaerobic digestion (AD). The research demonstrates that HTP conditions (170 °C, 3 bars for 30 min) can increase the solubilization of macromolecular organic compounds by 41%, which enhances biodegradability in semicontinuous bioreactors. This treatment also results in a 50% reduction in chemical oxygen demand (COD) and a 63% increase in the destruction of volatile solids (VS). The combination of HTP with AD significantly boosts methane yields by 51%, reaching 176 ml/g COD, and improves the digestate dewaterability, doubling the solid content in the dewatered cake. However, a higher polymer dose is required compared to conventional AD. Microbial community analysis correlates the observed performance and alterations; it indicates that HTP enhances resilience to stress conditions such as ammonia toxicity. This comprehensive study provides valuable insights into the transition from wastewater treatment plants (WWTPs) to resource recovery facilities (RRF) in line with circular economy principles.


Assuntos
Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Análise da Demanda Biológica de Oxigênio , Biodegradação Ambiental , Metano , Águas Residuárias/química
2.
J Environ Manage ; 365: 121515, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38943753

RESUMO

The aim of the present study was to assess the effect of hydrothermal pretreatment on the solubilization and anaerobic digestion (AD) of Scenedesmus sp. biomass. At first, the microalgae was cultivated in 5% fresh leachate (FL) to recover nutrients such as nitrogen and phosphorus. Scenedesmus sp. grown in 5% FL obtained 100%, 77% and 97% removal efficiency of ammonium nitrogen (NH4+ - N), total Kjeldahl nitrogen (TKN) and phosphate phosphorous (PO43- -P), respectively. In the following step, the hydrothermal pretreatment of Scenedesmus sp. biomass was carried out at 120, 150 and 170 °C and retention time of 0, 30 and 60 min to evaluate its solubilization and biogas production through AD in batch test. Soluble chemical oxygen demand (sCOD) increased by 260% compared to untreated microalgae at 170 °C for 60 min. In comparison to untreated microalgae, the highest increase in biogas (70%) and methane yield (100%) was observed for 150 °C and 60 min pretreated microalgae as a consequence of hydrothermal pretreatment. Hydrothermal pretreatment has shown effectiveness in enhancing biomass solubilization and increasing biogas yield. Nevertheless, further research at the pilot scale is necessary to thoroughly evaluate the potential and feasibility of hydrothermal pretreatment for full-scale implementation.


Assuntos
Biocombustíveis , Biomassa , Microalgas , Nitrogênio , Fósforo , Scenedesmus , Scenedesmus/metabolismo , Microalgas/metabolismo , Fósforo/química , Análise da Demanda Biológica de Oxigênio , Anaerobiose , Metano/metabolismo , Poluentes Químicos da Água , Solubilidade
3.
Environ Res ; 216(Pt 1): 114436, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183791

RESUMO

Agro-waste having lignocellulosic biomass is considered most effective (heating value 16 MJ/kg) for energy production through anaerobic digestion (AD). However, recalcitrant lignocellulosic fraction in agro-waste obstructs its biotransformation and is a rate-limiting step of the process. This study investigated the effects of hydrothermal and thermal-alkaline pretreatment on anaerobic co-digestion of wheat straw (WS). The hydrothermal pretreatment of WS revealed that 60 min was the best pretreatment time to achieve the highest substrate solubilization. It was employed for thermal-alkali pretreatment at variable temperatures and NaOH doses. Thermal-alkali pretreatment at 125°C-7% NaOH shows the highest (34%) biogas yield of 662 mL/gVS, followed by 646 mL/gVS biogas yield at 150°C-1% NaOH assay (31% higher) over control. Although the 125°C-7% NaOH assay achieved the highest biogas yield, the 150°C-1% NaOH assay was found more feasible considering the cost of a 6% higher chemical used in the earlier assay. The thermal-alkali pretreatment was observed to reduce the formation of recalcitrant compounds (HMF, Furfural) and increase the buffering capacity of the slurry over hydrothermal pretreatment. Principal component analysis (PCA) of the various pretreatment and AD operational parameters was carried out to study their in-depth correlation. Moreover, a kinetic study of the experimental data was performed to observe the biodegradation trend and compare it with the Modified Gompertz (MG) and First Order (FO) models.


Assuntos
Biocombustíveis , Triticum , Triticum/química , Anaerobiose , Álcalis , Metano , Hidróxido de Sódio , Digestão
4.
Environ Res ; 205: 112537, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34906588

RESUMO

Hydrothermal treatment (HT) is a pragmatic approach for pretreatment of kitchen waste (KW). This work investigated the effect of hydrothermal pretreatment (HTP) on the deoiling, desalting and liquid substances transformation of KW. The orthogonal test method was used to study the effects of three factors at five levels, including solid to liquid ratio (A1-5), heating time (B1-5) and hydrothermal temperature (C1-5). The results indicated that the floatable oil content was improved significantly after HTP. The highest floatable oil content was 84.54 mL/kg at the hydrothermal condition of 1/1.5, 20 min and 100 °C, which was 2.42 times higher than the control. The maximum desalination ratio (92.66%) was at A5B1C5 (1/2.5, 5 min, 100 °C), which was 4.48 times higher than control group (No.0) (20.67%). The VFAs concentration was the highest (11441.05 mg/kg) at 1/2.5, 5 min and 100 °C, which increased by 711.03% compared to the No.0 (1410.78 mg/kg). In addition, the maximum TOC value was obtained at 53530.84 mg/kg. After HTP, the acetic acid and butyric acid concentrations of the liquid phase increased, while the ethanol concentration decreased. The contents of T,NH4+-N and organic nitrogen in the liquid phase of the HTP system increased, while NO3--N remained at a low level (4.96-20.48 mg/kg). The range and variance analysis showed that the temperature had the greatest effect on the deoiling and the liquid substances transformation of KW among these three factors, followed by solid to liquid ratio and heating time. Based on the orthogonal experiment, the optimal parameters for KW deoiling were A3 (1/1.5), B4 (25 min) and C5 (100 °C). This work provided a reference for the KW deoiling and hence improve the efficient utilization of KW.


Assuntos
Temperatura
5.
Molecules ; 27(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35745010

RESUMO

The development of green technologies and bioprocesses such as solid-state fermentation (SSF) is important for the processing of macroalgae biomass and to reduce the negative effect of Sargassum spp. on marine ecosystems, as well as the production of compounds with high added value such as fungal proteins. In the present study, Sargassum spp. biomass was subjected to hydrothermal pretreatments at different operating temperatures (150, 170, and 190 °C) and pressures (3.75, 6.91, and 11.54 bar) for 50 min, obtaining a glucan-rich substrate (17.99, 23.86, and 25.38 g/100 g d.w., respectively). The results indicate that Sargassum pretreated at a pretreatment temperature of 170 °C was suitable for fungal growth. SSF was performed in packed-bed bioreactors, obtaining the highest protein content at 96 h (6.6%) and the lowest content at 72 h (4.6%). In contrast, it was observed that the production of fungal proteins is related to the concentration of sugars. Furthermore, fermentation results in a reduction in antinutritional elements, such as heavy metals (As, Cd, Pb, Hg, and Sn), and there is a decrease in ash content during fermentation kinetics. Finally, this work shows that Aspergillus oryzae can assimilate nutrients found in the pretreated Sargassum spp. to produce fungal proteins as a strategy for the food industry.


Assuntos
Sargassum , Biomassa , Reatores Biológicos/microbiologia , Ecossistema , Fermentação , Proteínas Fúngicas
6.
J Appl Microbiol ; 130(5): 1582-1591, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32544271

RESUMO

AIMS: Oily sludge is a kind of mixture that is extremely harmful to the environment. Anaerobic digestion (AD) is a commonly used method for biodegrading oily sludge. However, the AD treatment cycle is usually long and inefficient. Here, we developed an approach to improve the degradation rate of oily sludge by integrating subcritical hydrothermal pretreatment (SHP) and AD. METHODS AND RESULTS: First, using SHP, the hydrocarbon compounds with long carbon chains that make up oil sludge were decomposed into hydrocarbons with short carbon chains, which are conducive to microbial decomposition and transformation. Then, AD was performed using a variety of temperature and solid-liquid ratio parameters. The results showed that the degradation ratio of oily sludge was higher when SHP was combined with AD than when no pre-treatment was performed. Optimal degradation was reached by performing SHP to obtain CHS8, then performing AD at 30°C using a 1:5 solid-liquid ratio. Under these conditions, maximum degradation ratios of 69·00% of TOC, 59·02% of COD, 44·68% of ammonia and 54·24% of oil content were reached. CONCLUSIONS: In conclusion, after SHP with 8% dilute sulphuric acid, most of the macromolecular hydrocarbons in the oily sludge were converted into smaller molecules, which facilitated subsequent microbial decomposition. The results showed that this combination of SHP and AD processes promotes more efficient degradation than a conventional single AD process without any hydrothermal pretreatment. SIGNIFICANCE AND IMPACT OF THE STUDY: Our experiments provide technical support for enhancing the rapid degradation of oily sludge.


Assuntos
Petróleo/metabolismo , Esgotos , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Biodegradação Ambiental , Hidrocarbonetos/química , Hidrocarbonetos/metabolismo , Esgotos/química , Temperatura
7.
Molecules ; 27(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35011258

RESUMO

Hydrothermal pretreatment (HP) is an eco-friendly process for deconstructing lignocellulosic biomass (LCB) that plays a key role in ensuring the profitability of producing biofuels or bioproducts in a biorefinery. At the laboratory scale, HP is usually carried out under non-isothermal regimes with poor temperature control. In contrast, HP is usually carried out under isothermal conditions at the commercial scale. Consequently, significant discrepancies in the values of polysaccharide releases are found in the literature. Therefore, laboratory-scale HP data are not trustworthy if scale-up or retrofitting of HP at larger scales is required. This contribution presents the results of laboratory-scale batch HP for wheat straw in terms of xylan and glucan release that were obtained with rigorous temperature control under isothermal conditions during the reaction stage. The heating and cooling stages were carried out with fast rates (43 and -40 °C/min, respectively), minimizing non-isothermal reaction periods. Therefore, the polysaccharide release results can be associated exclusively with the isothermic reaction stage and can be considered as a reliable source of information for HP at commercial scales. The highest amount of xylan release was 4.8 g/L or 43% obtained at 180 °C and 20 min, while the glucan release exhibited a maximum of 1.2 g/L or 5.5%. at 160 °C/180 °C and 30 min.


Assuntos
Fermentação , Polissacarídeos/biossíntese , Temperatura , Triticum/química , Biomassa , Celulose/química , Glucanos/biossíntese , Calefação , Hidrólise , Cinética , Xilanos/biossíntese
8.
Waste Manag Res ; 38(5): 546-553, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31973652

RESUMO

Anaerobic digestion (AD) is generally considered to be an economic and environmentally friendly technology for treating waste activated sludge, but has some limitations, such as the time it takes for the sludge to be digested and also the ineffectiveness of degrading the solids. Various pre-treatment technologies have been suggested to overcome these limitations and to improve the biogas production rate by enhancing the hydrolysis of organic matter. This paper studies the use of hydrothermal pre-treatment (HTP) for a food waste and sewage sludge mixture (FW-SS mixture) as pre-treatment of co-digestion. The results of the capillary suction time, time to filter, and particle size decreased with increasing HTP temperature. These results of the assessment that was conducted in this study confirm that the HTP process indeed modifies the physical properties of the FW-SS mixture to enhance the solubilization of organic solids. A maximum increase in biogas production of 50% is achieved with a HTP temperature of 140oC. These findings show that to achieve high conversion efficiency, an accurately designed pre-treatment step must be included in the overall AD process for wastewater treatment.


Assuntos
Eliminação de Resíduos , Esgotos , Anaerobiose , Biocombustíveis , Reatores Biológicos , Alimentos , Metano , Eliminação de Resíduos Líquidos
9.
Appl Microbiol Biotechnol ; 101(4): 1769-1779, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28025673

RESUMO

In this study Salicornia sinus-persica, a succulent halophyte was assessed for its potential to be used as a feedstock for bioethanol production. For such succulent, salty, green biomasses, direct fractionation and fermentation allow for water preservation in the process. Fresh biomass of S. sinus-persica was collected and split into two fractions by wet fractionation; liquid (juice) and solid (pulp). Sugar contents were found to be 1.0-1.5% for the juice fraction and 50% (w/w) for the fresh pulp. Direct fermentation of the juice using Saccharomyces cerevisiae showed no salt inhibition of the yeast and ethanol yields of ~70% were achieved. A pretreatment study was carried out for the pulp fraction applying mild hydrothermal pretreatment. Cellulose convertibility was found to be significantly higher for severity factors above 2.00, and the highest ethanol yield (76.91 ± 3.03%) was found at process severity of 3.06 (170 °C, 10 min).


Assuntos
Biomassa , Plantas Tolerantes a Sal/metabolismo , Chenopodiaceae/metabolismo , Etanol/metabolismo , Fermentação/fisiologia
10.
Prep Biochem Biotechnol ; 46(4): 406-9, 2016 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-26458021

RESUMO

In this study, a new method for isolation of polyphenols (PP) from spent coffee grounds (SCG) and coffee silverskin (CS) is described. The method consisted of a mild hydrothermal pretreatment at 120°C, for 20 min, using a liquid-to-solid ratio of 20 mL/g. PP (determined as gallic acid equivalents, GAE) were the most abundant components in the extracts produced by this method, corresponding to 32.92 mgGAE/gSCG and 19.17 mgGAE/gCS, among which flavonoids corresponded to 8.29 and 2.73 mg quercetin equivalents/g of SCG and CS, respectively. Both extracts presented antioxidant activity but the results were higher for SCG extract, probably due to the highest content of PP present. Negligible effects (less than 1% solubilization) were caused by the hydrothermal pretreatment on cellulose, hemicellulose, and protein fractions of these materials. Some mineral elements were present in the extracts, with potassium being the most abundant. Hydrothermal pretreatment under mild conditions was demonstrated to be an efficient method to recover antioxidant PP from coffee residues.


Assuntos
Café/química , Polifenóis/isolamento & purificação
11.
Biotechnol Bioeng ; 111(3): 485-92, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24037461

RESUMO

In dilute acid pretreatment of lignocellulosic biomass, lignin has been shown to form droplets that deposit on the cellulose surface and retard enzymatic digestion of cellulose (Donohoe et al., 2008; Selig et al., 2007). However, studies of this nature are limited for hydrothermal pretreatment, with the result that the corresponding mechanisms that inhibit cellulosic enzymes are not well understood. In this study, scanning electron microscope (SEM) and wet chemical analysis of solids formed by hydrothermal pretreatment of a mixture of Avicel cellulose and poplar wood showed that lignin droplets from poplar wood relocated onto the Avicel surface. In addition, nuclear magnetic resonance (NMR) showed higher S/G ratios in deposited lignin than the initial lignin in poplar wood. Furthermore, the lignin droplets deposited on Avicel significantly impeded cellulose hydrolysis. A series of tests confirmed that blockage of the cellulose surface by lignin droplets was the main cause of cellulase inhibition. The results give new insights into the fate of lignin in hydrothermal pretreatment and its effects on enzymatic hydrolysis.


Assuntos
Celulases/metabolismo , Celulose/química , Celulose/metabolismo , Lignina/química , Lignina/metabolismo , Celulose/efeitos da radiação , Celulose/ultraestrutura , Temperatura Alta , Hidrólise , Lignina/efeitos da radiação , Lignina/ultraestrutura , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Populus , Madeira
12.
J Food Sci ; 89(5): 2567-2580, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38532713

RESUMO

Although the addition of bran to bread makes it healthier and more functional, it brings with it some technological problems. One way to eliminate these problems is hydrothermal pretreatment of wheat bran. In this study, five different ratios (10%, 20%, 30%, 50%, and 100%) of hydrolysates from hydrothermal pretreatment of wheat bran (150°C, 30 min) were substituted with dough-kneading water during dough kneading for bread making. The physical, chemical, functional, textural and important starch fractions of the bread produced were determined. The addition of hydrolysate in different amounts to the dough-kneading water resulted in similar physical properties (height, specific volume, and crust color) as the control bread. While the addition of hydrolysate decreased the hardness of the breads, it positively improved important starch fractions (increasing the amount of slowly digestible starch and decreasing the amount of rapidly digestible starch). It also increased antioxidant capacity (iron (III) reducing antioxidant power, ABTS, and DPPH (2,2-diphenyl-1-picrylhydrazyl) and reduced the starch hydrolysis index of the bread. It was shown that the hydrolysate obtained after the hydrothermal treatment of bran could be used in bread making to satisfy the demand for products preferred by consumers from both health and sensory points of view.


Assuntos
Antioxidantes , Pão , Fibras na Dieta , Manipulação de Alimentos , Amido , Pão/análise , Fibras na Dieta/análise , Amido/química , Antioxidantes/farmacologia , Hidrólise , Manipulação de Alimentos/métodos , Triticum/química , Farinha/análise , Dureza
13.
Polymers (Basel) ; 16(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38475390

RESUMO

This study presents a novel approach for biorefining oat husks into furfural, leveraging a unique pilot-scale setup. Unlike conventional furfural manufacturing processes, which often result in substantial cellulose degradation and environmental concerns associated with sulfuric acid usage, our method utilizes phosphoric acid as a catalyst to achieve high furfural yield while minimizing cellulose destruction. Drawing on our research conducted in a distinctive pilot-scale environment, we successfully developed and implemented a tailored biorefining process for oat husks. Through meticulous experimentation, we attained a remarkable furfural yield of 11.84% from oven-dried mass, accompanied by a 2.64% yield of acetic acid. Importantly, our approach significantly mitigated cellulose degradation, preserving 88.31% of the cellulose content in oat husks. Existing catalytic (H2SO4) furfural manufacturing processes often lead to substantial cellulose degradation (40-50%) in lignocellulosic leftover during the pretreatment stage. As a result of the research, it was also possible to reduce the destruction of cellulose in the lignocellulose leftover to 11.69% of the output (initial) cellulose of oat husks. This research underscores the feasibility and sustainability of utilizing oat husks as a valuable feedstock for furfural production, highlighting the potential of phosphoric acid as a catalyst in biorefining processes. By showcasing our unique pilot-scale methodology, this study contributes to advancing the field of environmentally friendly biorefining technologies.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38483763

RESUMO

Whether advanced biological waste treatment technologies, such as hydrothermal pretreatment (HTP) integrated anaerobic digestion (AD), could enhance the removal of different antibiotics remains unclear. This study investigated the outcome of antibiotics and methane productivity during pig manure treatment via HTP, AD, and HTP + AD. Results showed improved removal efficiency of sulfadiazine (SDZ), oxytetracycline (OTC), and enrofloxacin (ENR) with increased HTP temperatures (70, 90, 120, 150, and 170 °C). OTC achieved the highest removal efficiency of 86.8% at 170 °C because of its high sensitivity to heat treatment. For AD, SDZ exhibited resistance with a removal efficiency of 52.8%. However, OTC and ENR could be removed completely within 30 days. When HTP was used prior to AD, OTC and ENR could achieve complete removal. However, residual SDZ levels reduced to 20% and 16% at 150 and 170 °C, respectively. The methanogenic potential showed an overall upward trend as the HTP temperature increased. Microbial analysis revealed the antibiotics-induced enrichment of specific microorganisms during AD. Firmicutes were the dominant bacterial phylum, with their abundance positively correlated with the addition of antibiotics. Methanobacterium and Methanosarcina emerged as the dominant archaea that drove methane production during AD. Thus, HTP can be a potential pretreatment before AD to reduce antibiotic-related risks in manure waste handling.

15.
ACS Appl Mater Interfaces ; 16(22): 28461-28472, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38780280

RESUMO

Sodium-ion batteries (SIBs) are emerging as a viable alternative to lithium-ion batteries, reducing the reliance on scarce transition metals. Converting agricultural biomass into SIB anodes can remarkably enhance sustainability in both the agriculture and battery industries. However, the complex and costly synthesis and unsatisfactory electrochemical performance of biomass-derived hard carbon have hindered its further development. Herein, we employed a hydrothermally assisted carbonization process that converts switchgrass to battery-grade hard carbon capable of efficient Na-ion storage. The hydrothermal pretreatment effectively removed hemicellulose and impurities (e.g., lipids and ashes), creating thermally stable precursors suitable to produce hard carbon via carbonization. The elimination of hemicellulose and impurities contributes to a reduced surface area and lower oxygen content. With the modifications, the initial Coulombic efficiency (ICE) and cycling stability are improved concurrently. The optimized hard carbon showcased a high reversible specific capacity of 313.4 mAh g-1 at 100 mA g-1, a commendable ICE of 84.8%, and excellent cycling stability with a capacity retention of 308.4 mAh g-1 after 100 cycles. In short, this research introduces a cost-effective method for producing anode materials for SIBs and highlights a sustainable pathway for biomass utilization, underscoring mutual benefits for the energy and agricultural sectors.

16.
Bioresour Technol ; 394: 130255, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145767

RESUMO

This study utilizes decision-tree-based models, including Random Forest, XGBoost, artificial neural networks (ANNs), support vector machine regressors, and K nearest neighbors algorithms, to predict sludge solubilization and methane yield in hydrothermal pretreatment (HTP) coupled with anaerobic digestion (AD) processes. Analyzing two decades of published research, we find that ANN models exhibit superior fitting accuracy for solubilization prediction, while decision-tree models excel in methane yield prediction. Pretreatment temperature is identified as pivotal among various variables, and heating time surprisingly emerges as equally significant as holding time for solubilization and surpasses it for methane yield. Contrary to prior expectations, the HTP method's impact on sludge solubilization and AD performance is minimal. This study underscores data-driven models' potential as resource-efficient tools for optimizing advanced AD processes with HTP. Notably, our research spans nearly two decades of lab, pilot, and full-scale studies, offering novel insights not previously explored.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Metano , Temperatura , Reatores Biológicos
17.
Bioresour Technol ; 402: 130797, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705214

RESUMO

High-solid anaerobic digestion of hydrothermal sewage sludge has been developed. In order to upgrade the process by focusing on ammonia inhibition, a simply-equipped stripping system without additional alkali or heat supply was introduced by in situ biogas self-circulation. As the determined limit of total ammonia nitrogen at 1500 mg/L and 1000 mg/L for the mesophilic (MAD) and thermophilic anaerobic digestion (TAD) respectively and stripping rate at 5 L/min, continuous MAD and TAD was conducted in parallel. The stripping system successfully polished up the ammonia inhibition, and methanogenic capability of the TAD was promoted to approximately 90.0 % of the potential. Intermittent stripping mode proved usable. More frequent stripping was inevitable for the TAD as compared to the MAD. Hydraulic retention time below 20 d resulted in failure of the stripping mode due to rapid ammonia generation. Overall, this technology was practical in upgrading high-solid sludge digestion by effective ammonia control.


Assuntos
Amônia , Biocombustíveis , Esgotos , Amônia/metabolismo , Anaerobiose , Temperatura , Metano/metabolismo , Reatores Biológicos
18.
Biotechnol Biofuels Bioprod ; 17(1): 114, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152495

RESUMO

BACKGROUND: Lipids produced using oleaginous yeast cells are an emerging feedstock to manufacture commercially valuable oleochemicals ranging from pharmaceuticals to lipid-derived biofuels. Production of biofuels using oleaginous yeast is a multistep procedure that requires yeast cultivation and harvesting, lipid recovery, and conversion of the lipids to biofuels. The quantitative recovery of the total intracellular lipid from the yeast cells is a critical step during the development of a bioprocess. Their rigid cell walls often make them resistant to lysis. The existing methods include mechanical, chemical, biological and thermochemical lysis of yeast cell walls followed by solvent extraction. In this study, an aqueous thermal pretreatment was explored as a method for lysing the cell wall of the oleaginous yeast Rhodotorula toruloides for lipid recovery. RESULTS: Hydrothermal pretreatment for 60 min at 121 °C with a dry cell weight of 7% (w/v) in the yeast slurry led to a recovery of 84.6 ± 3.2% (w/w) of the total lipids when extracted with organic solvents. The conventional sonication and acid-assisted thermal cell lysis led to a lipid recovery yield of 99.8 ± 0.03% (w/w) and 109.5 ± 1.9% (w/w), respectively. The fatty acid profiles of the hydrothermally pretreated cells and freeze-dried control were similar, suggesting that the thermal lysis of the cells did not degrade the lipids. CONCLUSION: This work demonstrates that hydrothermal pretreatment of yeast cell slurry at 121 °C for 60 min is a robust and sustainable method for cell conditioning to extract intracellular microbial lipids for biofuel production and provides a baseline for further scale-up and process integration.

19.
Waste Manag ; 183: 143-152, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38754182

RESUMO

In the present study, press mud (PM), a major waste by-product from sugar industries, was subjected to hydrothermal pretreatment (HTP) to create resource recovery opportunities. The HTP process was performed with the PM samples in a laboratory scale high pressure batch reactor (capacity = 0.7 L) at 160 °C and 200 °C temperatures (solids content = 5 % and 30 %). The pretreatment resulted in separation of solid and liquid phases which are termed as solid hydrochar (HC) and process water (PW), respectively. High heating value (HHV) of HC was âˆ¼14-18 MJ kg-1, slightly higher than that of PM (14 MJ kg-1). The thermogravimetric analysis showed about 1.5-1.7 times higher heat release from HC burning compared to that observed from combustion of PM. Apart from this, the HC and PM showed no phytotoxicity during germination of mung bean (Vigna radiata). Moreover, the biochemical methane potential test on the PW showed a generation of 167-245 mL biogas per gram of chemical oxygen demand added. Hence, the HTP offers several resource recovery opportunities from PM which may also reduce the risks of environmental degradation.


Assuntos
Temperatura Alta , Água/química , Resíduos Industriais/análise , Biocombustíveis/análise , Análise da Demanda Biológica de Oxigênio , Termogravimetria
20.
Heliyon ; 10(15): e34817, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170138

RESUMO

This study investigates the co-digestion of hydrothermally pretreated empty fruit bunches (EFB) at 190 °C for 5 min (HTP190-EFB) with decanter cake (DC) to improve biogas production in high solid anaerobic digestion (HSAD). The HTP190-EFB exhibited a 67.98 % reduction in total solids, along with the production of 0.89 g/L of sugar, 2.39 g/L of VFA, and 0.56 g/L of furfural in the liquid fraction. Co-digestion of HTP190-EFB with DC at mixing ratios of 5, 10, and 15 %w/v demonstrated improved methane yields and process stability compared to mono-digestion of HTP190-EFB. The highest methane yield of 372.69 mL CH4/g-VS was achieved in the co-digestion with 5 %w/v DC, representing a 15 % increase compared to digestion of HTP190-EFB (324.30 mL CH4/g-VS) alone. Synergistic effects were quantified, with the highest synergistic methane yield of 77.65 mL CH4/g-VS observed in the co-digestion with 5 %w/v DC. Microbial community analysis revealed that co-digestion of hydrothermally pretreated EFB with decanter cake promoted the growth of Clostridium sp., Lactobacillus sp., Fibrobacter sp., Methanoculleus sp., and Methanosarcina sp., contributing to enhanced biogas production compared to mono-digestion of pretreated EFB. Energy balance analysis revealed that co-digestion of HTP190-EFB with DC resulted in a total net energy of 599.95 kW, 52 % higher than mono-digestion of HTP190-EFB (394.62 kW). Economic analysis showed a shorter return on investment for the co-digestion system (0.86 years) compared to the mono-digestion of HTP190-EFB (1.02 years) and raw EFB (2.69 years). The co-digestion of HTP190-EFB with 5 %w/v DC offers a promising approach to optimize methane yield, process stability, and economic feasibility, supporting the palm oil industry for producing renewable energy and sustainable waste management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA