Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(5): 100762, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608839

RESUMO

Protein post-translational modifications (PTMs) are crucial in plant cellular processes, particularly in protein folding and signal transduction. N-glycosylation and phosphorylation are notably significant PTMs, playing essential roles in regulating plant responses to environmental stimuli. However, current sequential enrichment methods for simultaneous analysis of phosphoproteome and N-glycoproteome are labor-intensive and time-consuming, limiting their throughput. Addressing this challenge, this study introduces a novel tandem S-Trap-IMAC-HILIC (S-Trap: suspension trapping; IMAC: immobilized metal ion affinity chromatography; HILIC: hydrophilic interaction chromatography) strategy, termed TIMAHAC, for simultaneous analysis of plant phosphoproteomics and N-glycoproteomics. This approach integrates IMAC and HILIC into a tandem tip format, streamlining the enrichment process of phosphopeptides and N-glycopeptides. The key innovation lies in the use of a unified buffer system and an optimized enrichment sequence to enhance efficiency and reproducibility. The applicability of TIMAHAC was demonstrated by analyzing the Arabidopsis phosphoproteome and N-glycoproteome in response to abscisic acid (ABA) treatment. Up to 1954 N-glycopeptides and 11,255 phosphopeptides were identified from Arabidopsis, indicating its scalability for plant tissues. Notably, distinct perturbation patterns were observed in the phosphoproteome and N-glycoproteome, suggesting their unique contributions to ABA response. Our results reveal that TIMAHAC offers a comprehensive approach to studying complex regulatory mechanisms and PTM interplay in plant biology, paving the way for in-depth investigations into plant signaling networks.


Assuntos
Arabidopsis , Cromatografia de Afinidade , Fosfoproteínas , Proteômica , Fluxo de Trabalho , Proteômica/métodos , Arabidopsis/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/análise , Cromatografia de Afinidade/métodos , Proteínas de Arabidopsis/metabolismo , Glicopeptídeos/metabolismo , Glicopeptídeos/análise , Interações Hidrofóbicas e Hidrofílicas , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Fosforilação , Fosfopeptídeos/metabolismo , Fosfopeptídeos/análise , Espectrometria de Massas em Tandem , Proteínas de Plantas/metabolismo
2.
Appl Microbiol Biotechnol ; 108(1): 126, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229302

RESUMO

An alarming global public health and economic peril has been the emergence of antibiotic resistance resulting from clinically relevant bacteria pathogens, including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species constantly exhibiting intrinsic and extrinsic resistance mechanisms against last-resort antibiotics like gentamycin, ciprofloxacin, tetracycline, colistin, and standard ampicillin prescription in clinical practices. The discovery and applications of antimicrobial peptides (AMPs) with antibacterial properties have been considered and proven as alternative antimicrobial agents to antibiotics. In this study, we have designed, produced, and purified a recombinant novel multifunctional hybrid antimicrobial peptide LL-37_Renalexin for the first time via the application of newly designed flexible GS peptide linker coupled with the use of our previously characterized small metal-binding proteins SmbP and CusF3H+ as carrier proteins that allow for an enhanced bacterial expression, using BL21(DE3) and SHuffle T7(DE3) Escherichia coli strains, and purification of the hybrid peptide via immobilized metal affinity chromatography. The purified tag-free LL-37_Renalexin hybrid peptide exhibited above 85% reduction in bacteria colony-forming units and broad-spectrum antimicrobial effects against Staphylococcus aureus, Escherichia coli, Methicillin-resistant Staphylococcus aureus (MRSA), and Klebsiella pneumoniae bacteria clinical isolates at a lower minimum inhibition concentration level (10-33 µM) as compared to its counterpart single-AMPs LL-37 and Renalexin (50-100 µM). KEY POINTS: • The hybrid antimicrobial peptide LL-37_Renalexin has been designed using a GS linker. • The peptide was expressed with the carrier proteins SmbP and CusF3H+. • The hybrid peptide shows antibacterial potency against clinical bacterial isolates.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Catelicidinas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Staphylococcus aureus , Escherichia coli/genética , Proteínas de Transporte/farmacologia , Testes de Sensibilidade Microbiana
3.
Mol Cell Proteomics ; 21(5): 100232, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35421590

RESUMO

Arginine phosphorylation was only recently discovered to play a significant and relevant role in the Gram-positive bacterium Bacillus subtilis. In addition, arginine phosphorylation was also detected in Staphylococcus aureus, suggesting a widespread role in bacteria. However, the large-scale analysis of protein phosphorylation, and especially those that involve a phosphoramidate bond, comes along with several challenges. The substoichiometric nature of protein phosphorylation requires proper enrichment strategies prior to LC-MS/MS analysis, and the acid instability of phosphoramidates was long thought to impede those enrichments. Furthermore, good spectral quality is required, which can be impeded by the presence of neutral losses of phosphoric acid upon higher energy collision-induced dissociation. Here we show that pArg is stable enough for commonly used Fe3+-IMAC enrichment followed by LC-MS/MS and that HCD is still the gold standard for the analysis of phosphopeptides. By profiling a serine/threonine kinase (Stk1) and phosphatase (Stp1) mutant from a methicillin-resistant S. aureus mutant library, we identified 1062 pArg sites and thus the most comprehensive arginine phosphoproteome to date. Using synthetic arginine phosphorylated peptides, we validated the presence and localization of arginine phosphorylation in S. aureus. Finally, we could show that the knockdown of Stp1 significantly increases the overall amount of arginine phosphorylation in S. aureus. However, our analysis also shows that Stp1 is not a direct protein-arginine phosphatase but only indirectly influences the arginine phosphoproteome.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Arginina/metabolismo , Proteínas de Bactérias/metabolismo , Cromatografia Líquida , Humanos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Fosfopeptídeos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteoma/metabolismo , Staphylococcus aureus/metabolismo , Espectrometria de Massas em Tandem
4.
J Biol Chem ; 298(3): 101622, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065968

RESUMO

The type A glycan modification found in human pathogen Clostridioides difficile consists of a monosaccharide (GlcNAc) that is linked to an N-methylated threonine through a phosphodiester bond. This structure has previously been described on the flagellar protein flagellin C of several C. difficile strains and is important for bacterial motility. The study of post-translational modifications often relies on some type of enrichment strategy; however, a procedure for enrichment of this modification has not yet been demonstrated. In this study, we show that an approach that is commonly used in phosphoproteomics, Fe3+-immobilized metal affinity chromatography, also enriches for peptides with this unique post-translational modification. Using LC-MS/MS analyses of immobilized metal affinity chromatography-captured tryptic peptides, we observed not only type A-modified C. difficile flagellin peptides but also a variety of truncated/modified type A structures on these peptides. Using an elaborate set of mass spectrometry analyses, we demonstrate that one of these modifications consists of a type A structure containing a phosphonate (2-aminoethylphosphonate), a modification that is rarely observed and has hitherto not been described in C. difficile. In conclusion, we show that a common enrichment strategy results in reliable identification of peptides carrying a type A glycan modification, and that the results obtained can be used to advance models about its biosynthesis.


Assuntos
Clostridioides difficile , Flagelina , Cromatografia Líquida , Clostridioides difficile/metabolismo , Flagelina/metabolismo , Glicosilação , Polissacarídeos/química , Proteína C/metabolismo , Espectrometria de Massas em Tandem
5.
J Biol Chem ; 298(9): 102343, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35933017

RESUMO

Proximity-dependent protein labeling provides a powerful in vivo strategy to characterize the interactomes of specific proteins. We previously optimized a proximity labeling protocol for Caenorhabditis elegans using the highly active biotin ligase TurboID. A significant constraint on the sensitivity of TurboID is the presence of abundant endogenously biotinylated proteins that take up bandwidth in the mass spectrometer, notably carboxylases that use biotin as a cofactor. In C. elegans, these comprise POD-2/acetyl-CoA carboxylase alpha, PCCA-1/propionyl-CoA carboxylase alpha, PYC-1/pyruvate carboxylase, and MCCC-1/methylcrotonyl-CoA carboxylase alpha. Here, we developed ways to remove these carboxylases prior to streptavidin purification and mass spectrometry by engineering their corresponding genes to add a C-terminal His10 tag. This allows us to deplete them from C. elegans lysates using immobilized metal affinity chromatography. To demonstrate the method's efficacy, we use it to expand the interactome map of the presynaptic active zone protein ELKS-1. We identify many known active zone proteins, including UNC-10/RIM, SYD-2/liprin-alpha, SAD-1/BRSK1, CLA-1/CLArinet, C16E9.2/Sentryn, as well as previously uncharacterized potentially synaptic proteins such as the ortholog of human angiomotin, F59C12.3 and the uncharacterized protein R148.3. Our approach provides a quick and inexpensive solution to a common contaminant problem in biotin-dependent proximity labeling. The approach may be applicable to other model organisms and will enable deeper and more complete analysis of interactors for proteins of interest.


Assuntos
Biotinilação , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Carboxiliases , Acetil-CoA Carboxilase/metabolismo , Animais , Biotinilação/métodos , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metilmalonil-CoA Descarboxilase/metabolismo , Piruvato Carboxilase/metabolismo , Estreptavidina
6.
Anal Biochem ; 670: 115153, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37037311

RESUMO

Different protein purification methods exist. Yet, they need to be adapted for specific downstream applications to maintain functional integrity of the recombinant proteins. This study established a purification protocol for lentiviral Vpx (viral protein X) and test its ability to degrade sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) ex vivo in resting CD4+ T cells. For this purpose, we cloned a novel eukaryotic expression plasmid for Vpx including C-terminal 10x His- and HA-tags and confirmed that those tags did not alter the ability to degrade SAMHD1. We optimized purification conditions for Vpx produced in HEK293T cells with CHAPS as detergent and Co-NTA resins yielding the highest solubility and protein amounts. Size exclusion chromatography (SEC) further enhanced the purity of recombinant Vpx proteins. Importantly, nucleofection of resting CD4+ T cells demonstrated that purified recombinant Vpx protein efficiently degraded SAMHD1 in a proteasome-dependent manner. In conclusion, this protocol is suitable for functional downstream applications of recombinant Vpx and might be transferrable to other recombinant proteins with similar functions/properties as lentiviral Vpx.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Linfócitos T , Humanos , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Células HEK293 , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Linfócitos T CD4-Positivos , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo
7.
Protein Expr Purif ; 208-209: 106275, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37084837

RESUMO

S100A8/A9 (calprotectin) is a damage-associated molecular pattern molecule (DAMP) that plays a key role in the innate immune response of mammalia. S100A8/A9 is therefore widely used as a biomarker in human and veterinary medicine, but diagnostic tools for the detection of S100A8/A9 are rarely optimised for the specific organism, since the corresponding S100A8/A9 is often not available. There is need for an easy, reliable protocol for the production of recombinant, highly pure S100A8/A9 from various mammalia. Here we describe the expression and purification of recombinant human and porcine S100A8/A9 by immobilized metal affinity chromatography (IMAC), which takes advantage of the intrinsic, high-affinity binding of native un-tagged S100A8/A9 to metal ions. Highly pure S100A8/A9 is obtained by a combination of IMAC, ion exchange and size exclusion chromatographic steps. Considering the high sequence homology and conservation of the metal ion coordinating residues of S100A8/A9 metal binding sites, the protocol is presumably applicable to S100A8/A9 of various mammalia.


Assuntos
Calgranulina B , Complexo Antígeno L1 Leucocitário , Humanos , Animais , Suínos , Complexo Antígeno L1 Leucocitário/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Calgranulina A/genética , Calgranulina A/metabolismo , Sus scrofa/metabolismo
8.
Protein Expr Purif ; 205: 106241, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36736512

RESUMO

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike protein is of interest for the development of vaccines and therapeutics against COVID-19. Vaccines are designed to raise an immune response against the spike protein. Other therapies attempt to block the interaction of the spike protein and mammalian cells. Therefore, the spike protein itself and specific interacting regions of the spike protein are reagents required by industry to enable the advancement of medicines to combat SARS-CoV-2. Early production methods of the SARS-CoV-2 spike protein receptor binding domain (RBD) were labor intensive with scalability challenges. In this work, we describe a high yielding and scalable production process for the SARS-CoV-2 RBD. Expression was performed in human embryonic kidney (HEK) 293 cells followed by a two-column purification process including immobilized metal affinity chromatography (IMAC) followed by Ceramic Hydroxyapatite (CHT). The improved process showed good scalability, enabling efficient purification of 2.5 g of product from a 200 L scale bioreactor.


Assuntos
COVID-19 , Animais , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , SARS-CoV-2/metabolismo , Células HEK293 , Ligação Proteica , Mamíferos
9.
Microb Cell Fact ; 22(1): 125, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434134

RESUMO

BACKGROUND: Mammalian metallothioneins (MTs) are small (6-7 kDa), intracellular, cysteine-rich, metal-binding proteins involved, inter alia, in the homeostasis of zinc and copper, detoxification of heavy metals, antioxidation against reactive oxygen species, and protection against DNA damage. The high cysteine content (~ 30%) in MTs makes them toxic to bacterial cells during protein production, resulting in low yield. To address this issue, we present for the first time a combinatorial approach using the small ubiquitin-like modifier (SUMO) and/or sortase as fusion tags for high-level expression of human MT3 in E. coli and its purification by three different strategies. RESULTS: Three different plasmids were generated using SUMO, sortase A pentamutant (eSrtA), and sortase recognition motif (LPETG) as removable fusion tags for high-level expression and purification of human MT3 from the bacterial system. In the first strategy, SUMOylated MT3 was expressed and purified using Ulp1-mediated cleavage. In the second strategy, SUMOylated MT3 with a sortase recognition motif at the N-terminus of MT3 was expressed and purified using sortase-mediated cleavage. In the final strategy, the fusion protein His6-SUMO-eSrtA-LPETG-MT3 was expressed and purified by one-step sortase-mediated inducible on-bead autocleavage. Using these three strategies the apo-MT3 was purified in a yield of 11.5, 11, and 10.8 mg/L, respectively, which is the highest yield achieved for MT expression and purification to date. No effect of MT3 on Ni2+-containing resin was observed. CONCLUSION: The SUMO/sortase-based strategy used as the production system for MT3 resulted in a very high expression level and protein production yield. The apo-MT3 purified by this strategy contained an additional glycine residue and had similar metal binding properties as WT-MT3. This SUMO-sortase fusion system is a simple, robust, and inexpensive one-step purification approach for various MTs as well as other toxic proteins with very high yield via immobilized metal affinity chromatography (IMAC).


Assuntos
Cálcio , Cisteína , Metalotioneína 3 , Humanos , Proteínas de Bactérias/genética , Escherichia coli/genética , Ubiquitina , Metalotioneína 3/metabolismo
10.
J Nanobiotechnology ; 21(1): 363, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794459

RESUMO

The need for excellent, affordable, rapid, reusable and biocompatible protein purification techniques is justified based on the roles of proteins as key biomacromolecules. Magnetic nanomaterials nowadays have become the subject of discussion in proteomics, drug delivery, and gene sensing due to their various abilities including rapid separation, superparamagnetism, and biocompatibility. These nanomaterials also referred to as magnetic nanoparticles (MNPs) serve as excellent options for traditional protein separation and analytical methods because they have a larger surface area per volume. From ionic metals to carbon-based materials, MNPs are easily functionalized by modifying their surface to precisely recognize and bind proteins. This review excavates state-of-the-art MNPs and their functionalizing agents, as efficient protein separation and purification techniques, including ionic metals, polymers, biomolecules, antibodies, and graphene. The MNPs could be reused and efficaciously manipulated with these nanomaterials leading to highly improved efficiency, adsorption, desorption, and purity rate. We also discuss the binding and selectivity parameters of the MNPs, as well as their future outlook. It is concluded that parameters like charge, size, core-shell, lipophilicity, lipophobicity, and surface energy of the MNPs are crucial when considering protein selectivity, chelation, separation, and purity.


Assuntos
Nanopartículas de Magnetita , Nanopartículas de Magnetita/química , Magnetismo , Polímeros , Adsorção
11.
Biotechnol Lett ; 45(8): 1001-1011, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37266881

RESUMO

Current research focuses on the soluble and high-level expression of biologically active recombinant human IL-29 protein in Escherichia coli. The codon-optimized IL-29 gene was cloned into the Champion™ pET SUMO expression system downstream of the SUMO tag under the influence of the T7 lac promoter. The expression of SUMO-fused IL-29 protein was compared in E. coli Rosetta 2(DE3), Rosetta 2(DE3) pLysS, and Rosetta-gami 2(DE3). The release of the SUMO fusion partner resulted in approximately 98 mg of native rhIL-29 protein with a purity of 99% from 1 l of fermentation culture. Purified rhIL-29 was found to be biologically active, as evaluated by its anti-proliferation assay. It was found that Champion™ pET SUMO expression system can be used to obtained high yield of biologically active soluble recombinant human protein compared to other expression vector.


Assuntos
Escherichia coli , Interleucinas , Humanos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Interleucinas/genética , Códon
12.
J Proteome Res ; 21(1): 220-231, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34780180

RESUMO

Cellular nucleic acid-binding proteins (NABPs), namely, DNA-binding proteins (DBPs) and RNA-binding proteins (RBPs), play important roles in many biological processes. However, extracting NABPs with high efficiency in living cells is challenging, which greatly limited their proteomics analysis and comprehensive characterization. Here, we discovered that titanium (IV) ion-immobilized metal affinity chromatography (Ti4+-IMAC) material could enrich DNA and RNA with high efficiency (96.82 ± 2.67 and 85.75 ± 2.99%, respectively). We therefore developed a Ti4+-IMAC method for the joint extraction of DBPs and RBPs. Through utilizing formaldehyde (FA) cross-linking, DBPs and RBPs were covalently linked to nucleic acids (NAs) and further denatured by organic solvents. After Ti4+-IMAC capture, 2000 proteins were identified in 293T cells, among which 417 DBPs and 999 RBPs were revealed, showing promising selectivity for NABPs. We further applied the Ti4+-IMAC capture method to lung cancer cell lines 95C and 95D, which have different tumor progression abilities. The DNA- and RNA-binding capabilities of many proteins have been dysregulated in 95D. Under our conditions, Ti4+-IMAC can be used as a selective and powerful tool for the comprehensive characterization of both DBPs and RBPs, which might be utilized to study their dynamic interactions with nucleic acids.


Assuntos
Neoplasias Pulmonares , Ácidos Nucleicos , Cromatografia de Afinidade/métodos , Humanos , Fosfopeptídeos/química , Proteômica/métodos , Titânio/química
13.
Am J Physiol Gastrointest Liver Physiol ; 323(5): G501-G510, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36218265

RESUMO

Intestinal enterocytes have an elaborate apical membrane of actin-rich protrusions known as microvilli. The organization of microvilli is orchestrated by the intermicrovillar adhesion complex (IMAC), which connects the distal tips of adjacent microvilli. The IMAC is composed of CDHR2 and CDHR5 as well as the scaffolding proteins USH1C, ANKS4B, and Myosin 7b (MYO7B). To create an IMAC, cells must transport the proteins to the apical membrane. Myosin 5b (MYO5B) is a molecular motor that traffics ion transporters to the apical membrane of enterocytes, and we hypothesized that MYO5B may also be responsible for the localization of IMAC proteins. To address this question, we used two different mouse models: 1) neonatal germline MYO5B knockout (MYO5B KO) mice and 2) adult intestinal-specific tamoxifen-inducible VillinCreERT2;MYO5Bflox/flox mice. In control mice, immunostaining revealed that CDHR2, CDHR5, USH1C, and MYO7B were highly enriched at the tips of the microvilli. In contrast, neonatal germline and adult MYO5B-deficient mice showed loss of apical CDHR2, CDHR5, and MYO7B in the brush border and accumulation in a subapical compartment. Colocalization analysis revealed decreased Mander's coefficients in adult inducible MYO5B-deficient mice compared with control mice for CDHR2, CDHR5, USH1C, and MYO7B. Scanning electron microscopy images further demonstrated aberrant microvilli packing in adult inducible MYO5B-deficient mouse small intestine. These data indicate that MYO5B is responsible for the delivery of IMAC components to the apical membrane.NEW & NOTEWORTHY The intestinal epithelium absorbs nutrients and water through an elaborate apical membrane of highly organized microvilli. Microvilli organization is regulated by the intermicrovillar adhesion complexes, which create links between neighboring microvilli and control microvilli packing and density. In this study, we report a new trafficking partner of the IMAC, Myosin 5b. Loss of Myosin 5b results in a disorganized brush border and failure of IMAC proteins to reach the distal tips of microvilli.


Assuntos
Enterócitos , Microvilosidades , Miosina Tipo V , Animais , Camundongos , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Enterócitos/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Microvilosidades/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo
14.
Mass Spectrom Rev ; 40(4): 309-333, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32491218

RESUMO

Phosphorylation is a form of protein posttranslational modification (PTM) that regulates many biological processes. Whereas phosphoproteomics is a scientific discipline that identifies and quantifies the phosphorylated proteome using mass spectrometry (MS). This task is extremely challenging as ~30% of the human proteome is phosphorylated; and each phosphoprotein may exist as multiple phospho-isoforms that are present in low abundance and stoichiometry. Hence, phosphopeptide enrichment techniques are indispensable to (phospho)proteomics laboratories. These enrichment methods encompass widely-adopted techniques such as (i) affinity-based chromatography; (ii) ion exchange and mixed-mode chromatography (iii) enrichment with phospho-specific antibodies and protein domains, and (iv) functionalized polymers and other less common but emerging technologies such as hydroxyapatite chromatography and precipitation with inorganic ions. Here, we review these techniques, their history, continuous development and evaluation. Besides, we outline associating challenges of phosphoproteomics that are linked to experimental design, sample preparation, and proteolytic digestion. In addition, we also discuss about the future outlooks in phosphoproteomics, focusing on elucidating the noncanonical phosphoproteome and deciphering the "dark phosphoproteome". © 2020 John Wiley & Sons Ltd.


Assuntos
Fosfopeptídeos , Espectrometria de Massas em Tandem , Cromatografia de Afinidade , Humanos , Fosforilação , Proteoma/metabolismo , Proteômica
15.
Protein Expr Purif ; 190: 106004, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34688918

RESUMO

Host cell proteins (HCPs) are process-related impurities that have influence on product safety and efficacy. HCPs should effectively be removed by chromatographic steps in downstream purification process. In this study, we aimed to evaluate the efficacy of immobilized-metal affinity chromatography (IMAC) for separation of HCPs from anti-HER2 single chain fragment variable (scFv) expressed in E. coli. This study explored how different purification conditions including native, denaturing and hybrid affect HCP level in purified anti-HER2 scFv. Furthermore, the effects of NaCl concentration in wash buffer as well as imidazole concentration in wash and elution buffer on purification yield and HCP level in purified anti-HER2 scFv were evaluated. It was found that increasing imidazole concentration in wash and elution buffers in native conditions reduced the yield of anti-HER2 scFv purification. However, enhancing NaCl concentration in wash buffer in purification under native conditions led to significant increase in the amount of anti-HER2 scFv without any change in protein purity. Herein, none of the IMAC purification methods conducted on soluble cytoplasmic proteins under native conditions could reduce the amount of HCP to acceptable level. HCP content was only lowered to ˂ 10 ppm when inclusion bodies were purified under hybrid conditions. Furthermore, increasing imidazole concentration in wash buffer in purification under hybrid conditions led to significant increase in eluted anti-HER2 scFv concentration, while HCP content was also increased in this condition. Overall, purification under hybrid conditions using wash buffer containing 40 mM imidazole resulted in the highest yield and acceptable level of HCP.


Assuntos
Cromatografia de Afinidade , Proteínas de Escherichia coli/química , Escherichia coli/química , Expressão Gênica , Receptor ErbB-2 , Anticorpos de Cadeia Única/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Anticorpos de Cadeia Única/biossíntese , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética
16.
Anal Bioanal Chem ; 414(12): 3697-3708, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35306568

RESUMO

Extracellular vesicles (EVs) play critical roles in intercellular communications, which contain valuable biomarkers for the detection of cancers. Phosphoproteomics analysis of human saliva EVs (sEVs) can help to discover lung cancer-related candidates. Due to the low abundance of phosphoproteins in sEVs, an efficient, reproducible, and cost-effective strategy is required for their enrichment. Here, we compared the latest phosphopeptide techniques, including TiO2, ZrO2, CaTiO3, and Ti4+-IMAC (immobilized metal affinity chromatography) methods, for phosphopeptide isolation. Our data demonstrated that Ti4+-IMAC was the superior one. By using the optimized Ti4+-IMAC approach, we identified more than 500 sEV phosphopeptides. Quantitative proteomics was employed to comprehensively decipher the sEV phosphoproteome of the normal group (n = 6) and lung cancer group (n = 6). Accordingly, 524 and 333 phosphopeptides were enriched, respectively, which corresponded to 439 and 282 phosphoproteins. In total, 857 unique sEV phosphopeptides corresponding to 721 phosphoproteins were revealed. Among 493 identified phosphosites, 37 were upregulated (> 1.5) and 217 were downregulated (< 0.66) in the cancer group. Our data collectively demonstrated that Ti4+-IMAC is an efficient and reproducible technology for comprehensive analysis of sEV phosphoproteome. Differentially expressed sEV phosphoproteins and phosphosites might be used for the detection of lung cancer non-invasively.


Assuntos
Vesículas Extracelulares , Neoplasias Pulmonares , Cromatografia de Afinidade/métodos , Vesículas Extracelulares/química , Humanos , Neoplasias Pulmonares/diagnóstico , Fosfopeptídeos/análise , Fosfoproteínas , Proteoma , Titânio/química
17.
J Proteome Res ; 20(1): 453-462, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33226818

RESUMO

Phosphopeptide enrichment is an essential step in large-scale, quantitative phosphoproteomics by mass spectrometry. Several phosphopeptide affinity enrichment techniques exist, such as immobilized metal-ion affinity chromatography (IMAC) and metal oxide affinity chromatography (MOAC). We compared zirconium(IV) IMAC (Zr-IMAC) magnetic microparticles to more commonly used titanium(IV) IMAC (Ti-IMAC) and TiO2 magnetic microparticles for phosphopeptide enrichment from simple and complex protein samples prior to phosphopeptide sequencing and characterization by mass spectrometry (liquid chromatography-tandem mass spectrometry, LC-MS/MS). We optimized sample-loading conditions to increase phosphopeptide recovery for Zr-IMAC-, Ti-IMAC-, and TiO2-based workflows by 22, 24, and 35%, respectively. The optimized protocol resulted in improved performance of Zr-IMAC over Ti-IMAC and TiO2 as well as high-performance liquid chromatography-based Fe(III)-IMAC with up to 23% more identified phosphopeptides. The different enrichment chemistries showed a high degree of overlap but also differences in phosphopeptide selectivity and complementarity. We conclude that Zr-IMAC improves phosphoproteome coverage and recommend that this complementary and scalable affinity enrichment method is more widely used in biological and biomedical studies of cell signaling and the search for biomarkers. Data are available via ProteomeXchange with identifier PXD018273.


Assuntos
Fosfopeptídeos , Zircônio , Cromatografia de Afinidade , Cromatografia Líquida , Compostos Férricos , Fenômenos Magnéticos , Espectrometria de Massas em Tandem , Titânio
18.
J Proteome Res ; 20(10): 4886-4892, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473931

RESUMO

Protein phosphorylation in prokaryotes has gained more attention in recent years as several studies linked it to regulatory and signaling functions, indicating importance similar to protein phosphorylation in eukaryotes. Studies on bacterial phosphorylation have so far been conducted using manual or HPLC-supported phosphopeptide enrichment, whereas automation of phosphopeptide enrichment has been established in eukaryotes, allowing for high-throughput sampling. To facilitate the prospect of studying bacterial phosphorylation on a systems level, we here established an automated Ser/Thr/Tyr phosphopeptide enrichment workflow on the Agilent AssayMap platform. We present optimized buffer conditions for TiO2 and Fe(III)-NTA-IMAC cartridge-based enrichment and the most advantageous, species-specific loading amounts for Streptococcus pyogenes, Listeria monocytogenes, and Bacillus subtilis. For higher sample amounts (≥250 µg), we observed superior performance of the Fe(III)-NTA cartridges, whereas for lower sample amounts (≤100 µg), TiO2-based enrichment is equally efficient. Both cartridges largely enriched the same set of phosphopeptides, suggesting no improvement of peptide yield by the complementary use of the two cartridges. Our data represent, to the best of our knowledge, the largest phosphoproteome identified in a single study for each of these bacteria.


Assuntos
Cromatografia de Afinidade , Fosfopeptídeos , Bacillus subtilis/metabolismo , Listeria monocytogenes/metabolismo , Fosfopeptídeos/metabolismo , Fosforilação , Proteoma/metabolismo , Streptococcus pyogenes/metabolismo , Titânio
19.
J Biol Chem ; 295(28): 9281-9296, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32209652

RESUMO

Specialized transporting and sensory epithelial cells employ homologous protocadherin-based adhesion complexes to remodel their apical membrane protrusions into organized functional arrays. Within the intestine, the nutrient-transporting enterocytes utilize the intermicrovillar adhesion complex (IMAC) to assemble their apical microvilli into an ordered brush border. The IMAC bears remarkable homology to the Usher complex, whose disruption results in the sensory disorder type 1 Usher syndrome (USH1). However, the entire complement of proteins that comprise both the IMAC and Usher complex are not yet fully elucidated. Using a protein isolation strategy to recover the IMAC, we have identified the small EF-hand protein calmodulin-like protein 4 (CALML4) as an IMAC component. Consistent with this finding, we show that CALML4 exhibits marked enrichment at the distal tips of enterocyte microvilli, the site of IMAC function, and is a direct binding partner of the IMAC component myosin-7b. Moreover, distal tip enrichment of CALML4 is strictly dependent upon its association with myosin-7b, with CALML4 acting as a light chain for this myosin. We further show that genetic disruption of CALML4 within enterocytes results in brush border assembly defects that mirror the loss of other IMAC components and that CALML4 can also associate with the Usher complex component myosin-7a. Our study further defines the molecular composition and protein-protein interaction network of the IMAC and Usher complex and may also shed light on the etiology of the sensory disorder USH1H.


Assuntos
Calmodulina/metabolismo , Membrana Celular/metabolismo , Enterócitos/metabolismo , Cadeias Leves de Miosina/metabolismo , Síndromes de Usher/metabolismo , Animais , Células COS , Células CACO-2 , Calmodulina/genética , Membrana Celular/genética , Membrana Celular/patologia , Chlorocebus aethiops , Enterócitos/patologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Cadeias Pesadas de Miosina/metabolismo , Cadeias Leves de Miosina/genética , Miosina Tipo II/metabolismo , Síndromes de Usher/genética , Síndromes de Usher/patologia
20.
Microbiology (Reading) ; 167(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34297654

RESUMO

Cellulosomes are highly complex cell-bound multi-enzymatic nanomachines used by anaerobes to break down plant carbohydrates. The genome sequence of Ruminococcus flavefaciens revealed a remarkably diverse cellulosome composed of more than 200 cellulosomal enzymes. Here we provide a detailed biochemical characterization of a highly elaborate R. flavefaciens cellulosomal enzyme containing an N-terminal dockerin module, which anchors the enzyme into the multi-enzyme complex through binding of cohesins located in non-catalytic cell-bound scaffoldins, and three tandemly repeated family 16 glycoside hydrolase (GH16) catalytic domains. The DNA sequence encoding the three homologous catalytic domains was cloned and hyper-expressed in Escherichia coli BL21 (DE3) cells. SDS-PAGE analysis of purified His6 tag containing RfGH16_21 showed a single soluble protein of molecular size ~89 kDa, which was in agreement with the theoretical size, 89.3 kDa. The enzyme RfGH16_21 exhibited activity over a wide pH range (pH 5.0-8.0) and a broad temperature range (50-70 °C), displaying maximum activity at an optimum pH of 7.0 and optimum temperature of 55 °C. Substrate specificity analysis of RfGH16_21 revealed maximum activity against barley ß-d-glucan (257 U mg-1) followed by lichenan (247 U mg-1), but did not show significant activity towards other tested polysaccharides, suggesting that it is specifically a ß-1,3-1,4-endoglucanase. TLC analysis revealed that RfGH16_21 hydrolyses barley ß-d-glucan to cellotriose, cellotetraose and a higher degree of polymerization of gluco-oligosaccharides indicating an endo-acting catalytic mechanism. This study revealed a fairly high, active and thermostable bacterial endo-glucanase which may find considerable biotechnological potentials.


Assuntos
Proteínas de Bactérias/química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Ruminococcus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estabilidade Enzimática , Glucanos/metabolismo , Glicosídeo Hidrolases/genética , Concentração de Íons de Hidrogênio , Família Multigênica , Domínios Proteicos , Ruminococcus/química , Ruminococcus/genética , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA