RESUMO
Sirtuin-3 (Sirt3) is a major mitochondrial deacetylase enzyme that regulates multiple metabolic pathways, and its expression is decreased in diabetes type 1 and type 2 diabetes. This study aimed to elucidate Sirt3's molecular mechanism in regulating insulin sensitivity in adipocytes that can contribute to the effort of targeting Sirt3 for the treatment of obesity and type 2 diabetes. We found that the Sirt3 activator honokiol (HNK) induced adipogenesis compared to the control, in contrast to Sirt3 inhibitor, 3-TYP. Accordingly, HNK increased expression of adipocyte gene markers, gene-involved lipolysis and glucose transport (GLUT4), while 3-TYP reduced expression of those genes. Interestingly, 3-TYP caused an increase in gene expression of adipocyte-specific cytokines including IL6, resistin, and TNF-α. However, changes in adipocyte-specific cytokines in HNK treated cells were not significant. In addition, HNK stimulated insulin pathway by promoting insulin receptor beta (IRß) and PI3K/AKT/mTOR pathways, resulting in an increase in phosphorylation of the forkhead family FoxO1/FoxO3a/FoxO4 and glycogen synthase kinase-3 (GSK-3ß), opposing 3-TYP. In line with these findings, HNK increased free fatty acid and glucose uptake, contrary to 3-TYP. In conclusion, Sirt3 activator-HNK induced adipogenesis and lipolysis reduced adipocytes specific cytokines. Intriguingly, HNK activated insulin signaling pathway and increased free fatty acid as well as glucose uptake and transport, in sharp contrast to 3-TYP. These results indicate that, via insulin signaling regulation, Sirt3 activation by HNK improves insulin resistance, while Sirt3 inhibition by 3-TYP might precipitate insulin resistance.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Sirtuína 3 , Adipócitos/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Glucose/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Insulina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Serina-Treonina Quinases TOR/metabolismoRESUMO
Cardiovascular diseases are a major cause of mortality, and vascular injury, a common pathological basis of cardiovascular disease, is deeply correlated with macrophage apoptosis and inflammatory response. Genistein, a type of phytoestrogen, exerts cardiovascular protective activities, but the underlying mechanism has not been fully elucidated. In this study, RAW264.7 cells were treated with genistein, lipopolysaccharide (LPS), nuclear factor-kappa B (NF-κB) inhibitor, and/or protein kinase B (AKT) agonist to determine the role of genistein in apoptosis and inflammation in LPS-stimulated cells. Simultaneously, high fat diet-fed C57BL/6 mice were administered genistein to evaluate the function of genistein on LPS-induced cardiovascular injury mouse model. Here, we demonstrated that LPS obviously increased apoptosis resistance and inflammatory response of macrophages by promoting miR-21 expression, and miR-21 downregulated tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) expression by targeting the coding region. Genistein reduced miR-21 expression by inhibiting NF-κB, then blocked toll-like receptor 4 (TLR4) pathway and AKT phosphorylation dependent on TIPE2, resulting in inhibition of LPS. Our research suggests that miR-21/TIPE2 pathway is involved in M1 macrophage apoptosis and inflammatory response, and genistein inhibits the progression of LPS-induced cardiovascular injury at the epigenetic level via regulating the promoter region of Vmp1 by NF-κB.
RESUMO
Breast cancer arises as a result of multiple interactions between environmental and genetic factors. Conventionally, breast cancer is treated based on histopathological and clinical features. DNA technologies like the human genome microarray are now partially integrated into clinical practice and are used for developing new "personalized medicines" and "pharmacogenetics" for improving the efficiency and safety of cancer medications. We investigated the effects of four established therapies-for ER+ ductal breast cancer-on the differential gene expression. The therapies included single agent tamoxifen, two-agent docetaxel and capecitabine, or combined three-agents CAF (cyclophosphamide, doxorubicin, and fluorouracil) and CMF (cyclophosphamide, methotrexate, and fluorouracil). Genevestigator 8.1.0 was used to compare five datasets from patients with infiltrating ductal carcinoma, untreated or treated with selected drugs, to those from the healthy control. We identified 74 differentially expressed genes involved in three pathways, i.e., apoptosis (extrinsic and intrinsic), oxidative signaling, and PI3K/Akt signaling. The treatments affected the expression of apoptotic genes (TNFRSF10B [TRAIL], FAS, CASP3/6/7/8, PMAIP1 [NOXA], BNIP3L, BNIP3, BCL2A1, and BCL2), the oxidative stress-related genes (NOX4, XDH, MAOA, GSR, GPX3, and SOD3), and the PI3K/Akt pathway gene (ERBB2 [HER2]). Breast cancer treatments are complex with varying drug responses and efficacy among patients. This necessitates identifying novel biomarkers for predicting the drug response, using available data and new technologies. GSR, NOX4, CASP3, and ERBB2 are potential biomarkers for predicting the treatment response in primary ER+ ductal breast carcinoma.
RESUMO
miR-18a is a member of primary transcript called miR-17-92a (C13orf25 or MIR17HG) which also contains five other miRNAs: miR-17, miR-19a, miR-20a, miR-19b and miR-92a. This cluster as a whole shows specific characteristics, where miR-18a seems to be unique. In contrast to the other members, the expression of miR-18a is additionally controlled and probably functions as its own internal controller of the cluster. miR-18a regulates many genes involved in proliferation, cell cycle, apoptosis, response to different kinds of stress, autophagy and differentiation. The disturbances of miR-18a expression are observed in cancer as well as in different diseases or pathological states. The miR-17-92a cluster is commonly described as oncogenic and it is known as 'oncomiR-1', but this statement is a simplification because miR-18a can act both as an oncogene and a suppressor. In this review we summarize the current knowledge about miR-18a focusing on its regulation, role in cancer biology and utility as a potential biomarker.
RESUMO
Ca and dairy product intakes may be inversely associated with all-cause and cause-specific mortality, and non-Ca components of dairy products, such as insulin-like growth factor-1, may be independently associated with mortality. We investigated associations of Ca and dairy product intakes with all-cause, all-cancer, colorectal cancer (CRC) and CHD mortality among 35 221 55- to 69-year-old women in the prospective Iowa Women's Health Study, who were cancer-free in 1986. We assessed diet using a Willett FFQ, and associations using multivariable Cox proportional hazards regression. We estimated residuals from linear regression models of dairy products with dietary Ca to investigate total and specific dairy products independent of their Ca content. Through 2012, 18 687 participants died, including 4665 from cancer (including 574 from CRC) and 3603 from CHD. For those in the highest relative to the lowest quintiles of intake, the multivariable-adjusted hazard ratios (HR) and 95 % CI for total Ca (dietary plus supplemental) were 0·88 (0·83, 0·93; P trend=0·001) for all-cause mortality, 0·91 (0·81, 1·02; P trend=0·34) for all-cancer mortality, 0·60 (0·43, 0·83; P trend=0·002) for CRC mortality and 0·73 (0·64, 0·83; P trend <0·0001) for CHD mortality. The corresponding HR for associations of whole milk, whole milk residuals, and low-/non-fat milk residuals with all-cause mortality were 1·20 (95 % CI 1·13, 1·27), 1·20 (95 % CI 1·13, 1·28) and 0·91 (95 % CI 0·86, 0·96), respectively. These results suggest that Ca may be associated with lower risk of all-cause, CRC and CHD mortality, and that non-Ca components of milk may be independently associated with mortality.
Assuntos
Cálcio da Dieta/análise , Neoplasias Colorretais/mortalidade , Doença das Coronárias/mortalidade , Laticínios/análise , Dieta/mortalidade , Neoplasias/mortalidade , Idoso , Causas de Morte , Feminino , Humanos , Iowa , Modelos Lineares , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Estudos ProspectivosRESUMO
The consumption of high-Ca, high-protein dairy foods (i.e. milk, cheese, yogurt) is advocated for bone health across the lifespan to reduce the risk of low-trauma fractures. However, to date, the anti-fracture efficacy of dairy food consumption has not been demonstrated in randomised controlled trials but inferred from cross-sectional and prospective studies. The anti-fracture efficacy of dairy food consumption is plausible, but testing this requires a robust study design to ensure outcomes are suitably answering this important public health question. The evidence of skeletal benefits of dairy food consumption is equivocal, not because it may not be efficacious but because the study design and execution are often inadequate. The key issues are compliance with dietary intervention, dropouts, sample sizes and most importantly lack of deficiency before intervention. Without careful appraisal of the design and execution of available studies, precarious interpretations of outcomes may be made from these poorly designed or executed studies, without consideration of how study design may be improved. Dairy food interventions in children are further hampered by heterogeneity in growth: in particular sex and maturity-related differences in the magnitude, timing, location and surface-specific site of bone accrual. Outcomes of studies combining children of different sexes and maturity status may be masked or exaggerated by these differences in growth, so inaccurate conclusions are drawn from results. Until these critical issues in study design are considered in future dairy food interventions, the anti-fracture efficacy of dairy food consumption may remain unknown and continue to be based on conjecture.
Assuntos
Desenvolvimento Ósseo/fisiologia , Laticínios/análise , Fraturas Ósseas/prevenção & controle , Longevidade/fisiologia , Projetos de Pesquisa/normas , Estudos Transversais , Feminino , Humanos , Masculino , Estudos ProspectivosRESUMO
Existing reviews suggest that milk and other dairy products do not play a role in the development of obesity in childhood, but they do make an important contribution to children's nutrient intake. It is thus curious that public health advice on the consumption of dairy products for children is often perceived as unclear. The present review aimed to provide an overview of the totality of the evidence on the association between milk and other dairy products, and obesity and indicators of adiposity, in children. Our search identified forty-three cross-sectional studies, thirty-one longitudinal cohort studies and twenty randomised controlled trials. We found that milk and other dairy products are consistently found to be not associated, or inversely associated, with obesity and indicators of adiposity in children. Adjustment for energy intake tended to change inverse associations to neutral. Also, we found little evidence to suggest that the relationship varied by type of milk or dairy product, or age of the children, although there was a dearth of evidence for young children. Only nine of the ninety-four studies found a positive association between milk and other dairy products and body fatness. There may be some plausible mechanisms underlying the effect of milk and other dairy products on adiposity that influence energy and fat balance, possibly through fat absorption, appetite or metabolic activity of gut microbiota. In conclusion, there is little evidence to support a concern to limit the consumption of milk and other dairy products for children on the grounds that they may promote obesity.
Assuntos
Tecido Adiposo , Adiposidade , Leite , Obesidade Infantil/etiologia , Adolescente , Animais , Criança , Pré-Escolar , Laticínios/efeitos adversos , Humanos , Leite/efeitos adversosRESUMO
The thioredoxin domain-containing 5 (TXNDC5) gene is associated with susceptibility to rheumatoid arthritis (RA) and exhibits increased expression in the synovial tissues. TXNDC5 is also associated strongly with diabetes, a metabolic disease characterized by interrupted insulin signalling. This study investigated whether TXNDC5 contributes to RA via the insulin signalling pathway. In this study, RA synovial fibroblast-like cells (RASFs) transfected with an anti-TXNDC5 small interfering RNA (siRNA) were analysed with an insulin signaling pathway RT2 profiler polymerase chain reaction (PCR) array and an insulin resistance RT2 profiler PCR array. The PCR arrays detected significantly increased expression of insulin-like growth factor binding protein 1 (IGFBP1) in RASFs with suppressed TXNDC5 expression. The result was verified using real-time PCR and Western blot analyses. Significantly elevated IGFBP1 expression and decreased interleukin (IL)-6 secretion were also detected in culture medium of transfected RASFs. Furthermore, decreased IGFBP1 mRNA and protein expression levels were detected in RA synovial tissues. Additionally, significantly increased apoptosis and decreased cell proliferation and cell migration were observed in RASFs transfected with the anti-TXNDC5 siRNA, whereas transfection with the anti-IGFBP1 siRNA or a mixture of the anti-IGFBP1 and anti-TXNDC5 siRNAs restored normal cell proliferation, migration and IL-6 level in RASFs. Insulin-like growth factor (IGF) has potent prosurvival and anti-apoptotic functions, and IGFBP1 can suppress IGF activity. Based on the results of the present study, we suggest that TXNDC5 contributes to abnormal RASF proliferation, migration and IL-6 production by inhibiting IGFBP1 expression.
Assuntos
Artrite Reumatoide/genética , Regulação da Expressão Gênica , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Adulto , Idoso , Apoptose , Proliferação de Células , Citocinas/metabolismo , Regulação para Baixo , Feminino , Fibroblastos/metabolismo , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Pessoa de Meia-Idade , Isomerases de Dissulfetos de Proteínas/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Membrana Sinovial/citologia , Adulto JovemRESUMO
This study was designed to evaluate the effects of elevated fruit and vegetable intake on bone turnover markers. In all, twenty-nine subjects (nine male and twenty female, with a mean age of 32·1 (sem 2·5) years) participated in a 28-week single-arm experimental feeding intervention trial and consumed a prescribed low-fruit and vegetable diet for 6 weeks (depletion-1), a provided high-fruit and vegetable diet for 8 weeks (fruit: 360-560 g; vegetables: 450-705 g), another prescribed low-fruit and vegetable diet for 6 weeks (depletion-2) and then their usual diets for 8 weeks (repletion). Serum bone-related biomarkers were analysed with commercial ELISA kits. Plasma carotenoid levels decreased as a result of the depletion phase and increased with the high-fruit and vegetable diet. Compared with the baseline, depletion-1 resulted in higher serum bone resorption marker C-terminal telopeptide of type 1 collagen (CTX) and lower bone formation marker alkaline phosphatase (BAP) (CTX, 0·68 (sem 0·05) v. 0·97 (sem 0·08) ng/ml and BAP, 10·7 (sem 0·7) v. 9·5 (sem 0·8) µg/l for the baseline and the depletion-1, respectively, P<0·05). High intake of fruit and vegetables decreased serum CTX (P<0·05) to 0·60 (sem 0·04) ng/ml and increased serum BAP to 11·3 (sem 0·7) µg/l (P<0·05), compared with the depletion-1 phase. Serum concentrations of CTX were inversely correlated and those of BAP were positively correlated with blood lycopene. These data show that increased fruit and vegetable consumption at or above federal dietary guidance may be beneficial to bone health.
Assuntos
Fosfatase Alcalina/sangue , Biomarcadores/sangue , Remodelação Óssea/fisiologia , Dieta , Frutas , Verduras , Adulto , Reabsorção Óssea/sangue , Osso e Ossos/enzimologia , Carotenoides/sangue , Colágeno Tipo I/sangue , Feminino , Humanos , Masculino , Osteogênese/fisiologia , Peptídeos/sangueRESUMO
This study aimed to determine the effects of supplementing the diet of adult Nile tilapia Oreochromis niloticus with phosphatidylcholine (PC) on growth performance, body composition, fatty acid composition and gene expression. Genetically Improved Farmed Tilapia fish with an initial body weight of 83·1 (sd 2·9) g were divided into six groups. Each group was hand-fed a semi-purified diet containing 1·7 (control diet), 4·0, 6·5, 11·5, 21·3 or 41·0 g PC/kg diet for 68 d. Supplemental PC improved the feed efficiency rate, which was highest in the 11·5 g PC/kg diet. Weight gain and specific growth rate were unaffected. Dietary PC increased PC content in the liver and decreased crude fat content in the liver, viscera and body. SFA and MUFA increased and PUFA decreased in muscle with increasing dietary PC. Cytoplasmic phospholipase A 2 and secreted phospholipase A 2 mRNA expression were up-regulated in the brain and heart in PC-supplemented fish. PC reduced fatty acid synthase mRNA expression in the liver and visceral tissue but increased expression in muscle. Hormone-sensitive lipase and lipoprotein lipase expression increased in the liver with increasing dietary PC. Growth hormone mRNA expression was reduced in the brain and insulin-like growth factor-1 mRNA expression in liver reduced with PC above 6·5 g/kg. Our results demonstrate that dietary supplementation with PC improves feed efficiency and reduces liver fat in adult Nile tilapia, without increasing weight gain, representing a novel dietary approach to reduce feed requirements and improve the health of Nile tilapia.
Assuntos
Ciclídeos/genética , Suplementos Nutricionais , Lecitinas/metabolismo , Fosfatidilcolinas/metabolismo , Ração Animal , Animais , Composição Corporal , Encéfalo/metabolismo , Caseínas/química , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/química , Gelatina/química , Perfilação da Expressão Gênica , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Metabolismo dos Lipídeos , Lipídeos/química , Lipase Lipoproteica/metabolismo , Masculino , Músculos/metabolismo , Miocárdio/metabolismo , RNA Mensageiro/metabolismo , Glycine max/química , Esterol Esterase/metabolismoRESUMO
Intra-uterine growth restriction (IUGR) is associated with adverse metabolic outcome later in life. Healthy mice challenged with a Western-style diet (WSD) accumulated less body fat when previously fed a diet containing large lipid globules (complex lipid matrix (CLM)). This study was designed to clarify whether an early-life CLM diet mitigates 'programmed' visceral adiposity and associated metabolic sequelae after IUGR. In rats, IUGR was induced either by bilateral uterine vessel ligation (LIG) or sham operation (i.e. intra-uterine stress) of the dam on gestational day 19. Offspring from non-operated (NOP) dams served as controls. Male offspring of all groups were either fed CLM or 'normal matrix' control diet (CTRL) from postnatal days (PND) 15 to 42. Thereafter, animals were challenged with a mild WSD until dissection (PND 98). Fat mass (micro computer-tomograph scan; weight of fat compartments), circulating metabolic markers and expression of 'metabolic' genes (quantitative real-time PCR) were assessed. CLM diet significantly reduced visceral fat mass in LIG at PND 40. At dissection, visceral fat mass, fasted blood glucose, TAG and leptin concentrations were significantly increased in LIG-CTRL v. NOP-CTRL, and significantly decreased in LIG-CLM v. LIG-CTRL. Gene expression levels of leptin (mesenteric fat) and insulin-like growth factor 1 (liver) were significantly reduced in LIG-CLM v. LIG-CTRL. In conclusion, early-life CLM diet mitigated the adverse metabolic phenotype after utero-placental insufficiency. The supramolecular structure of dietary lipids may be a novel aspect of nutrient quality that has to be considered in the context of primary prevention of obesity and metabolic disease in at-risk populations.
Assuntos
Glicemia/metabolismo , Dieta , Gorduras na Dieta/farmacologia , Retardo do Crescimento Fetal/metabolismo , Fenômenos Fisiológicos da Nutrição do Lactente , Gordura Intra-Abdominal/metabolismo , Lipídeos/farmacologia , Animais , Biomarcadores/metabolismo , Dieta Ocidental , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/metabolismo , Feminino , Humanos , Lactente , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Leptina/sangue , Ligadura , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/administração & dosagem , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Mesentério , Gravidez , Ratos Wistar , Triglicerídeos/sangue , Útero/cirurgiaRESUMO
Malnutrition in institutionalised elderly increases morbidity and care costs. Meat and dairy foods are high-quality protein sources so adequate intakes may reduce malnutrition risk. We aimed to determine whether inadequate intakes of meat and dairy foods contribute to malnutrition in institutionalised elderly. This cross-sectional study involved 215 elderly residents (70·2 % females, mean age 85·8 years) from twenty-one aged-care facilities in Melbourne, Australia. Dietary intake was assessed using observed plate waste. Food groups and serving sizes were based on the Australian Guide to Healthy Eating. Nutrient content was analysed using a computerised nutrient analysis software (Xyris). Malnutrition risk was assessed using the Mini Nutrition Assessment (MNA) tool; a score between 24 and 30 indicates normal nutritional status. Data were analysed using robust regression. Mean MNA score was 21·6 (sd 2·7). In total, 68 % of residents were malnourished or at risk of malnutrition (MNA score≤23·5). Protein intake was 87 (sd 28) % of the Australian recommended dietary intake (RDI). Consumption averaged 1 serving each of dairy foods and meat daily. Number of dairy and meat servings related to proportion of protein RDI (both P24 points). Provision of meat and dairy foods did not meet recommended levels. On the basis of current dietary intakes in aged-care residents, increasing consumption of dairy foods to the recommended four servings daily ensures protein adequacy and may reduce malnutrition risk in institutionalised elderly, and so reduce risk of comorbidities and costs associated with malnutrition.
Assuntos
Laticínios , Suplementos Nutricionais , Desnutrição/prevenção & controle , Idoso de 80 Anos ou mais , Feminino , Serviços de Alimentação , Instituição de Longa Permanência para Idosos , Humanos , Masculino , Necessidades Nutricionais , Estado NutricionalRESUMO
Epidemiological evidence regarding the association between carbohydrate intake, glycaemic load (GL) and glycaemic index (GI) and risk of ovarian cancer has been mixed. Little is known about their impact on ovarian cancer risk in African-American women. Associations between carbohydrate quantity and quality and ovarian cancer risk were investigated among 406 cases and 609 controls using data from the African American Cancer Epidemiology Study (AACES). AACES is an ongoing population-based case-control study of ovarian cancer in African-Americans in the USA. Cases were identified through rapid case ascertainment and age- and site-matched controls were identified by random-digit dialling. Dietary information over the year preceding diagnosis or the reference date was obtained using a FFQ. Multivariable logistic regression models were used to estimate odds ratios and 95% CI adjusted for covariates. The OR comparing the highest quartile of total carbohydrate intake and total sugar intake v. the lowest quartile were 1·57 (95% CI 1·08, 2·28; P trend=0·03) and 1·61 (95% CI 1·12, 2·30; P trend<0·01), respectively. A suggestion of an inverse association was found for fibre intake. Higher GL was positively associated with the risk of ovarian cancer (OR 1·18 for each 10 units/4184 kJ (1000 kcal); 95% CI 1·04, 1·33). No associations were observed for starch or GI. Our findings suggest that high intake of total sugars and GL are associated with greater risk of ovarian cancer in African-American women.
Assuntos
Dieta/efeitos adversos , Carboidratos da Dieta/efeitos adversos , Índice Glicêmico , Carga Glicêmica , Neoplasias Epiteliais e Glandulares/etiologia , Neoplasias Ovarianas/etiologia , Adulto , Negro ou Afro-Americano , Idoso , Estudos de Casos e Controles , Dieta/etnologia , Carboidratos da Dieta/administração & dosagem , Sacarose Alimentar/administração & dosagem , Sacarose Alimentar/efeitos adversos , Feminino , Índice Glicêmico/etnologia , Carga Glicêmica/etnologia , Humanos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Epiteliais e Glandulares/epidemiologia , Neoplasias Epiteliais e Glandulares/etnologia , Neoplasias Epiteliais e Glandulares/patologia , Inquéritos Nutricionais , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/etnologia , Neoplasias Ovarianas/patologia , Sistema de Registros , Fatores de Risco , Programa de SEER , Estados Unidos/epidemiologia , Adulto JovemRESUMO
Several studies have investigated the effects of fish oil (FO) on infant growth, but little is known about the effects of FO and sex on insulin-like growth factor-1 (IGF-1), the main regulator of growth in childhood. We explored whether FO v. sunflower oil (SO) supplementation from 9 to 18 months of age affected IGF-1 and its binding protein-3 (IGFBP-3) and whether the potential effects were sex specific. Danish infants (n 115) were randomly allocated to 5 ml/d FO (1·2 g/d n-3 long-chain PUFA (n-3 LCPUFA)) or SO. We measured growth, IGF-1, IGFBP-3 and erythrocyte EPA, a biomarker of n-3 LCPUFA intake and status, at 9 and 18 months. Erythrocyte EPA increased strongly with FO compared with SO (P<0·001). There were no effects of FO compared with SO on IGF-1 in the total population, but a sex × group interaction (P=0·02). Baseline-adjusted IGF-1 at 18 months was 11·1 µg/l (95% CI 0·4, 21·8; P=0·04) higher after FO compared with SO supplementation among boys only. The sex × group interaction was borderline significant in the model of IGFBP-3 (P=0·09), with lower IGFBP-3 with FO compared with SO among girls only (P=0·03). The results were supported by sex-specific dose-response associations between changes in erythrocyte EPA and changes in IGF-1 and IGFBP-3 (both P<0·03). Moreover, IGF-1 was sex specifically associated with BMI and length. In conclusion, FO compared with SO resulted in higher IGF-1 among boys and lower IGFBP-3 among girls. The potential long-term implications for growth and body composition should be investigated further.
Assuntos
Suplementos Nutricionais , Óleos de Peixe/administração & dosagem , Fator de Crescimento Insulin-Like I/metabolismo , Fatores Sexuais , População Branca , Índice de Massa Corporal , Estudos Transversais , Dinamarca , Relação Dose-Resposta a Droga , Ingestão de Energia , Feminino , Humanos , Lactente , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Masculino , Óleos de Plantas/administração & dosagem , Óleo de GirassolRESUMO
The effect of protein intake on growth velocity in infancy may be mediated by insulin-like growth factor-1 (IGF-1). This study aimed to determine the effects of formulae containing 1·8 (F1·8) or 2·7 g (F2·7) protein/418·4 kJ (100 kcal) on IGF-1 concentrations and growth. Healthy term infants were randomly assigned to receive F1·8 (n 74) or F2·7 (n 80) exclusively for the first 4 months of life. A group of breast-fed infants (n 84) was followed-up simultaneously (reference). Growth and body composition were measured at 0·5, 4, 6, 12, 36, 48 and 60 months of life. The IGF-1 concentrations at 4 months (primary outcome) were similar in the F1·8 (67·1 (sd 20·8) ng/l; n 70) and F2·7 (71·2 (sd 27·5) ng/l; n 73) groups (P=0·52). Both formula groups had higher IGF-1 concentrations than the breast-fed group at 4 and 9 months of age (P≤0·0001). During the first 60 months of life, anthropometric parameters in the F1·8 group were lower compared with the F2·7 group, and the differences were significant for head circumference from 2 to 60 months, body weight at 4 and 6 months and length at 9, 12 and 36 months of age. There were no significant differences in body composition between these two groups at any age. We conclude that, in formula-fed infants, although increased protein intake did not affect the IGF-1 concentration during the first 12 months of life, it did affect length and head circumference growth, suggesting that factors other than IGF-1 could play roles in determining growth velocity.
Assuntos
Composição Corporal , Proteínas Alimentares/administração & dosagem , Crescimento , Fórmulas Infantis , Fator de Crescimento Insulin-Like I/análise , Antropometria , Estatura , Peso Corporal , Aleitamento Materno , Método Duplo-Cego , Humanos , Lactente , Recém-Nascido , Obesidade/etiologiaRESUMO
Epidemiological data show that osteoarthritis (OA) is significantly associated with lower birth weight, and that OA may be a type of fetal-originated adult disease. The present study aimed to investigate the prenatal food-restriction (PFR) effect on the quality of articular cartilage in female offspring to explore the underlying mechanisms of fetal-originated OA. Maternal rats were fed a restricted diet from gestational day (GD) 11 to 20 to induce intra-uterine growth retardation. Female fetuses and female adult offspring fed a post-weaning high-fat diet were killed at GD20 and postnatal week 24, respectively. Serum and knee cartilage samples from fetuses and adult female offspring were collected and examined for cholesterol metabolism and histology. Fetal serum corticosterone and insulin-like growth factor-1 (IGF-1) in the PFR group were lower than those of the control, but the serum cholesterol level was not changed. The lower expression of IGF-1 in the PFR group lasted into adulthood. The expression of extracellular matrix (ECM) genes, including type II collagen, aggrecan and cholesterol efflux genes including liver X receptor, were significantly induced, but the ATP-binding-cassette transporter A1 was unchanged. PFR could induce a reduction in ECM synthesis and impaired cholesterol efflux in female offspring, and eventually led to poor quality of articular cartilage and OA.
Assuntos
Doenças das Cartilagens/etiologia , Cartilagem Articular/patologia , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Desenvolvimento Fetal , Retardo do Crescimento Fetal/fisiopatologia , Osteoartrite do Joelho/etiologia , Animais , Restrição Calórica/efeitos adversos , Doenças das Cartilagens/embriologia , Doenças das Cartilagens/metabolismo , Doenças das Cartilagens/patologia , Cartilagem Articular/embriologia , Cartilagem Articular/metabolismo , Colesterol/sangue , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dislipidemias/etiologia , Dislipidemias/fisiopatologia , Proteínas da Matriz Extracelular/genética , Feminino , Retardo do Crescimento Fetal/etiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Fator de Crescimento Insulin-Like I/análise , Fenômenos Fisiológicos da Nutrição Materna , Osteoartrite do Joelho/embriologia , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Gravidez , Distribuição Aleatória , Ratos Wistar , Organismos Livres de Patógenos Específicos , DesmameRESUMO
Intra-uterine growth restriction (IUGR) impairs postnatal growth and skeletal muscle development in neonatal infants. This study evaluated whether dietary ß-hydroxy-ß-methylbutyrate Ca (HMB-Ca) supplementation during the early postnatal period could improve muscle growth in IUGR neonates using piglets as a model. A total of twelve pairs of IUGR and normal-birth-weight (NBW) male piglets with average initial weights (1·85 (sem 0·36) and 2·51 (sem 0·39) kg, respectively) were randomly allotted to groups that received milk-based diets (CON) or milk-based diets supplemented with 800 mg/kg HMB-Ca (HMB) during days 7-28 after birth. Blood and longissimus dorsi (LD) samples were collected and analysed for plasma amino acid content, fibre morphology and the expression of genes related to muscle development. The results indicate that, regardless of diet, IUGR piglets had a significantly decreased average daily weight gain (ADG) compared with that of NBW piglets (P<0·05). However, IUGR piglets fed HMB-Ca had a net weight and ADG similar to that of NBW piglets fed the CON diet. Irrespective of body weight (BW), HMB-Ca supplementation markedly increased the type II fibre cross-sectional area and the mRNA expression of mammalian target of rapamycin (mTOR), insulin-like growth factor-1 and myosin heavy-chain isoform IIb in the LD of piglets (P<0·05). Moreover, there was a significant interaction between the effects of BW and HMB on mTOR expression in the LD (P<0·05). In conclusion, HMB-Ca supplementation during the early postnatal period could improve skeletal muscle growth and maturity by accelerating fast-twitch glycolytic fibre development in piglets.
Assuntos
Animais Recém-Nascidos/crescimento & desenvolvimento , Cálcio da Dieta/administração & dosagem , Retardo do Crescimento Fetal/veterinária , Músculo Esquelético/crescimento & desenvolvimento , Doenças dos Suínos/fisiopatologia , Valeratos/administração & dosagem , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Peso ao Nascer , Suplementos Nutricionais , Retardo do Crescimento Fetal/fisiopatologia , Expressão Gênica , Glicólise , Masculino , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/química , RNA Mensageiro , Sus scrofa , Suínos , Serina-Treonina Quinases TOR/genética , Aumento de PesoRESUMO
Previously, it has been shown that strawberry (SB) or blueberry (BB) supplementations, when fed to rats from 19 to 21 months of age, reverse age-related decrements in motor and cognitive performance. We have postulated that these effects may be the result of a number of positive benefits of the berry polyphenols, including decreased stress signalling, increased neurogenesis, and increased signals involved in learning and memory. Thus, the present study was carried out to examine these mechanisms in aged animals by administering a control, 2 % SB- or 2 % BB-supplemented diet to aged Fischer 344 rats for 8 weeks to ascertain their effectiveness in reversing age-related deficits in behavioural and neuronal function. The results showed that rats consuming the berry diets exhibited enhanced motor performance and improved cognition, specifically working memory. In addition, the rats supplemented with BB and SB diets showed increased hippocampal neurogenesis and expression of insulin-like growth factor 1, although the improvements in working memory performance could not solely be explained by these increases. The diverse polyphenolics in these berry fruits may have additional mechanisms of action that could account for their relative differences in efficacy.
Assuntos
Envelhecimento/fisiologia , Cognição , Frutas , Promoção da Saúde , Atividade Motora , Neurônios/fisiologia , Animais , Comportamento Animal , Mirtilos Azuis (Planta) , Dieta , Suplementos Nutricionais , Fragaria , Hipocampo/química , Hipocampo/fisiologia , Fator de Crescimento Insulin-Like I/análise , Masculino , Memória , Neurogênese , Polifenóis/administração & dosagem , Ratos , Ratos Endogâmicos F344RESUMO
Feeding ruminants a reduced N diet is a common approach to reduce N output based on rumino-hepatic circulation. However, a reduction in N intake caused massive changes in Ca and inorganic phosphate (Pi) homoeostasis in goats. Although a single dietary Ca reduction stimulated intestinal Ca absorption in a calcitriol-dependent manner, a concomitant reduction of Ca and N supply led to a decrease in calcitriol, and therefore a modulation of intestinal Ca and Pi absorption. The aim of this study was to examine the potential effects of dietary N or Ca reduction separately on intestinal Ca and Pi transport in young goats. Animals were allocated to a control, N-reduced, Ca-reduced or combined N- and Ca-reduced diet for about 6-8 weeks, whereby N content was reduced by 25 % compared with recommendations. In Ussing chamber experiments, intestinal Ca flux rates significantly decreased in goats fed a reduced N diet, whereas Pi flux rates were unaffected. In contrast, a dietary Ca reduction stimulated Ca flux rates and decreased Pi flux rates. The combined dietary N and Ca reduction withdrew the stimulating effect of dietary Ca reduction on Ca flux rates. The expression of Ca-transporting proteins decreased with a reduced N diet too, whereas Pi-transporting proteins were unaffected. In conclusion, a dietary N reduction decreased intestinal Ca transport by diminishing Ca-transporting proteins, which became clear during simultaneous N and Ca reduction. Therefore, N supply in young ruminant nutrition is of special concern for intestinal Ca transport.
Assuntos
Ração Animal , Cálcio/administração & dosagem , Cálcio/metabolismo , Dieta , Mucosa Intestinal/metabolismo , Nitrogênio/administração & dosagem , Fosfatos/metabolismo , Animais , Cabras , Absorção Intestinal , Intestinos/enzimologia , MasculinoRESUMO
The intestine is the only gate for the entry of Ca to the body in humans and mammals. The entrance of Ca occurs via paracellular and intracellular pathways. All steps of the latter pathway are regulated by calcitriol and by other hormones. Dietary and pharmacological compounds also modulate the intestinal Ca absorption process. Among them, dietary Ca and P are known to alter the lipid and protein composition of the brush-border and basolateral membranes and, consequently, Ca transport. Ca intakes are below the requirements recommended by health professionals in most countries, triggering important health problems. Chronic low Ca intake has been related to illness conditions such as osteoporosis, hypertension, renal lithiasis and incidences of human cancer. Carbohydrates, mainly lactose, and prebiotics have been described as positive modulators of intestinal Ca absorption. Apparently, high meat proteins increase intestinal Ca absorption while the effect of dietary lipids remains unclear. Pharmacological compounds such as menadione, dl-butionine-S,R-sulfoximine and ursodeoxycholic acid also modify intestinal Ca absorption as a consequence of altering the redox state of the epithelial cells. The paracellular pathway of intestinal Ca absorption is poorly known and is under present study in some laboratories. Another field that needs to be explored more intensively is the influence of the gene × diet interaction on intestinal Ca absorption. Health professionals should be aware of this knowledge in order to develop nutritional or medical strategies to stimulate the efficiency of intestinal Ca absorption and to prevent diseases.