Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 877
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 87: 585-620, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29494239

RESUMO

2-Oxoglutarate (2OG)-dependent oxygenases (2OGXs) catalyze a remarkably diverse range of oxidative reactions. In animals, these comprise hydroxylations and N-demethylations proceeding via hydroxylation; in plants and microbes, they catalyze a wider range including ring formations, rearrangements, desaturations, and halogenations. The catalytic flexibility of 2OGXs is reflected in their biological functions. After pioneering work identified the roles of 2OGXs in collagen biosynthesis, research revealed they also function in plant and animal development, transcriptional regulation, nucleic acid modification/repair, fatty acid metabolism, and secondary metabolite biosynthesis, including of medicinally important antibiotics. In plants, 2OGXs are important agrochemical targets and catalyze herbicide degradation. Human 2OGXs, particularly those regulating transcription, are current therapeutic targets for anemia and cancer. Here, we give an overview of the biochemistry of 2OGXs, providing examples linking to biological function, and outline how knowledge of their enzymology is being exploited in medicine, agrochemistry, and biocatalysis.


Assuntos
Ácidos Cetoglutáricos/metabolismo , Oxigenases/metabolismo , Animais , Biocatálise , Colágeno/biossíntese , Humanos , Hidroxilação , Modelos Biológicos , Modelos Moleculares , Oxirredução , Oxigenases/química , Conformação Proteica , Especificidade por Substrato
2.
EMBO J ; 43(6): 931-955, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360997

RESUMO

The Von Hippel-Lindau (VHL) protein, which is frequently mutated in clear-cell renal cell carcinoma (ccRCC), is a master regulator of hypoxia-inducible factor (HIF) that is involved in oxidative stresses. However, whether VHL possesses HIF-independent tumor-suppressing activity remains largely unclear. Here, we demonstrate that VHL suppresses nutrient stress-induced autophagy, and its deficiency in sporadic ccRCC specimens is linked to substantially elevated levels of autophagy and correlates with poorer patient prognosis. Mechanistically, VHL directly binds to the autophagy regulator Beclin1, after its PHD1-mediated hydroxylation on Pro54. This binding inhibits the association of Beclin1-VPS34 complexes with ATG14L, thereby inhibiting autophagy initiation in response to nutrient deficiency. Expression of non-hydroxylatable Beclin1 P54A abrogates VHL-mediated autophagy inhibition and significantly reduces the tumor-suppressing effect of VHL. In addition, Beclin1 P54-OH levels are inversely correlated with autophagy levels in wild-type VHL-expressing human ccRCC specimens, and with poor patient prognosis. Furthermore, combined treatment of VHL-deficient mouse tumors with autophagy inhibitors and HIF2α inhibitors suppresses tumor growth. These findings reveal an unexpected mechanism by which VHL suppresses tumor growth, and suggest a potential treatment for ccRCC through combined inhibition of both autophagy and HIF2α.


Assuntos
Proteína Beclina-1 , Carcinoma de Células Renais , Neoplasias Renais , Proteína Supressora de Tumor Von Hippel-Lindau , Animais , Humanos , Camundongos , Autofagia , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Hidroxilação , Neoplasias Renais/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(13): e2321242121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38507448

RESUMO

All biological hydroxylation reactions are thought to derive the oxygen atom from one of three inorganic oxygen donors, O2, H2O2, or H2O. Here, we have identified the organic compound prephenate as the oxygen donor for the three hydroxylation steps of the O2-independent biosynthetic pathway of ubiquinone, a widely distributed lipid coenzyme. Prephenate is an intermediate in the aromatic amino acid pathway and genetic experiments showed that it is essential for ubiquinone biosynthesis in Escherichia coli under anaerobic conditions. Metabolic labeling experiments with 18O-shikimate, a precursor of prephenate, demonstrated the incorporation of 18O atoms into ubiquinone. The role of specific iron-sulfur enzymes belonging to the widespread U32 protein family is discussed. Prephenate-dependent hydroxylation reactions represent a unique biochemical strategy for adaptation to anaerobic environments.


Assuntos
Ácidos Cicloexanocarboxílicos , Cicloexenos , Escherichia coli , Ubiquinona , Hidroxilação , Ubiquinona/metabolismo , Escherichia coli/metabolismo , Oxigênio/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(37): e2408104121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39231207

RESUMO

Prolyl-hydroxylation is an oxygen-dependent posttranslational modification (PTM) that is known to regulate fibril formation of collagenous proteins and modulate cellular expression of hypoxia-inducible factor (HIF) α subunits. However, our understanding of this important but relatively rare PTM has remained incomplete due to the lack of biophysical methodologies that can directly measure multiple prolyl-hydroxylation events within intrinsically disordered proteins. Here, we describe a real-time 13C-direct detection NMR-based assay for studying the hydroxylation of two evolutionarily conserved prolines (P402 and P564) simultaneously in the intrinsically disordered oxygen-dependent degradation domain of hypoxic-inducible factor 1α by exploiting the "proton-less" nature of prolines. We show unambiguously that P564 is rapidly hydroxylated in a time-resolved manner while P402 hydroxylation lags significantly behind that of P564. The differential hydroxylation rate was negligibly influenced by the binding affinity to prolyl-hydroxylase enzyme, but rather by the surrounding amino acid composition, particularly the conserved tyrosine residue at the +1 position to P564. These findings support the unanticipated notion that the evolutionarily conserved P402 seemingly has a minimal impact in normal oxygen-sensing pathway.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Proteínas Intrinsicamente Desordenadas , Prolina , Hidroxilação , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Prolina/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Humanos , Processamento de Proteína Pós-Traducional , Espectroscopia de Ressonância Magnética/métodos
5.
EMBO Rep ; 25(8): 3506-3531, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38907027

RESUMO

Extracellular matrix (ECM) is a major component of the tumor environment, promoting the establishment of a pro-invasive behavior. Such environment is supported by both tumor- and stromal-derived metabolites, particularly lactate. In prostate cancer (PCa), cancer-associated fibroblasts (CAFs) are major contributors of secreted lactate, able to impact on metabolic and transcriptional regulation in cancer cells. Here, we describe a mechanism by which CAF-secreted lactate promotes in PCa cells the expression of genes coding for the collagen family. Lactate-exploiting PCa cells rely on increased α-ketoglutarate (α-KG) which activates the α-KG-dependent collagen prolyl-4-hydroxylase (P4HA1) to support collagen hydroxylation. De novo synthetized collagen plays a signaling role by activating discoidin domain receptor 1 (DDR1), supporting stem-like and invasive features of PCa cells. Inhibition of lactate-induced collagen hydroxylation and DDR1 activation reduces the metastatic colonization of PCa cells. Overall, these results provide a new understanding of the link between collagen remodeling/signaling and the nutrient environment exploited by PCa.


Assuntos
Colágeno , Matriz Extracelular , Ácido Láctico , Metástase Neoplásica , Neoplasias da Próstata , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Humanos , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Ácido Láctico/metabolismo , Linhagem Celular Tumoral , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Animais , Camundongos , Microambiente Tumoral , Ácidos Cetoglutáricos/metabolismo , Hidroxilação
6.
Proc Natl Acad Sci U S A ; 120(23): e2219419120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252972

RESUMO

Prolyl hydroxylase domain (PHD) enzymes change HIF activity according to oxygen signal; whether it is regulated by other physiological conditions remains largely unknown. Here, we report that PHD3 is induced by fasting and regulates hepatic gluconeogenesis through interaction and hydroxylation of CRTC2. Pro129 and Pro615 hydroxylation of CRTC2 following PHD3 activation is necessary for its association with cAMP-response element binding protein (CREB) and nuclear translocation, and enhanced binding to promoters of gluconeogenic genes by fasting or forskolin. CRTC2 hydroxylation-stimulated gluconeogenic gene expression is independent of SIK-mediated phosphorylation of CRTC2. Liver-specific knockout of PHD3 (PHD3 LKO) or prolyl hydroxylase-deficient knockin mice (PHD3 KI) show attenuated fasting gluconeogenic genes, glycemia, and hepatic capacity to produce glucose during fasting or fed with high-fat, high-sucrose diet. Importantly, Pro615 hydroxylation of CRTC2 by PHD3 is increased in livers of fasted mice, diet-induced insulin resistance or genetically obese ob/ob mice, and humans with diabetes. These findings increase our understanding of molecular mechanisms linking protein hydroxylation to gluconeogenesis and may offer therapeutic potential for treating excessive gluconeogenesis, hyperglycemia, and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Humanos , Camundongos , Animais , Glucose/metabolismo , Prolina/metabolismo , Hidroxilação , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Gluconeogênese/fisiologia , Prolil Hidroxilases/metabolismo , Hepatócitos/metabolismo , Camundongos Endogâmicos C57BL
7.
Proc Natl Acad Sci U S A ; 120(20): e2214942120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155842

RESUMO

Aberrant accumulation of succinate has been detected in many cancers. However, the cellular function and regulation of succinate in cancer progression is not completely understood. Using stable isotope-resolved metabolomics analysis, we showed that the epithelial mesenchymal transition (EMT) was associated with profound changes in metabolites, including elevation of cytoplasmic succinate levels. The treatment with cell-permeable succinate induced mesenchymal phenotypes in mammary epithelial cells and enhanced cancer cell stemness. Chromatin immunoprecipitation and sequence analysis showed that elevated cytoplasmic succinate levels were sufficient to reduce global 5-hydroxymethylcytosinene (5hmC) accumulation and induce transcriptional repression of EMT-related genes. We showed that expression of procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2) was associated with elevation of cytoplasmic succinate during the EMT process. Silencing of PLOD2 expression in breast cancer cells reduced succinate levels and inhibited cancer cell mesenchymal phenotypes and stemness, which was accompanied by elevated 5hmC levels in chromatin. Importantly, exogenous succinate rescued cancer cell stemness and 5hmC levels in PLOD2-silenced cells, suggesting that PLOD2 promotes cancer progression at least partially through succinate. These results reveal the previously unidentified function of succinate in enhancing cancer cell plasticity and stemness.


Assuntos
Neoplasias , Ácido Succínico , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Succinatos , Humanos
8.
Proc Natl Acad Sci U S A ; 120(51): e2307950120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38085777

RESUMO

The hydroxylation of C-H bonds can be carried out by the high-valent CoIII,IV2(µ-O)2 complex 2a supported by the tetradentate tris(2-pyridylmethyl)amine ligand via a CoIII2(µ-O)(µ-OH) intermediate (3a). Complex 3a can be independently generated either by H-atom transfer (HAT) in the reaction of 2a with phenols as the H-atom donor or protonation of its conjugate base, the CoIII2(µ-O)2 complex 1a. Resonance Raman spectra of these three complexes reveal oxygen-isotope-sensitive vibrations at 560 to 590 cm-1 associated with the symmetric Co-O-Co stretching mode of the Co2O2 diamond core. Together with a Co•••Co distance of 2.78(2) Å previously identified for 1a and 2a by Extended X-ray Absorption Fine Structure (EXAFS) analysis, these results provide solid evidence for their "diamond core" structural assignments. The independent generation of 3a allows us to investigate HAT reactions of 2a with phenols in detail, measure the redox potential and pKa of the system, and calculate the O-H bond strength (DO-H) of 3a to shed light on the C-H bond activation reactivity of 2a. Complex 3a is found to be able to transfer its hydroxyl ligand onto the trityl radical to form the hydroxylated product, representing a direct experimental observation of such a reaction by a dinuclear cobalt complex. Surprisingly, reactivity comparisons reveal 2a to be 106-fold more reactive in oxidizing hydrocarbon C-H bonds than corresponding FeIII,IV2(µ-O)2 and MnIII,IV2(µ-O)2 analogs, an unexpected outcome that raises the prospects for using CoIII,IV2(µ-O)2 species to oxidize alkane C-H bonds.

9.
Plant Physiol ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052981

RESUMO

Pentacyclic triterpenoids, recognized for their natural bioactivity, display complex spatiotemporal accumulation patterns within the ecological model plant Nicotiana attenuata. Despite their ecological importance, the underlying biosynthetic enzymes and functional attributes of triterpenoid synthesis in N. attenuata remain unexplored. Here, we show that three cytochrome P450 monooxygenases (NaCYP716A419, NaCYP716C87, and NaCYP716E107) from N. attenuata oxidize the pentacyclic triterpene skeleton, as evidenced by heterologous expression in Nicotiana benthamiana. NaCYP716A419 catalyzed a consecutive three-step oxidation reaction at the C28 position of ß-amyrin/lupeol/lupanediol, yielding the corresponding alcohol, aldehyde, and carboxylic acid. NaCYP716C87 hydroxylated the C2α position of ß-amyrin/lupeol/lupanediol/erythrodiol/oleanolic acid/betulinic acid, while NaCYP716E107 hydroxylated the C6ß position of ß-amyrin/oleanolic acid. The genes encoding these three CYP716 enzymes are highly expressed in flowers and respond to induction by ABA, MeJA, SA, GA3, and abiotic stress treatments. Using VIGS technology, we revealed that silencing of NaCYP716A419 affects the growth and reproduction of N. attenuata, suggesting the ecological significance of these specialized metabolite biosynthetic steps.

10.
EMBO Rep ; 24(12): e57849, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37877678

RESUMO

Oxygen is essential for viability in mammalian organisms. However, cells are often exposed to changes in oxygen availability, due to either increased demand or reduced oxygen supply, herein called hypoxia. To be able to survive and/or adapt to hypoxia, cells activate a variety of signalling cascades resulting in changes to chromatin, gene expression, metabolism and viability. Cellular signalling is often mediated via post-translational modifications (PTMs), and this is no different in response to hypoxia. Many enzymes require oxygen for their activity and oxygen can directly influence several PTMS. Here, we review the direct impact of changes in oxygen availability on PTMs such as proline, asparagine, histidine and lysine hydroxylation, lysine and arginine methylation and cysteine dioxygenation, with a focus on mammalian systems. In addition, indirect hypoxia-dependent effects on phosphorylation, ubiquitination and sumoylation will also be discussed. Direct and indirect oxygen-regulated changes to PTMs are coordinated to achieve the cell's ultimate response to hypoxia. However, specific oxygen sensitivity and the functional relevance of some of the identified PTMs still require significant research.


Assuntos
Lisina , Oxigênio , Animais , Humanos , Oxigênio/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Cromatina , Hipóxia/metabolismo , Mamíferos/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131946

RESUMO

Tomato (Solanum lycopersicum) produces a wide range of volatile chemicals during fruit ripening, generating a distinct aroma and contributing to the overall flavor. Among these volatiles are several aromatic and aliphatic nitrogen-containing compounds for which the biosynthetic pathways are not known. While nitrogenous volatiles are abundant in tomato fruit, their content in fruits of the closely related species of the tomato clade is highly variable. For example, the green-fruited species Solanum pennellii are nearly devoid, while the red-fruited species S. lycopersicum and Solanum pimpinellifolium accumulate high amounts. Using an introgression population derived from S. pennellii, we identified a locus essential for the production of all the detectable nitrogenous volatiles in tomato fruit. Silencing of the underlying gene (SlTNH1;Solyc12g013690) in transgenic plants abolished production of aliphatic and aromatic nitrogenous volatiles in ripe fruit, and metabolomic analysis of these fruit revealed the accumulation of 2-isobutyl-tetrahydrothiazolidine-4-carboxylic acid, a known conjugate of cysteine and 3-methylbutanal. Biosynthetic incorporation of stable isotope-labeled precursors into 2-isobutylthiazole and 2-phenylacetonitrile confirmed that cysteine provides the nitrogen atom for all nitrogenous volatiles in tomato fruit. Nicotiana benthamiana plants expressing SlTNH1 readily transformed synthetic 2-substituted tetrahydrothiazolidine-4-carboxylic acid substrates into a mixture of the corresponding 2-substituted oxime, nitro, and nitrile volatiles. Distinct from other known flavin-dependent monooxygenase enzymes in plants, this tetrahydrothiazolidine-4-carboxylic acid N-hydroxylase catalyzes sequential hydroxylations. Elucidation of this pathway is a major step forward in understanding and ultimately improving tomato flavor quality.


Assuntos
Frutas/química , Oxigenases de Função Mista/metabolismo , Nitrogênio/metabolismo , Odorantes/análise , Sitosteroides/metabolismo , Solanum lycopersicum/metabolismo , Frutas/metabolismo , Oxigenases de Função Mista/genética , Nitrogênio/química , Compostos Orgânicos Voláteis
12.
Proc Natl Acad Sci U S A ; 119(32): e2201483119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35930668

RESUMO

The Jumonji domain-containing protein JMJD6 is a 2-oxoglutarate-dependent dioxygenase associated with a broad range of biological functions. Cellular studies have implicated the enzyme in chromatin biology, transcription, DNA repair, mRNA splicing, and cotranscriptional processing. Although not all studies agree, JMJD6 has been reported to catalyze both hydroxylation of lysine residues and demethylation of arginine residues. However, despite extensive study and indirect evidence for JMJD6 catalysis in many cellular processes, direct assignment of JMJD6 catalytic substrates has been limited. Examination of a reported site of proline hydroxylation within a lysine-rich region of the tandem bromodomain protein BRD4 led us to conclude that hydroxylation was in fact on lysine and catalyzed by JMJD6. This prompted a wider search for JMJD6-catalyzed protein modifications deploying mass spectrometric methods designed to improve the analysis of such lysine-rich regions. Using lysine derivatization with propionic anhydride to improve the analysis of tryptic peptides and nontryptic proteolysis, we report 150 sites of JMJD6-catalyzed lysine hydroxylation on 48 protein substrates, including 19 sites of hydroxylation on BRD4. Most hydroxylations were within lysine-rich regions that are predicted to be unstructured; in some, multiple modifications were observed on adjacent lysine residues. Almost all of the JMJD6 substrates defined in these studies have been associated with membraneless organelle formation. Given the reported roles of lysine-rich regions in subcellular partitioning by liquid-liquid phase separation, our findings raise the possibility that JMJD6 may play a role in regulating such processes in response to stresses, including hypoxia.


Assuntos
Proteínas Intrinsicamente Desordenadas , Histona Desmetilases com o Domínio Jumonji , Proteínas de Ciclo Celular/metabolismo , Humanos , Hidroxilação , Proteínas Intrinsicamente Desordenadas/metabolismo , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina/metabolismo , Domínios Proteicos , Fatores de Transcrição/metabolismo
13.
J Proteome Res ; 23(9): 3791-3805, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-38980715

RESUMO

Hepatocellular carcinoma (HCC) mortality rates continue to increase faster than those of other cancer types due to high heterogeneity, which limits diagnosis and treatment. Pathological and molecular subtyping have identified that HCC tumors with poor outcomes are characterized by intratumoral collagenous accumulation. However, the translational and post-translational regulation of tumor collagen, which is critical to the outcome, remains largely unknown. Here, we investigate the spatial extracellular proteome to understand the differences associated with HCC tumors defined by Hoshida transcriptomic subtypes of poor outcome (Subtype 1; S1; n = 12) and better outcome (Subtype 3; S3; n = 24) that show differential stroma-regulated pathways. Collagen-targeted mass spectrometry imaging (MSI) with the same-tissue reference libraries, built from untargeted and targeted LC-MS/MS was used to spatially define the extracellular microenvironment from clinically-characterized, formalin-fixed, paraffin-embedded tissue sections. Collagen α-1(I) chain domains for discoidin-domain receptor and integrin binding showed distinctive spatial distribution within the tumor microenvironment. Hydroxylated proline (HYP)-containing peptides from the triple helical regions of fibrillar collagens distinguished S1 from S3 tumors. Exploratory machine learning on multiple peptides extracted from the tumor regions could distinguish S1 and S3 tumors (with an area under the receiver operating curve of ≥0.98; 95% confidence intervals between 0.976 and 1.00; and accuracies above 94%). An overall finding was that the extracellular microenvironment has a high potential to predict clinically relevant outcomes in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteômica , Microambiente Tumoral , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/classificação , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/classificação , Humanos , Proteômica/métodos , Espectrometria de Massas em Tandem , Proteoma/análise , Proteoma/genética , Cromatografia Líquida , Aprendizado de Máquina , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética
14.
Circulation ; 147(22): 1684-1704, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37066795

RESUMO

BACKGROUND: A large portion of idiopathic and familial dilated cardiomyopathy (DCM) cases have no obvious causal genetic variant. Although altered response to metabolic stress has been implicated, the molecular mechanisms underlying the pathogenesis of DCM remain elusive. The JMJD family proteins, initially identified as histone deacetylases, have been shown to be involved in many cardiovascular diseases. Despite their increasingly diverse functions, whether JMJD family members play a role in DCM remains unclear. METHODS: We examined Jmjd4 expression in patients with DCM, and conditionally deleted and overexpressed Jmjd4 in cardiomyocytes in vivo to investigate its role in DCM. RNA sequencing, metabolites profiling, and mass spectrometry were used to dissect the molecular mechanism of Jmjd4-regulating cardiac metabolism and hypertrophy. RESULTS: We found that expression of Jmjd4 is significantly decreased in hearts of patients with DCM. Induced cardiomyocyte-specific deletion of Jmjd4 led to spontaneous DCM with severely impaired mitochondrial respiration. Pkm2, the less active pyruvate kinase compared with Pkm1, which is normally absent in healthy adult cardiomyocytes but elevated in cardiomyopathy, was found to be drastically accumulated in hearts with Jmjd4 deleted. Jmjd4 was found mechanistically to interact with Hsp70 to mediate degradation of Pkm2 through chaperone-mediated autophagy, which is dependent on hydroxylation of K66 of Pkm2 by Jmjd4. By enhancing the enzymatic activity of the abundant but less active Pkm2, TEPP-46, a Pkm2 agonist, showed a significant therapeutic effect on DCM induced by Jmjd4 deficiency, and heart failure induced by pressure overload, as well. CONCLUSIONS: Our results identified a novel role of Jmjd4 in maintaining metabolic homeostasis in adult cardiomyocytes by degrading Pkm2 and suggest that Jmjd4 and Pkm2 may be therapeutically targeted to treat DCM, and other cardiac diseases with metabolic dysfunction, as well.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Humanos , Miócitos Cardíacos/metabolismo , Cardiomiopatia Dilatada/patologia , Insuficiência Cardíaca/patologia
15.
Small ; : e2405150, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39301975

RESUMO

Zeolites with band-like charge transport properties have exhibited their potential activities in sensing, optics, and electronics. Herein, a precisely designed Cu@ZSM-5 catalyst is presented with an ultra-wide bandgap of 4.27 eV, showing excellent photocatalytic activity in hydroxylation of benzene with benzene conversion 27.9% and phenol selectivity 97.6%. The SXRD and Rietveld refinement results illustrate that Cu@ZSM-5 has an average of 0.8 Cu atoms per unit cell and the single Cu atoms located in the cross-section of the sinusoidal and straight channels. XANES and EXAFS further demonstrate that the Cu atoms have an oxidation state of +2, coordinated with three OMFI-framework atoms and one ─OH group. Detailed characterizations demonstrate that the Cu@ZSM-5 with tailored bandgap is able to enhance the photoinduced electron-hole separation and hence promote selective hydroxylation of benzene to phenol via the superoxide radical route. This work may open a new way for designing electrically conductive zeolite-supported photocatalysts.

16.
Small ; : e2400380, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564784

RESUMO

Thermal annealing (TA) of colloidal quantum dot (CQD) films is considered an important process for recent high-performing CQD solar cells (SCs) due to its beneficial effects on CQD solids, including enhanced electrical conductivity, denser packing of CQD films, and the removal of organic residues and solvents. However, the conventional TA for CQDs, which requires several  minutes, leads to hydroxylation and oxidation on the CQD surface, resulting in the formation of trap states and a subsequent decline in SC performance. To address these challenges, this study introduces a flashlight annealing (FLA) technique that significantly reduces the annealing time to the millisecond scale. Through the FLA approach, it successfully suppressed hydroxylation and oxidation, resulting in decreased trap states within the CQD solids while simultaneously preserving their charge transport properties. As a result, CQD SCs treated with FLA exhibited a notable improvement, achieving an open-circuit voltage of 0.66 V compared to 0.63 V in TA-treated devices, leading to an increase in power conversion efficiency from 12.71% to 13.50%.

17.
Chembiochem ; 25(10): e202400066, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567500

RESUMO

P450 enzymes naturally perform selective hydroxylations and epoxidations of unfunctionalized hydrocarbon substrates, among other reactions. The adaptation of P450 enzymes to a particular oxidative reaction involving alkenes is of great interest for the design of new synthetically useful biocatalysts. However, the mechanism that these enzymes utilize to precisely modulate the chemoselectivity and distinguishing between competing alkene double bond epoxidations and allylic C-H hydroxylations is sometimes not clear, which hampers the rational design of specific biocatalysts. In a previous work, a P450 from Labrenzia aggregata (P450LA1) was engineered in the laboratory using directed evolution to catalyze the direct oxidation of trans-ß-methylstyrene to phenylacetone. The final variant, KS, was able to overcome the intrinsic preference for alkene epoxidation to directly generate a ketone product via the formation of a highly reactive carbocation intermediate. Here, additional library screening along this evolutionary lineage permitted to serendipitously detect a mutation that overcomes epoxidation and carbonyl formation by exhibiting a large selectivity of 94 % towards allylic C-H hydroxylation. A multiscalar computational methodology was applied to reveal the molecular basis towards this hydroxylation preference. Enzyme modelling suggests that introduction of a bulky substitution dramatically changes the accessible conformations of the substrate in the active site, thus modifying the enzymatic selectivity towards terminal hydroxylation and avoiding the competing epoxidation pathway, which is sterically hindered.


Assuntos
Alcenos , Biocatálise , Sistema Enzimático do Citocromo P-450 , Oxirredução , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/química , Alcenos/química , Alcenos/metabolismo , Especificidade por Substrato
18.
Chembiochem ; 25(2): e202300475, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37994522

RESUMO

Phototrophic microorganisms, like cyanobacteria, are gaining attention as host organisms for biocatalytic processes with light as energy source and water as electron source. Redox enzymes, especially oxygenases, can profit from in-situ supply of co-substrates, i. e., reduction equivalents and O2 , by the photosynthetic light reaction. The electron transfer downstream of PS I to heterologous electron consuming enzymes in principle can involve NADPH, NADH, and/or ferredoxin, whereas most direct and efficient transfer is desirable. Here, we use the model organism Synechocystis sp. PCC 6803 to investigate, to what extent host and/or heterologous constituents are involved in electron transfer to a heterologous cytochrome P450 monooxygenase from Acidovorax sp. CHX100. Interestingly, in this highly active light-fueled cycloalkane hydroxylating biocatalyst, host-intrinsic enzymes were found capable of completely substituting the function of the Acidovorax ferredoxin reductase. To a certain extent (20 %), this also was true for the Acidovorax ferredoxin. These results indicate the presence of a versatile set of electron carriers in cyanobacteria, enabling efficient and direct coupling of electron consuming reactions to photosynthetic water oxidation. This will both simplify and promote the use of phototrophic microorganisms for sustainable production processes.


Assuntos
Synechocystis , Ferredoxinas , Elétrons , Fotossíntese , Transporte de Elétrons , Oxirredução , Sistema Enzimático do Citocromo P-450/metabolismo , Água
19.
Chemistry ; : e202403221, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39215548

RESUMO

In this study, we disclose for the first time that formate salt can be used as a bifunctional reagent for the synthesis of phenol derivatives and as a CO source for carbonylative cross-coupling processes using the COware gas reactor under activation free conditions. Key to this success is the in-situ synthesis of aryl formate via an unprecedented nickel/organophotocatalyst system under blue LED irradiation. This developed system demonstrated high applicability to various aryl iodide substrates for synthesizing phenol derivatives. Moreover, the generated CO could be utilized in a range of carbonylative C-heteroatom and C-C processes. Notably, commercially available H13COONa salt can serve as a bifunctional reagent for both synthesizing phenols and generating 13CO.

20.
Chemistry ; : e202402736, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39143867

RESUMO

Owing to their excellent photoelectric properties, donor-acceptor (D-A) type photocatalytic covalent organic frameworks (COFs) have attracted significant research interest in recent years. However, the limited D-A structural units of existing COFs restrict the development of novel and efficient photocatalytic COF materials. To solve this problem, we developed a series of D-A-A-type COFs utilizing a Lewis acid regulation strategy, in which Lewis acids act as the coordination centers, and pyridine and cyano groups act as ligands. Lewis acid sites in COFs serve as electron acceptors, facilitating the separation and transfer of photogenerated electron-hole pairs. This process is crucial for photocatalysis because it significantly increases the efficiency of the catalytic reaction by reducing the recombination rate of charge carriers. The developed Lewis acid-activated D-A-A COFs efficiently catalyzed the hydroxylation of various phenylboronic acid compounds under visible light. The developed catalysts are expected to contribute to increasing the fabrication efficiency of industrially important organic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA