Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(17): e2307219121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621139

RESUMO

For countries' emission-reduction efforts under the Paris Agreement to be effective, baseline emission/removals levels and reporting must be as transparent and accurate as possible. For Indonesia, which holds among the largest area of tropical peatlands and mangrove forest in the world, it is particularly important for these high-carbon ecosystems to produce high-accuracy greenhouse gas inventory and to improve national forest reference emissions level/forest reference level. Here, we highlight the opportunity for refining greenhouse gas emission factors (EF) of peatlands and mangroves and describe scientific challenges to support climate policy processes in Indonesia, where 55 to 59% of national emission reduction targets by 2030 depend on mitigation in Forestry and Other Land Use. Based on the stock-difference and flux change approaches, we examine higher-tier EF for drained and rewetted peatland, peatland fires, mangrove conversions, and mangrove on peatland to improve future greenhouse gas flux reporting in Indonesia. We suggest that these refinements will be essential to support Indonesia in achieving Forest and Other Land Use net sink by 2030 and net zero emissions targets by 2060 or earlier.

2.
Proc Natl Acad Sci U S A ; 120(7): e2201926119, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745810

RESUMO

Paleontology has provided invaluable basic knowledge on the history of life on Earth. The discipline can also provide substantial knowledge to societal challenges such as climate change. The long-term perspective of climate change impacts on natural systems is both a unique selling point and a major obstacle to becoming more pertinent for policy-relevant bodies like the Intergovernmental Panel on Climate Change (IPCC). Repeated experiments on the impacts of climate change without anthropogenic disturbance facilitate the extraction of climate triggers in biodiversity changes. At the same time, the long timescales over which paleontological changes are usually assessed are beyond the scope of policymakers. Based on first-hand experience with the IPCC and a quantitative analysis of its cited literature, we argue that the differences in temporal scope are less of an issue than inappropriate framing and reporting of most paleontological publications. Accepting that some obstacles will remain, paleontology can quickly improve its relevance by targeting climate change impacts more directly and focusing on effect sizes and relevance for projections, particularly on higher-end climate change scenarios.

3.
Proc Natl Acad Sci U S A ; 120(4): e2209472120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649426

RESUMO

Climate change is an indisputable threat to human health, especially for societies already confronted with rising social inequality, political and economic uncertainty, and a cascade of concurrent environmental challenges. Archaeological data about past climate and environment provide an important source of evidence about the potential challenges humans face and the long-term outcomes of alternative short-term adaptive strategies. Evidence from well-dated archaeological human skeletons and mummified remains speaks directly to patterns of human health over time through changing circumstances. Here, we describe variation in human epidemiological patterns in the context of past rapid climate change (RCC) events and other periods of past environmental change. Case studies confirm that human communities responded to environmental changes in diverse ways depending on historical, sociocultural, and biological contingencies. Certain factors, such as social inequality and disproportionate access to resources in large, complex societies may influence the probability of major sociopolitical disruptions and reorganizations-commonly known as "collapse." This survey of Holocene human-environmental relations demonstrates how flexibility, variation, and maintenance of Indigenous knowledge can be mitigating factors in the face of environmental challenges. Although contemporary climate change is more rapid and of greater magnitude than the RCC events and other environmental changes we discuss here, these lessons from the past provide clarity about potential priorities for equitable, sustainable development and the constraints of modernity we must address.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Mudança Climática , Desenvolvimento Sustentável , Probabilidade
4.
Glob Chang Biol ; 30(5): e17303, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38741339

RESUMO

Nitrous oxide (N2O) emissions from livestock manure contribute significantly to the growth of atmospheric N2O, a powerful greenhouse gas and dominant ozone-depleting substance. Here, we estimate global N2O emissions from livestock manure during 1890-2020 using the tier 2 approach of the 2019 Refinement to the 2006 IPCC Guidelines. Global N2O emissions from livestock manure increased by ~350% from 451 [368-556] Gg N year-1 in 1890 to 2042 [1677-2514] Gg N year-1 in 2020. These emissions contributed ~30% to the global anthropogenic N2O emissions in the decade 2010-2019. Cattle contributed the most (60%) to the increase, followed by poultry (19%), pigs (15%), and sheep and goats (6%). Regionally, South Asia, Africa, and Latin America dominated the growth in global emissions since the 1990s. Nationally, the largest emissions were found in India (329 Gg N year-1), followed by China (267 Gg N year-1), the United States (163 Gg N year-1), Brazil (129 Gg N year-1) and Pakistan (102 Gg N year-1) in the 2010s. We found a substantial impact of livestock productivity, specifically animal body weight and milk yield, on the emission trends. Furthermore, a large spread existed among different methodologies in estimates of global N2O emission from livestock manure, with our results 20%-25% lower than those based on the 2006 IPCC Guidelines. This study highlights the need for robust time-variant model parameterization and continuous improvement of emissions factors to enhance the precision of emission inventories. Additionally, urgent mitigation is required, as all available inventories indicate a rapid increase in global N2O emissions from livestock manure in recent decades.


Assuntos
Gado , Esterco , Óxido Nitroso , Óxido Nitroso/análise , Esterco/análise , Animais , Poluentes Atmosféricos/análise
5.
J Fish Biol ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39193898

RESUMO

Climate heating has the potential to drive changes in ecosystems at multiple levels of biological organization. Temperature directly affects the inherent physiology of plants and animals, resulting in changes in rates of photosynthesis and respiration, and trophic interactions. Predicting temperature-dependent changes in physiological and trophic processes, however, is challenging because environmental conditions and ecosystem structure vary across biogeographical regions of the globe. To realistically predict the effects of projected climate heating on wildlife populations, mechanistic tools are required to incorporate the inherent physiological effects of temperature changes, as well as the associated effects on food availability within and across comparable ecosystems. Here we applied an agent-based bioenergetics model to explore the combined effects of projected temperature increases for 2100 (1.4, 2.7, and 4.4°C), and associated changes in prey availability, on three-spined stickleback (Gasterosteus aculeatus) populations representing latitudes 50, 55, and 60°N. Our results showed a decline in population density after a simulated 1.4°C temperature increase at 50°N. In all other modeled scenarios there was an increase (inflation) in population density and biomass (per unit area) with climate heating, and this inflation increased with increasing latitude. We conclude that agent-based bioenergetics models are valuable tools in discerning the impacts of climate change on wild fish populations, which play important roles in aquatic food webs.

6.
J Environ Manage ; 357: 120736, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574706

RESUMO

Onsite sanitation systems (OSS) are significant sources of greenhouse gases (GHG) including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). While a handful of studies have been conducted on GHG emissions from OSS, systematic evaluation of literature on this subject is limited. Our systematic review and meta-analysis provides state-of-the- art information on GHG emissions from OSS and identifies novel areas for investigation. The paper analyzes GHG emission rates from different OSS, the influence of various design, operational, and environmental factors on emission rates and proffers mitigation measures. Following the Preferred Reporting Items for Systematic reviews and Meta-analysis (PRISMA) guidelines, we identified 16 articles which quantified GHG emissions from OSS. Septic tanks emit substantial amounts of CO2 and CH4 ranging from 1.74 to 398.30 g CO2/cap/day and 0.06-110.13 g CH4/cap/day, respectively, but have low N2O emissions (0.01-0.06 g N2O/cap/day). CH4 emissions from pit latrines range from 0.77 to 20.30 g CH4/cap/day N2O emissions range from 0.76 to 1.20 gN2O/cap/day. We observed statistically significant correlations (p < 0.05) between temperature, biochemical oxygen demand, chemical oxygen demand, dissolved oxygen, storage period, and GHG emissions from OSS. However, no significant correlation (p > 0.05) was observed between soil volumetric water content and CO2 emissions. CH4 emissions (expressed as CO2 equivalents) from OSS estimated following Intergovernmental Panel for Climate Change (IPCC) guidelines were found to be seven times lower (90.99 g CO2e/cap/day) than in-situ field emission measurements (704.7 g CO2e/cap/day), implying that relying solely on IPCC guidelines may lead to underestimation of GHG emission from OSS. Our findings underscore the importance of considering local contexts and environmental factors when estimating GHG emissions from OSS. Plausible mitigation measures for GHG emissions from OSS include converting waste to biogas in anaerobic systems (e.g. biogas), applying biochar, and implementing mitigation policies that equally address inequalities in sanitation service access. Future research on GHG from OSS should focus on in-situ measurements of GHGs from pit latrines and other common OSS in developing countries, understanding the fate and transport of dissolved organics like CH4 in OSS effluents and impacts of microbial communities in OSS on GHG emissions. Addressing these gaps will enable more holistic and effective management of GHG emissions from OSS.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Metano , Óxido Nitroso , Saneamento , Gases de Efeito Estufa/análise , Dióxido de Carbono/análise , Óxido Nitroso/análise , Metano/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise
7.
J Environ Manage ; 365: 121636, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955039

RESUMO

Exploring the mismatch between supply and demand (SD) for carbon sequestration services (CSS) is essential for achieving the "double carbon" goal. However, more studies are needed on the traits of the spatial mismatch between SD in mountainous cities. We used the CASA model and the IPCC emission factor approach to address this issue and quantify the SD of CSS in Chongqing. Second, we established a matching relationship model for the SD of CSS in Chongqing. Finally, we applied the Structural Equation Model with the Partial Dependence Plots model to reveal the influencing factors and internal mechanisms of spatial mismatch between the SD of CSS in Chongqing. The outcomes confirmed a decrease in fashion in the total supply of CSS in Chongqing and growth in fashion in general demand from 2000 to 2020. The SD mismatch was mainly concentrated inside the central city and other built-up areas. The SD mismatch area had increased by 390%, indicating a continuous upward trend. In exploring the factors influencing the mismatch between the SD of CSS in Chongqing, supply is mainly positively influenced by NDVI, and demand and supply-demand relationships are influenced by population density and LUCC. We proposed policy suggestions to alleviate the spatial mismatch and practical significance for achieving the "double carbon" goal and promoting sustainable development.


Assuntos
Sequestro de Carbono , Carbono
8.
Waste Manag Res ; 42(1): 81-92, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37138493

RESUMO

The Intergovernmental Panel on Climate Change (IPCC) indicates that the waste sector is a potential emitter of methane gas (CH4), which has a greenhouse effect up to 28 times greater than that of carbon dioxide (CO2). The management of municipal solid waste (MSW) generates greenhouse gases (GHG) directly through emissions from the process itself as well as indirectly through transportation and energy consumption. The objective of this study was to evaluate the GHG emissions contributed by the waste sector in the Recife metropolitan region (RMR) and to define mitigation scenarios to comply with the Brazilian Nationally Determined Contribution (NDC), a result of the Paris Agreement. To achieve this, an exploratory study was carried out, including a literature review, collection of data, estimation of emissions using the IPCC model (2006), and comparison between the values assumed by the country in 2015 and those estimated in the adopted mitigation scenarios. The RMR is composed of 15 municipalities, has an area of 3,216,262 km2 and a population of 4,054,866 inhabitants (2018), generating approximality 1.4 million t-year of MSW. It was estimated that, in the period from 2006 to 2018, 25.4 million tCO2e were emitted. The comparative analysis between the absolute values defined in the Brazilian NDC and the results from the mitigation scenarios showed that approximately 36 million tCO2e could be avoided through the disposal of MSW in the RMR, equivalent to a 52% reduction in emissions estimated for 2030, a percentage greater than the 47% reduction assumed in the Paris Agreement.


Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos , Resíduos Sólidos/análise , Eliminação de Resíduos/métodos , Brasil , Dióxido de Carbono/análise , Efeito Estufa , Metano/análise
9.
Writ Commun ; 41(2): 352-377, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38410793

RESUMO

Rhetorical figures of speech provide important analytical frames to chart how arguments operate within genres and within genre ecologies. Varieties of the figure prolepsis allow for the rendering of future time or fact in the present, which can be a powerful rhetorical inducement toward social and political action. In this article, we examine how anticipatory arguments drawn from complex data shape a key genre for public and policy-facing work on the climate crisis-the Intergovernmental Panel on Climate Change's Synthesis Report's (SYR) Statement for Policy Makers (SPM). We examine how the rhetorical figure of prolepsis operates within this genre to understand the anticipatory arguments and logics emerging from the synthesis of scientific findings and their reporting. Pairing figural studies and Rhetorical Genre Studies, we further offer an approach to investigate how these patterned operations of language might intersect in their rhetorical workings.

10.
Environ Sci Technol ; 57(6): 2248-2261, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36735881

RESUMO

Municipal wastewater collection and treatment systems are critical infrastructures, and they are also identified as major sources of anthropogenic CH4 emissions that contribute to climate change. The actual CH4 emissions at the plant- or regional level vary greatly due to site-specific conditions as well as high seasonal and diurnal variations. Here, we conducted the first quantitative analysis of CH4 emissions from different types of sewers and water resource recovery facilities (WRRFs). We examined variations in CH4 emissions associated with methods applied in different monitoring campaigns, and identified main CH4 sources and sinks to facilitate carbon emission reduction efforts in the wastewater sector. We found plant-wide CH4 emissions vary by orders of magnitude, from 0.01 to 110 g CH4/m3 with high emissions associated with plants equipped with anaerobic digestion or stabilization ponds. Rising mains show higher dissolved CH4 concentrations than gravity sewers when transporting similar raw sewage under similar environmental conditions, but the latter dominates most collection systems around the world. Using the updated data sets, we estimated annual CH4 emission from the U.S. centralized, municipal wastewater treatment to be approximately 10.9 ± 7.0 MMT CO2-eq/year, which is about twice as the IPCC (2019) Tier 2 estimates (4.3-6.1 MMT CO2-eq/year). Given CH4 emission control will play a crucial role in achieving net zero carbon goals by the midcentury, more studies are needed to profile and mitigate CH4 emissions from the wastewater sector.


Assuntos
Dióxido de Carbono , Águas Residuárias , Dióxido de Carbono/análise , Metano/análise , Esgotos , Carbono
11.
Environ Monit Assess ; 195(9): 1107, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37642821

RESUMO

The study reported herein presents the methane generation potential from municipal solid waste (MSW) generated in Kanpur city using four established methods, namely: the IPCC Default Method (DM), EPER Germany, The IPCC First Order Decay (FOD) method, and the Modified Triangular Method (MTM). Results revealed that the average maximum and minimum emissions with respect to total MSW generated and considered over the study period were obtained in the IPCC Default Method (19.17Gg/year) and the MTM (1.00Gg/year), respectively. Furthermore, the sensitivity analysis carried out revealed that the MTM method is the least uncertain method in predicting the methane emissions. Energy generation using the Yedla method and the Stoichiometric method was also carried out, highlighting the potential for energy recovery using methane emissions. The total energy generation potential using the Yedla method over the entire study period was determined to be 924 TJ, with an increased potential of 30% between the periods of 2022 to 2031. According to the study, there exists significant potential for effectively managing the greenhouse gas emissions from open dumpsite by harnessing the methane produced and using it for energy generation.


Assuntos
Monitoramento Ambiental , Resíduos Sólidos , Índia , Alemanha , Metano
12.
Environ Monit Assess ; 195(12): 1448, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37945787

RESUMO

Over the past three decades, global urbanization and climate change have caused significant differences in climate conditions between urban and rural environments. The effects of global warming affect the climatic values in the urban area. The bioclimatic comfort in an area effectively chooses a site regarding the urban quality of life and activities. This study aims to predict the temporal and spatial changes of the bioclimatic comfort zones of Gaziantep province in terms of climate comfort in the context of long-term global scenarios. The future climate simulation maps were produced and analyzed comparing comfort conditions according to Shared Socioeconomic Pathways (SSPs) 245 and 585 scenarios of the Intergovernmental Panel on Climate Change's (IPCC) Coupled Model Intercomparison Project (CMIP) Phase 6 (CMIP6). Spatio-temporal changes in temperature, humidity, and bioclimatic comfort areas were analyzed to inform these efforts according to Thom's discomfort index (DI) and effective temperature-taking wind velocity (ETv). The current situation of bioclimatic comfort areas to examine their synergy under extreme hot weather throughout the province and their possible concerns in 2040, 2060, 2080, and 2100 were modeled using ArcGIS 10.8 software. SSP585/2100 will create hot (84%) areas, according to DI, and warm (29%) areas, according to ETv. The spatial results of the research are discussed, and some strategies are produced in terms of urban planning, design, and engineering.


Assuntos
Monitoramento Ambiental , Qualidade de Vida , Monitoramento Ambiental/métodos , Temperatura , Vento , Urbanização , Mudança Climática
13.
Glob Chang Biol ; 28(17): 5142-5158, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35642457

RESUMO

Livestock contributes approximately one-third of global anthropogenic methane (CH4 ) emissions. Quantifying the spatial and temporal variations of these emissions is crucial for climate change mitigation. Although country-level information is reported regularly through national inventories and global databases, spatially explicit quantification of century-long dynamics of CH4 emissions from livestock has been poorly investigated. Using the Tier 2 method adopted from the 2019 Refinement to 2006 IPCC guidelines, we estimated CH4 emissions from global livestock at a spatial resolution of 0.083° (~9 km at the equator) during the period 1890-2019. We find that global CH4 emissions from livestock increased from 31.8 [26.5-37.1] (mean [minimum-maximum of 95% confidence interval) Tg CH4 yr-1 in 1890 to 131.7 [109.6-153.7] Tg CH4 yr-1 in 2019, a fourfold increase in the past 130 years. The growth in global CH4 emissions mostly occurred after 1950 and was mainly attributed to the cattle sector. Our estimate shows faster growth in livestock CH4 emissions as compared to the previous Tier 1 estimates and is ~20% higher than the estimate from FAOSTAT for the year 2019. Regionally, South Asia, Brazil, North Africa, China, the United States, Western Europe, and Equatorial Africa shared the majority of the global emissions in the 2010s. South Asia, tropical Africa, and Brazil have dominated the growth in global CH4 emissions from livestock in the recent three decades. Changes in livestock CH4 emissions were primarily associated with changes in population and national income and were also affected by the policy, diet shifts, livestock productivity improvement, and international trade. The new geospatial information on the magnitude and trends of livestock CH4 emissions identifies emission hotspots and spatial-temporal patterns, which will help to guide meaningful CH4 mitigation practices in the livestock sector at both local and global scales.


Assuntos
Gado , Metano , Animais , Bovinos , Mudança Climática , Comércio , Internacionalidade
14.
Glob Chang Biol ; 28(23): 6992-7008, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36053734

RESUMO

There is a need to revise the framework used to project species risks under climate change (CC) and land-use/cover change (LUCC) scenarios. We built a CC risk index using the latest Intergovernmental Panel on Climate Change framework, where risk is a function of vulnerability (sensitivity and adaptive capacity), exposure, and hazard. We incorporated future LUCC scenarios as part of the exposure component. We combined a trait-based approach based on biological characteristics of species with a correlative approach based on ecological niche modeling, assigning risk scores to species, taxonomic (orders), and functional (trophic, body size, and locomotion) groups of terrestrial mammals occurring in Mexico. We identified 15 species projected to lose their climatic suitability. Of the 11 taxonomic orders, Eulipotyphla, Didelphimorphia, Artiodactyla, and Lagomorpha had the highest risk scores. Of the 19 trophic groups, piscivores, insectivores under canopy, frugivores-granivores, herbivores browser, and myrmecophagous had the highest risk scores. Of the five body-sized groups, large-sized species (>15 kg) had highest risk scores. Of the seven locomotion groups, arboreal and semi-aquatics had highest risk scores. CC and LUCC scenarios reduced suitable areas of species potential distributions by 37.5% (with CC), and 51% (with CC and LUCC) under a limited full-dispersal assumption. Reductions in suitable areas of species potential distributions increased to 50.2% (with CC), and 52.4% (with CC and LUCC) under a non-dispersal assumption. Species-rich areas (>75% species) projected 36% (with CC) and 57% (with CC and LUCC) reductions in suitability for 2070. Shifts in climatic suitability projections of species-rich areas increased in number of species in northeast and southeast Mexico and decreased in northwest and southern Mexico, suggesting important species turnover. High-risk projections under future CC and LUCC scenarios for species, taxonomic, and functional group diversities, and species-rich areas of terrestrial mammals highlight trends in different impacts on biodiversity and ecosystem function.


Assuntos
Mudança Climática , Ecossistema , Animais , México , Biodiversidade , Mamíferos
15.
Glob Chang Biol ; 28(18): 5416-5426, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35716047

RESUMO

Habitat loss and shifts associated with climate change threaten global biodiversity, with impacts likely to be most pronounced at high latitudes. With the disappearance of the tundra breeding habitats, migratory shorebirds that breed at these high latitudes are likely to be even more vulnerable to climate change than those in temperate regions. We examined this idea using new distributional information on two subspecies of Black-tailed Godwits Limosa limosa in Asia: the northerly, bog-breeding L. l. bohaii and the more southerly, steppe-breeding L. l. melanuroides. Based on breeding locations of tagged and molecularly assayed birds, we modelled the current breeding distributions of the two subspecies with species distribution models, tested those models for robustness and then used them to predict climatically suitable breeding ranges in 2070 according to bioclimatic variables and different climate change scenarios. Our models were robust and showed that climate change is expected to push bohaii into the northern rim of the Eurasian continent. Melanuroides is also expected to shift northward, stopping in the Yablonovyy and Stanovoy Ranges, and breeding elevation is expected to increase. Climatically suitable breeding habitat ranges would shrink to 16% and 11% of the currently estimated ranges of bohaii and melanuroides, respectively. Overall, this study provides the first predictions for the future distributions of two little-known Black-tailed Godwit subspecies and highlights the importance of factoring in shifts in bird distribution when designing climate-proof conservation strategies.


Assuntos
Charadriiformes , Mudança Climática , Animais , Biodiversidade , Aves , Ecossistema
16.
Glob Chang Biol ; 28(1): 54-71, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34669228

RESUMO

Rapid climate change is placing many marine species at risk of local extinction. Recent studies show that epigenetic mechanisms (e.g. DNA methylation, histone modifications) can facilitate both within and transgenerational plasticity to cope with changing environments. However, epigenetic reprogramming (erasure and re-establishment of epigenetic marks) during gamete and early embryo development may hinder transgenerational epigenetic inheritance. Most of our knowledge about reprogramming stems from mammals and model organisms, whereas the prevalence and extent of reprogramming among non-model species from wild populations is rarely investigated. Moreover, whether reprogramming dynamics are sensitive to changing environmental conditions is not well known, representing a key knowledge gap in the pursuit to identify mechanisms underlying links between parental exposure to changing climate patterns and environmentally adapted offspring phenotypes. Here, we investigated epigenetic reprogramming (DNA methylation/hydroxymethylation) and gene expression across gametogenesis and embryogenesis of marine stickleback (Gasterosteus aculeatus) under three ocean warming scenarios (ambient, +1.5 and +4°C). We found that parental acclimation to ocean warming led to dynamic and temperature-sensitive reprogramming throughout offspring development. Both global methylation/hydroxymethylation and expression of genes involved in epigenetic modifications were strongly and differentially affected by the increased warming scenarios. Comparing transcriptomic profiles from gonads, mature gametes and early embryonic stages showed sex-specific accumulation and temperature sensitivity of several epigenetic actors. DNA methyltransferase induction was primarily maternally inherited (suggesting maternal control of remethylation), whereas induction of several histone-modifying enzymes was shaped by both parents. Importantly, massive, temperature-specific changes to the epigenetic landscape occurred in blastula, a critical stage for successful embryo development, which could, thus, translate to substantial consequences for offspring phenotype resilience in warming environments. In summary, our study identified key stages during gamete and embryo development with temperature-sensitive reprogramming and epigenetic gene regulation, reflecting potential 'windows of opportunity' for adaptive epigenetic responses under future climate change.


Assuntos
Smegmamorpha , Animais , Desenvolvimento Embrionário/genética , Epigênese Genética , Feminino , Gametogênese/genética , Expressão Gênica , Masculino , Oceanos e Mares , Smegmamorpha/genética , Temperatura
17.
Geophys Res Lett ; 49(20): e2022GL099788, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36589268

RESUMO

The IPCC's scientific assessment of the timing of net-zero emissions and 2030 emission reduction targets consistent with limiting warming to 1.5°C or 2°C rests on large scenario databases. Updates to this assessment, such as between the IPCC's Special Report on Global Warming of 1.5°C (SR1.5) of warming and the Sixth Assessment Report (AR6), are the result of intertwined, sometimes opaque, factors. Here we isolate one factor: the Earth System Model emulators used to estimate the global warming implications of scenarios. We show that warming projections using AR6-calibrated emulators are consistent, to within around 0.1°C, with projections made by the emulators used in SR1.5. The consistency is due to two almost compensating changes: the increase in assessed historical warming between SR1.5 (based on AR5) and AR6, and a reduction in projected warming due to improved agreement between the emulators' response to emissions and the assessment to which it is calibrated.

18.
Environ Res ; 212(Pt D): 113468, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35597295

RESUMO

Current methods for estimating sanitation emissions underestimate the significance of methane emissions from non-sewered sanitation systems (NSSS), which are prevalent in many countries. NSSS play a vital role in the safe management of fecal sludge, accounting for approximately half of all existing sanitation provisions. We analyzed the distribution of global NSSS and used IPCC accounting methods to estimate the total methane emissions profiles from these systems. Then, we examined the literature to establish the level of uncertainty associated with this accounting estimate. The global methane emissions from NSSS in 2020 was estimated to as 377 (22-1003) Mt CO2e/year or 4.7% (0.3%-12.5%) of global anthropogenic methane emissions, which are comparable to the greenhouse gas (GHG) emissions from wastewater treatment plants. NSSS is the major option for open defecation and is expected to increase by 55 Mt CO2e/year after complete open defecation free. It is time to acknowledge the GHG emissions from the NSSS as a non-negligible source.


Assuntos
Efeito Estufa , Gases de Efeito Estufa , Dióxido de Carbono/análise , Metano/análise , Saneamento
19.
J Environ Manage ; 303: 114246, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34891007

RESUMO

In this Short Communication, we raise the concern that the existing conceptualization of 'vulnerability', introduced in the IPCC Fifth Assessment Report (AR5), is not facilitative for standalone vulnerability assessments and that this conceptualization has not been well accepted by the vulnerability researchers. We identify three key reasons for low adoption of the AR5 conceptualization in climate change vulnerability assessments, and urge the IPCC Working Group II to clarify how the current conceptualization of 'vulnerability' can facilitate standalone climate change vulnerability assessments. We propose treating 'exposure' not only as a precondition for vulnerability but also as a secondary driver of vulnerability to capture the influence of differential exposure.


Assuntos
Mudança Climática , Formação de Conceito
20.
Molecules ; 27(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35164279

RESUMO

Sustainability evaluation of wastewater treatment helps to reduce greenhouse gas emissions, as it emphasizes the development of green technologies and optimum resource use rather than the end-of-pipe treatment. The conventional approaches for treating acid mine drainages (AMDs) are efficient; however, they need enormous amounts of energy, making them less sustainable and causing greater environmental concern. We recently demonstrated the potential of immobilized acid-adapted microalgal technology for AMD remediation. Here, this novel approach has been evaluated following emergy and carbon footprint analysis for its sustainability in AMD treatment. Our results showed that imported energy inputs contributed significantly (>90%) to the overall emergy and were much lower than in passive and active treatment systems. The microalgal treatment required 2-15 times more renewable inputs than the other two treatment systems. Additionally, the emergy indices indicated higher environmental loading ratio and lower per cent renewability, suggesting the need for adequate renewable inputs in the immobilized microalgal system. The emergy yield ratio for biodiesel production from the microalgal biomass after AMD treatment was >1.0, which indicates a better emergy return on total emergy spent. Based on greenhouse gas emissions, carbon footprint analysis (CFA), was performed using default emission factors, in accordance with the IPCC standards and the National Greenhouse Energy Reporting (NGER) program of Australia. Interestingly, CFA of acid-adapted microalgal technology revealed significant greenhouse gas emissions due to usage of various construction materials as per IPCC, while SCOPE 2 emissions from purchased electricity were evident as per NGER. Our findings indicate that the immobilized microalgal technology is highly sustainable in AMD treatment, and its potential could be realized further by including solar energy into the overall treatment system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA