Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proteins ; 92(11): 1343-1353, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39023312

RESUMO

Despite the ubiquity of membrane occupation recognition nexus (MORN) motifs across diverse species in both eukaryotic and prokaryotic organisms, these protein domains remain poorly characterized. Their significance is underscored in the context of the Alsin protein, implicated in the debilitating condition known as infantile-onset ascending hereditary spastic paralysis (IAHSP). Recent investigations have proposed that mutations within the Alsin MORN domain disrupt proper protein assembly, precluding the formation of the requisite tetrameric configuration essential for the protein's inherent biological activity. However, a comprehensive understanding of the relationship between the biological functions of Alsin and its three-dimensional molecular structure is hindered by the lack of available experimental structures. In this study, we employed and compared several protein structure prediction algorithms to identify a three-dimensional structure for the putative MORN of Alsin. Furthermore, inspired by experimental pieces of evidence from previous studies, we employed the developed models to predict and investigate two homo-dimeric assemblies, characterizing their stability. This study's insights into the three-dimensional structure of the Alsin MORN domain and the stability dynamics of its homo-dimeric assemblies suggest an antiparallel linear configuration stabilized by a noncovalent interaction network.


Assuntos
Multimerização Proteica , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice , Estabilidade Proteica , Conformação Proteica em Folha beta , Domínios Proteicos , Sequência de Aminoácidos , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Conformação Proteica , Fatores de Troca do Nucleotídeo Guanina
2.
Clin Genet ; 104(2): 238-244, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37055917

RESUMO

This study presents 46 patients from 23 unrelated Egyptian families with ALS2-related disorders without evidence of lower motor neuron involvement. Age at onset ranged from 10 months to 2.5 years, featuring progressive upper motor neuron signs. Detailed clinical phenotypes demonstrated inter- and intrafamilial variability. We identified 16 homozygous disease-causing ALS2 variants; sorted as splice-site, missense, frameshift, nonsense and in-frame in eight, seven, four, three, and one families, respectively. Seven of these variants were novel, expanding the mutational spectrum of the ALS2 gene. As expected, clinical severity was positively correlated with disease onset (p = 0.004). This work provides clinical and molecular profiles of a large single ethnic cohort of patients with ALS2 mutations, and suggests that infantile ascending hereditary spastic paralysis (IAHSP) and juvenile primary lateral sclerosis (JPLS) are belonged to one entity with no phenotype-genotype correlation.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Humanos , Egito/epidemiologia , Fatores de Troca do Nucleotídeo Guanina/genética , Análise Mutacional de DNA , Mutação
3.
Am J Med Genet A ; 185(2): 344-354, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33155358

RESUMO

Autosomal-recessive mutations in the Alsin Rho guanine nucleotide exchange factor (ALS2) gene may cause specific subtypes of childhood-onset progressive neurodegenerative motor neuron diseases (MND). These diseases can manifest with a clinical continuum from infantile ascending hereditary spastic paraplegia (IAHSP) to juvenile-onset forms with or without lower motor neuron involvement, the juvenile primary lateral sclerosis (JPLS) and the juvenile amyotrophic lateral sclerosis (JALS). We report 11 patients from seven unrelated Turkish and Yemeni families with clinical signs of IAHSP or JPLS. We performed haplotype analysis or next-generation panel sequencing followed by Sanger Sequencing to unravel the genetic disease cause. We described their clinical phenotype and analyzed the pathogenicity of the detected variants with bioinformatics tools. We further reviewed all previously reported cases with ALS2-related MND. We identified five novel homozygous pathogenic variants in ALS2 at various positions: c.275_276delAT (p.Tyr92CysfsTer11), c.1044C>G (p.Tyr348Ter), c.1718C>A (p.Ala573Glu), c.3161T>C (p.Leu1054Pro), and c.1471+1G>A (NM_020919.3, NP_065970.2). In our cohort, disease onset was in infancy or early childhood with rapid onset of motor neuron signs. Muscle weakness, spasticity, severe dysarthria, dysphagia, and facial weakness were common features in the first decade of life. Frameshift and nonsense mutations clustered in the N-terminal Alsin domains are most prevalent. We enriched the mutational spectrum of ALS2-related disorders with five novel pathogenic variants. Our study indicates a high detection rate of ALS2 mutations in patients with a clinically well-characterized early onset MND. Intrafamilial and even interfamilial diversity in patients with identical pathogenic variants suggest yet unknown modifiers for phenotypic expression.


Assuntos
Predisposição Genética para Doença , Fatores de Troca do Nucleotídeo Guanina/genética , Doença dos Neurônios Motores/genética , Adolescente , Adulto , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Criança , Pré-Escolar , Códon sem Sentido/genética , Feminino , Mutação da Fase de Leitura/genética , Estudos de Associação Genética , Humanos , Lactente , Masculino , Doença dos Neurônios Motores/classificação , Doença dos Neurônios Motores/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/patologia , Adulto Jovem
4.
Neurol Sci ; 42(5): 2091-2094, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33409823

RESUMO

ALS2 gene encoding for alsin protein is responsible for neurological disorders due to retrograde degeneration of the upper motor neurons of the pyramidal tracts, inherited in an autosomal recessive manner, and displaying a clinical continuum including the infantile ascending hereditary spastic paraplegiaidentified in three Spanish children presented here.


Assuntos
Esclerose Lateral Amiotrófica , Paraplegia Espástica Hereditária , Criança , Análise Mutacional de DNA , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/epidemiologia , Paraplegia Espástica Hereditária/genética
5.
Neurol Sci ; 39(11): 1917-1925, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30128655

RESUMO

Biallelic mutations of the alsin Rho guanine nucleotide exchange factor (ALS2) gene cause a group of overlapping autosomal recessive neurodegenerative disorders including infantile-onset ascending hereditary spastic paralysis (IAHSP), juvenile primary lateral sclerosis (JPLS), and juvenile amyotrophic lateral sclerosis (JALS/ALS2), caused by retrograde degeneration of the upper motor neurons of the pyramidal tracts. Here, we describe 11 individuals with IAHSP, aged 2-48 years, with IAHSP from three unrelated consanguineous Iranian families carrying the homozygous c.1640+1G>A founder mutation in ALS2. Three affected siblings from one family exhibit generalized dystonia which has not been previously described in families with IAHSP and has only been reported in three unrelated consanguineous families with JALS/ALS2. We report the oldest individuals with IAHSP to date and provide evidence that these patients survive well into their late 40s with preserved cognition and normal eye movements. Our study delineates the phenotypic spectrum of IAHSP and ALS2-related disorders and provides valuable insights into the natural disease course.


Assuntos
Saúde da Família , Fatores de Troca do Nucleotídeo Guanina/genética , Mutação/genética , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/fisiopatologia , Adolescente , Adulto , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Irã (Geográfico) , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
BMC Med Genomics ; 17(1): 44, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297306

RESUMO

OBJECTIVE: ALS2-related disorder involves retrograde degeneration of the upper motor neurons of the pyramidal tracts, among which autosomal recessive Infantile-onset ascending hereditary spastic paralysis (IAHSP) is a rare phenotype. In this study, we gathered clinical data from two Chinese siblings who were affected by IAHSP. Our aim was to assess the potential pathogenicity of the identified variants and analyze their clinical and genetic characteristics. METHOD: Here, Whole-exome sequencing (WES) was performed on proband to identify the candidate variants. Subsequently, Sanger sequencing was used to verify identified candidate variants and to assess co-segregation among available family members. Utilizing both silico prediction and 3D protein modeling, an analysis was conducted to evaluate the potential functional implications of the variants on the encoded protein, and minigene assays were performed to unravel the effect of the variants on the cleavage of pre-mRNA. RESULTS: Both patients were characterized by slurred speech, astasia, inability to walk, scoliosis, lower limb hypertonia, ankle clonus, contracture of joint, foot pronation and no psychomotor retardation was found. Genetic analysis revealed a novel homozygous variant of ALS2, c.1815G > T(p.Lys605Asn) in two Chinese siblings. To our knowledge, it is the first confirmed case of a likely pathogenic variant leading to IAHSP in a Chinese patient. CONCLUSION: This study broadens the range of ALS2 variants and has practical implications for prenatal and postnatal screening of IAHSR. Symptom-based diagnosis of IAHSP is frequently difficult for medical practitioners. WES can be a beneficial resource to identify a particular disorder when the diagnosis cannot be determined from the symptoms alone.


Assuntos
Esclerose Lateral Amiotrófica , Fatores de Troca do Nucleotídeo Guanina , Irmãos , Paraplegia Espástica Hereditária , Feminino , Gravidez , Humanos , Mutação , Fatores de Troca do Nucleotídeo Guanina/genética , Análise Mutacional de DNA , Biologia Molecular , China , Linhagem
7.
Pediatr Neurol ; 152: 189-195, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301322

RESUMO

BACKGROUND: Hereditary spastic paraplegias (HSPs) are a group of genetically heterogeneous neurodegenerative disorders. Our objective was to determine the clinical and molecular characteristics of patients with genetically confirmed childhood-onset HSPs and to expand the genetic spectrum for some rare subtypes of HSP. METHODS: We reviewed the charts of subjects with genetically confirmed childhood-onset HSP. The age at the disease onset was defined as the point at which the delayed motor milestones were observed. Delayed motor milestones were defined as being unable to hold the head up by four months, sitting unassisted by nine months, and walking independently by 17 months. If there were no delayed motor milestones, age at disease onset was determined by leg stiffness, frequent falls, or unsteady gait. Genetic testing was performed based on delayed motor milestones, progressive leg spasticity, and gait difficulty. The variant classification was determined based on the American College of Medical Genetics standard guidelines for variant interpretation. Variants of uncertain significance (VUS) were considered disease-associated when clinical findings were consistent with the previously described disease phenotypes for pathogenic variants. In addition, in the absence of another pathogenic, likely pathogenic, or VUS variant that could explain the phenotype of our cases, we concluded that the disease is associated with VUS in the HSP-causing gene. Segregation analysis was also performed on the parents of some patients to demonstrate the inheritance model. RESULTS: There were a total of 18 patients from 17 families. The median age of symptom onset was 18 months (2 to 84 months). The mean delay between symptom onset and genetic diagnosis was 5.8 years (5 months to 17 years). All patients had gait difficulty caused by progressive leg spasticity and weakness. Independent walking was not achieved at 17 months for 67% of patients (n = 12). In our cohort, there were two subjects each with SPG11, SPG46, and SPG 50 followed by single subject each with SPG3A, SPG4, SPG7, SPG8, SPG30, SPG35, SPG43, SPG44, SPG57, SPG62, infantile-onset ascending spastic paralysis (IAHSP), and spastic paraplegia and psychomotor retardation with or without seizures (SPPRS). Eight novel variants in nine patients were described. Two affected siblings had a novel variant in the GBA2 gene (SPG46), and one subject each had a novel variant in WASHC5 (SPG8), SPG11 (SPG11), KIF1A (SPG30), GJC2 (SPG44), ERLIN1 (SPG62), ALS2 (IAHSP), and HACE1 (SPPRS). Among the novel variants, the variant in the SPG11 was pathogenic and the variants in the KIF1A, GJC2, and HACE1 were likely pathogenic. The variants in the GBA2, ALS2, ERLIN1, and WASHC5 were classified as VUS. CONCLUSIONS: There was a significant delay between symptom onset and genetic diagnosis of HSP. An early diagnosis may be possible by examining patients with delayed motor milestones, progressive spasticity, gait difficulties, and neuromuscular weakness in the context of HSP. Eight novel variants in nine patients were described, clinically similar to the previously described disease phenotype associated with pathogenic variants. This study contributes to expanding the genetic spectrum of some rare subtypes of HSP.


Assuntos
Esclerose Lateral Amiotrófica , Paraplegia Espástica Hereditária , Criança , Humanos , Lactente , Cinesinas/genética , Mutação/genética , Fenótipo , Proteínas/genética , Estudos Retrospectivos , Paraplegia Espástica Hereditária/genética , Ubiquitina-Proteína Ligases/genética , Pré-Escolar , Adolescente
8.
Biology (Basel) ; 11(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35053075

RESUMO

Infantile-onset Ascending Hereditary Spastic Paralysis, Juvenile Primary Lateral Sclerosis and Juvenile Amyotrophic Lateral Sclerosis are all motor neuron diseases related to mutations on the ALS2 gene, encoding for a 1657 amino acids protein named Alsin. This ~185 kDa multi-domain protein is ubiquitously expressed in various human tissues, mostly in the brain and the spinal cord. Several investigations have indicated how mutations within Alsin's structured domains may be responsible for the alteration of Alsin's native oligomerization state or Alsin's propensity to interact with protein partners. In this review paper, we propose a description of differences and similarities characterizing the above-mentioned ALS2-related rare neurodegenerative disorders, pointing attention to the effects of ALS2 mutation from molecule to organ and at the system level. Known cases were collected through a literature review and rationalized to deeply elucidate the neurodegenerative clinical outcomes as consequences of ALS2 mutations.

9.
Drug Discov Today ; 27(6): 1652-1660, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34958957

RESUMO

Artificial intelligence (AI)-based protein structure databases are expected to have an impact on drug discovery. Here, we show how AlphaFold could support rare diseases research programs. We focus on Alsin, a protein responsible for rare motor neuron diseases, such as infantile-onset ascending hereditary spastic paralysis (IAHSP) and juvenile primary lateral sclerosis (JPLS), and involved in some cases of amyotrophic lateral sclerosis (ALS). First, we compared the AlphaFoldDB human Alsin model with homology models of Alsin domains. We then evaluated the flexibility profile of Alsin and of experimentally characterized mutants present in patients with IAHSP. Next, we compared preliminary models of dimeric/tetrameric Alsin responsible for its physiological action with hypothetical models reported in the literature. Finally, we suggest the best animal model for drug candidates testing. Overall, we computationally show that drug discovery efforts toward Alsin-involving diseases should be pursued.


Assuntos
Esclerose Lateral Amiotrófica , Paraplegia Espástica Hereditária , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Animais , Inteligência Artificial , Bases de Dados de Proteínas , Humanos , Doenças Raras/tratamento farmacológico
10.
Front Mol Neurosci ; 14: 772122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126051

RESUMO

Alsin is a protein of 1,657 amino acids known for its crucial role in vesicular trafficking in neurons thanks to its ability to interact with two guanosine triphosphatases, Rac1 and Rab5. Evidence suggests that Rac1 can bind Alsin central region, composed by a Dbl Homology (DH) domain followed by a Pleckstrin Homology (PH) domain, leading to Alsin relocalization. However, Alsin three-dimensional structure and its relationship with known biological functions of this protein are still unknown. In this work, a homology model of the Alsin DH/PH domain was developed and studied through molecular dynamics both in the presence and in the absence of its binding partner, Rac1. Due to different conformations of DH domain, the presence of Rac1 seems to stabilize an open state of the protein, while the absence of its binding partner results in closed conformations. Furthermore, Rac1 interaction was able to reduce the fluctuations in the second conserved region of DH motif, which may be involved in the formation of a homodimer. Moreover, the dynamics of DH/PH was described through a Markov State Model to study the pathways linking the open and closed states. In conclusion, this work provided an all-atom model for the DH/PH domain of Alsin protein; moreover, molecular dynamics investigations suggested underlying molecular mechanisms in the signal transduction between Rac1 and Alsin, providing the basis for a deeper understanding of the whole structure-function relationship for Alsin protein.

11.
Artigo em Inglês | MEDLINE | ID: mdl-26751646

RESUMO

Biallelic mutations of ALS2 cause a clinical spectrum of overlapping autosomal recessive neurodegenerative disorders: infantile-onset ascending hereditary spastic paralysis (IAHSP), juvenile primary lateral sclerosis (JPLS), and juvenile amyotrophic lateral sclerosis (ALS2). We report on eleven individuals affected with IAHSP from two consanguineous Pakistani families. A combination of linkage analysis with homozygosity mapping and targeted sequencing identified two novel ALS2 mutations, a c.194T > C (p.Phe65Ser) missense substitution located in the first RCC-like domain of ALS2/alsin and a c.2998delA (p.Ile1000*) nonsense mutation. This study of extended families including a total of eleven affected individuals suggests that a given ALS2 mutation may lead to a phenotype with remarkable intrafamilial clinical homogeneity.


Assuntos
Predisposição Genética para Doença/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Mutação/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Idade de Início , Criança , Análise Mutacional de DNA , Saúde da Família , Feminino , Humanos , Masculino , Paquistão , Adulto Jovem
12.
Eur J Med Genet ; 57(6): 275-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24704789

RESUMO

Autosomal recessive early onset forms of motor neuron disorders including infantile-onset ascending hereditary spastic paraplegia (OMIM #607225) are due to homozygous mutations in the ALS2 gene. Here, we report on a novel splice-site mutation of the ALS2 (c.2351+2C>A) in four children of a consanguineous union with infantile-onset ascending hereditary spastic paraplegia.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Mutação , Irmãos , Paraplegia Espástica Hereditária/genética , Sequência de Bases , Criança , Pré-Escolar , Consanguinidade , Análise Mutacional de DNA , Saúde da Família , Feminino , Homozigoto , Humanos , Masculino , Linhagem , Sítios de Splice de RNA/genética , Adulto Jovem
13.
Gene ; 536(1): 217-20, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24315819

RESUMO

Recessive mutations in the alsin gene cause three clinically distinct motor neuron diseases: juvenile amyotrophic lateral sclerosis (ALS2), juvenile primary lateral sclerosis (JPLS) and infantile-onset ascending hereditary spastic paraplegia (IAHSP). A total of 23 different ALS2 mutations have been described for the three disorders so far. Most of these mutations result in a frameshift leading to a premature truncation of the alsin protein. We report the novel ALS2 truncating mutation c.2761C>T; p.R921X detected by homozygosity mapping and sequencing in two infants affected by IAHSP with bulbar involvement. The mutation c.2761C>T resides in the pleckstrin domain, a characteristic segment of guanine nucleotide exchange factors of the Rho GTPase family, which is involved in the overall neuronal development or maintenance. This study highlights the importance of using homozygosity mapping combined with candidate gene analysis to identify the underlying genetic defect as in this Saudi consanguineous family.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Paraplegia Espástica Hereditária/genética , Idade de Início , Criança , Pré-Escolar , Consanguinidade , Feminino , Fatores de Troca do Nucleotídeo Guanina/química , Humanos , Masculino , Mutação de Sentido Incorreto/fisiologia , Linhagem , Polimorfismo de Nucleotídeo Único/fisiologia , Estrutura Terciária de Proteína/genética , Irmãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA