Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Pathol ; 262(1): 61-75, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37796386

RESUMO

Pancreatic stellate cells (PSCs) are stromal cells in the pancreas that play an important role in pancreatic pathology. In chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC), PSCs are known to get activated to form myofibroblasts or cancer-associated fibroblasts (CAFs) that promote stromal fibroinflammatory reactions. However, previous studies on PSCs were mainly based on the findings obtained using ex vivo expanded PSCs, with few studies that addressed the significance of in situ tissue-resident PSCs using animal models. Their contributions to fibrotic reactions in CP and PDAC are also lesser-known. These limitations in our understanding of PSC biology have been attributed to the lack of specific molecular markers of PSCs. Herein, we established Meflin (Islr), a glycosylphosphatidylinositol-anchored membrane protein, as a PSC-specific marker in both mouse and human by using human pancreatic tissue samples and Meflin reporter mice. Meflin-positive (Meflin+ ) cells contain lipid droplets and express the conventional PSC marker Desmin in normal mouse pancreas, with some cells also positive for Gli1, the marker of pancreatic tissue-resident fibroblasts. Three-dimensional analysis of the cleared pancreas of Meflin reporter mice showed that Meflin+ PSCs have long and thin cytoplasmic protrusions, and are localised on the abluminal side of vessels in the normal pancreas. Lineage tracing experiments revealed that Meflin+ PSCs constitute one of the origins of fibroblasts and CAFs in CP and PDAC, respectively. In these diseases, Meflin+ PSC-derived fibroblasts showed a distinctive morphology and distribution from Meflin+ PSCs in the normal pancreas. Furthermore, we showed that the genetic depletion of Meflin+ PSCs accelerated fibrosis and attenuated epithelial regeneration and stromal R-spondin 3 expression, thereby implying that Meflin+ PSCs and their lineage cells may support tissue recovery and Wnt/R-spondin signalling after pancreatic injury and PDAC development. Together, these data indicate that Meflin may be a marker specific to tissue-resident PSCs and useful for studying their biology in both health and disease. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatite Crônica , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/patologia , Fibrose , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Células Estreladas do Pâncreas/patologia , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Pancreatite Crônica/patologia , Regeneração
2.
EMBO J ; 39(7): e103255, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32128839

RESUMO

The Hippo-YAP signaling pathway plays an essential role in epithelial cells during intestinal regeneration and tumorigenesis. However, the molecular mechanism linking stromal signals to YAP-mediated intestinal regeneration and tumorigenesis is poorly defined. Here, we report a stroma-epithelium ISLR-YAP signaling axis essential for stromal cells to modulate epithelial cell growth during intestinal regeneration and tumorigenesis. Specifically, upon inflammation and in cancer, an oncogenic transcription factor ETS1 in stromal cells induces expression of a secreted protein ISLR that can inhibit Hippo signaling and activate YAP in epithelial cells. Deletion of Islr in stromal cells in mice markedly impaired intestinal regeneration and suppressed tumorigenesis in the colon. Moreover, the expression of stromal cell-specific ISLR and ETS1 significantly increased in inflamed mucosa of human IBD patients and in human colorectal adenocarcinoma, accounting for the epithelial YAP hyperactivation. Collectively, our findings provide new insights into the signaling crosstalk between stroma and epithelium during tissue regeneration and tumorigenesis.


Assuntos
Neoplasias Colorretais/metabolismo , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Animais , Neoplasias Colorretais/genética , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Células HCT116 , Células HEK293 , Células HT29 , Via de Sinalização Hippo , Humanos , Doenças Inflamatórias Intestinais/genética , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Mutação , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
3.
J Proteome Res ; 22(7): 2493-2508, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37338096

RESUMO

Syndromic CLN3-Batten is a fatal, pediatric, neurodegenerative disease caused by variants in CLN3, which encodes the endolysosomal transmembrane CLN3 protein. No approved treatment for CLN3 is currently available. The protracted and asynchronous disease presentation complicates the evaluation of potential therapies using clinical disease progression parameters. Biomarkers as surrogates to measure the progression and effect of potential therapeutics are needed. We performed proteomic discovery studies using cerebrospinal fluid (CSF) samples from 28 CLN3-affected and 32 age-similar non-CLN3 individuals. Proximal extension assay (PEA) of 1467 proteins and untargeted data-dependent mass spectrometry [MS; MassIVE FTP server (ftp://MSV000090147@massive.ucsd.edu)] were used to generate orthogonal lists of protein marker candidates. At an adjusted p-value of <0.1 and threshold CLN3/non-CLN3 fold-change ratio of 1.5, PEA identified 54 and MS identified 233 candidate biomarkers. Some of these (NEFL, CHIT1) have been previously linked with other neurologic conditions. Others (CLPS, FAM217B, QRICH2, KRT16, ZNF333) appear to be novel. Both methods identified 25 candidate biomarkers, including CHIT1, NELL1, and ISLR2 which had absolute fold-change ratios >2. NELL1 and ISLR2 regulate axonal development in neurons and are intriguing new candidates for further investigation in CLN3. In addition to identifying candidate proteins for CLN3 research, this study provides a comparison of two large-scale proteomic discovery methods in CSF.


Assuntos
Doenças Neurodegenerativas , Lipofuscinoses Ceroides Neuronais , Humanos , Criança , Chaperonas Moleculares/metabolismo , Proteínas do Líquido Cefalorraquidiano , Glicoproteínas de Membrana/metabolismo , Proteômica , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo
4.
Genes Cells ; 26(7): 495-512, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33960573

RESUMO

Mesenchymal stem cells (MSCs) are the likely precursors of multiple lines of mesenchymal cells. The existence of bona fide MSCs with self-renewal capacity and differentiation potential into all mesenchymal lineages, however, has been unclear because of the lack of MSC-specific marker(s) that are not expressed by the terminally differentiated progeny. Meflin, a glycosylphosphatidylinositol-anchored protein, is an MSC marker candidate that is specifically expressed in rare stromal cells in all tissues. Our previous report showed that Meflin expression becomes down-regulated in bone marrow-derived MSCs cultured on plastic, making it difficult to examine the self-renewal and differentiation of Meflin-positive cells at the single-cell level. Here, we traced the lineage of Meflin-positive cells in postnatal and adult mice, showing that those cells differentiated into white and brown adipocytes, osteocytes, chondrocytes and skeletal myocytes. Interestingly, cells derived from Meflin-positive cells formed clusters of differentiated cells, implying the in situ proliferation of Meflin-positive cells or their lineage-committed progenitors. These results, taken together with previous findings that Meflin expression in cultured MSCs was lost upon their multilineage differentiation, suggest that Meflin is a useful potential marker to localize MSCs and/or their immature progenitors in multiple tissues.


Assuntos
Diferenciação Celular , Linhagem da Célula , Imunoglobulinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Condrócitos/citologia , Condrócitos/metabolismo , Imunoglobulinas/genética , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Células Musculares/citologia , Células Musculares/metabolismo , Osteócitos/citologia , Osteócitos/metabolismo
5.
BMC Cancer ; 22(1): 205, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35209871

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) are an important component of the tumour microenvironment. Recent studies revealed CAFs are heterogeneous and CAF subset(s) that suppress cancer progression (cancer-restraining CAFs [rCAFs]) must exist in addition to well-characterised cancer-promoting CAFs (pCAFs). However, the identity and specific markers of rCAFs are not yet reported. We recently identified Meflin as a specific marker of rCAFs in pancreatic and colon cancers. Our studies revealed that rCAFs may represent proliferating resident fibroblasts. Interestingly, a lineage tracing experiment showed Meflin-positive rCAFs differentiate into α-smooth muscle actin-positive and Meflin-negative CAFs, which are generally hypothesised as pCAFs, during cancer progression. Using a pharmacological approach, we identified AM80, a synthetic unnatural retinoid, as a reagent that effectively converts Meflin-negative pCAFs to Meflin-positive rCAFs. We aimed to investigate the efficacy of a combination of AM80 and gemcitabine (GEM) and nab-paclitaxel (nab-PTX) in patients with advanced pancreatic cancer. METHODS: The phase I part is a 3 + 3 design, open-label, and dose-finding study. The dose-limiting toxicity (DLT) of these combination therapies would be evaluated for 4 weeks. After the DLT evaluation period, if no disease progression is noted based on the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 or if the patient has no intolerable toxicity, administration of AM80 with GEM and nab-PTX would be continued for up to 24 weeks. The phase II part is an open-label, single-arm study. The maximum tolerated dose (MTD) of AM80 with GEM and nab-PTX, determined in phase I, would be administered until intolerable toxicity or disease progression occurs, up to a maximum of 24 weeks, to confirm efficacy and safety. The primary endpoints are frequency of DLT and MTD of AM80 with GEM and nab-PTX in the phase I part and response rate based on the RECIST in the phase II part. Given the historical control data, we hope that the response rate will be over 23% in phase II. DISCUSSION: Strategies to convert pCAFs into rCAFs have been developed in recent years. We hypothesised that AM80 would be a promising enhancer of chemosensitivity and drug distribution through CAF conversion in the stroma. TRIAL REGISTRATION: Clinicaltrial.gov: NCT05064618 , registered on 1 October 2021. jRCT: jRCT2041210056 , registered on 27 August 2021.


Assuntos
Albuminas/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Benzoatos/administração & dosagem , Desoxicitidina/análogos & derivados , Reposicionamento de Medicamentos/métodos , Paclitaxel/administração & dosagem , Neoplasias Pancreáticas/tratamento farmacológico , Tetra-Hidronaftalenos/administração & dosagem , Adulto , Idoso , Biomarcadores Tumorais/genética , Fibroblastos Associados a Câncer/efeitos dos fármacos , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Desoxicitidina/administração & dosagem , Feminino , Humanos , Imunoglobulinas/efeitos dos fármacos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Células Estromais/efeitos dos fármacos , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos , Adulto Jovem , Gencitabina
6.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077405

RESUMO

Brown adipose tissue (BAT) is functionally linked to skeletal muscle because both tissues originate from a common progenitor cell, but the precise mechanism controlling muscle-to-brown-fat communication is insufficiently understood. This report demonstrates that the immunoglobulin superfamily containing leucine-rich repeat (Islr), a marker of mesenchymal stromal/stem cells, is critical for the control of BAT mitochondrial function and whole-body energy homeostasis. The mice loss of Islr in BAT after cardiotoxin injury resulted in improved mitochondrial function, increased energy expenditure, and enhanced thermogenesis. Importantly, it was found that interleukin-6 (IL-6), as a myokine, participates in this process. Mechanistically, Islr interacts with NADH: Ubiquinone Oxidoreductase Core Subunit S2 (Ndufs2) to regulate IL-6 signaling; consequently, Islr functions as a brake that prevents IL-6 from promoting BAT activity. Together, these findings reveal a previously unrecognized mechanism for muscle-BAT cross talk driven by Islr, Ndufs2, and IL-6 to regulate energy homeostasis, which may be used as a potential therapeutic target in obesity.


Assuntos
Tecido Adiposo Marrom , Interleucina-6 , Tecido Adiposo Marrom/metabolismo , Animais , Diferenciação Celular , Metabolismo Energético , Homeostase , Imunoglobulinas/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Leucina/metabolismo , Camundongos , Músculo Esquelético/metabolismo , NADH Desidrogenase/metabolismo , Termogênese
7.
Cell Tissue Res ; 381(3): 479-492, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32696215

RESUMO

Immunoglobulin superfamily containing leucine-rich repeat (Islr) contains an Ig-like domain, an LRR motif, and a transmembrane domain and is highly expressed in various chicken tissues. Although Islr has known roles in muscle regeneration, its role in the regulation of muscle atrophy has not been studied. In this study, we constructed Islr-silenced or Islr-overexpressed myoblasts to investigate its role during the differentiation of myoblasts into myotubes. The results showed that Islr was highly expressed in chicken skeletal muscle tissue and regulated myoblast differentiation, but not proliferation. Islr regulated the expression of atrophy-related genes including atrogin-1 and MuRF-1, and could rescue dexamethasone-induced atrophy in myoblasts and myotubes. Western blot analysis indicated that Islr participates in myoblast atrophy through IGF/PI3K/AKT-FOXO signaling. Meanwhile, the expression of caspase-8 and caspase-9 increased in Islr-silenced groups, indicating its role in cell viability. Taken together, these data suggested that Islr plays an important role in myoblasts differentiation, and which can alleviate skeletal muscle atrophy and prevents muscle cell apoptosis via IGF/PI3K/AKT-FOXO signaling pathway.


Assuntos
Imunoglobulinas/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Atrofia Muscular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Humanos , Transdução de Sinais , Transfecção
8.
Sensors (Basel) ; 18(5)2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29772743

RESUMO

Severe sidelobe interference is one of the major problems with traditional Synthetic Aperture Radar (SAR) imaging. In the observation scene of sea areas, the number of targets in the observation scene is so small that targets can be regarded as sparse. Taking this into account, a method of sidelobe suppression, on the basis of sparsity constraint regularization, is proposed to reduce sidelobes of Gaofen-3 (GF-3) images in sea areas of the image domain. This proposed method has a prominent sidelobe suppression effect with resolution maintenance and without destruction of amplitude and phase information. This method can also be applied to SAR images of other satellites. In addition to the employment of peak sidelobe ratio (PSLR) and integrated sidelobe ratio (ISLR) in evaluating sidelobe suppression level, AE (amplitude error) and PE (phase error) are firstly defined for the evaluation of amplitude and phase-preserving quality, respectively. Through the proposed method, AE and PE values are nearly unchanged and the PSLR and ISLR are significantly reduced. The method, as an important part of the quality-improvement project of GF-3, has been successfully applied to the sidelobe suppression of GF-3 data.

9.
Cells ; 13(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38786060

RESUMO

Cells defend against oxidative stress by enhancing antioxidant capacity, including stress-activated metabolic alterations, but the underlying intracellular signaling mechanisms remain unclear. This paper reports that immunoglobulin superfamily containing leucine-rich repeat (ISLR) functions as a redox sensor that responds to reactive oxygen species (ROS) stimulation and modulates the antioxidant capacity by suppressing pyruvate kinase isozyme M2 (PKM2) activity. Following oxidative stress, ISLR perceives ROS stimulation through its cysteine residue 19, and rapidly degrades in the autophagy-lysosome pathway. The downregulated ISLR enhances the antioxidant capacity by promoting the tetramerization of PKM2, and then enhancing the pyruvate kinase activity, PKM2-mediated glycolysis is crucial to the ISLR-mediated antioxidant capacity. In addition, our results demonstrated that, in triple-negative breast cancer, cisplatin treatment reduced the level of ISLR, and PKM2 inhibition sensitizes tumors to cisplatin by enhancing ROS production; and argued that PKM2 inhibition can synergize with cisplatin to limit tumor growth. Our results demonstrate a molecular mechanism by which cells respond to oxidative stress and modulate the redox balance.


Assuntos
Antioxidantes , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio , Humanos , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Cisplatino/farmacologia , Feminino , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide , Camundongos , Piruvato Quinase/metabolismo , Glicólise/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/enzimologia
10.
Iran J Basic Med Sci ; 26(8): 960-965, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37427332

RESUMO

Objectives: Gastric cancer is a common malignant tumor with high morbidity and mortality. The present study aimed to investigate the role of the immunoglobulin superfamily containing leucine-rich repeat (ISLR) gene in gastric cancer and examine whether ISLR could interact with N-acetylglucosaminyltransferase V (MGAT5) to affect the malignant progression of gastric cancer. Materials and Methods: The expression of ISLR and MGAT5 in human normal gastric epithelial cells and human gastric cancer cells, and the transfection efficiency of ISLR interference plasmids and MGAT5 overexpression plasmids were all detected by reverse transcription-quantitative PCR (RT-qPCR) and western blot. The viability, proliferation, migration and invasion, and epithelial-mesenchymal transition (EMT) of gastric cancer cells after indicated transfection were detected by Cell counting kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, wound healing assay, and transwell assay. The interaction between ISLR and MGAT5 was confirmed by co-immunoprecipitation. The expression of proteins related to migration, invasion, and EMT was detected by immunofluorescence and western blot. Results: As a result, ISLR was highly expressed in gastric cancer and was associated with poor prognosis. Interference with ISLR inhibited the viability, proliferation, migration, invasion, and EMT of gastric cancer cells. ISLR interacted with MGAT5 in gastric cancer cells. MGAT5 overexpression weakened the effects of ISLR knockdown on suppressing the viability, proliferation, migration, invasion, and EMT of gastric cancer cells. Conclusion: ISLR interacted with MGAT5 to promote the malignant progression of gastric cancer.

11.
Bioengineered ; 13(5): 13544-13554, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35653801

RESUMO

This study aims to investigate the immunoglobulin superfamily containing leucine-rich repeat (ISLR) expression in gastric cancer (GC) and ISLR's underlying mechanisms regulation of GC progression. Through The Cancer Genome Atlas (TCGA) cohort datasets, we analyzed the ISLR expression in GC tumor tissues and normal tissues. ISLR expression in GC tissues and cells was determined using quantitative real-time polymerase chain reaction. Cell viability, proliferation, migration, and invasion assays were performed in GC cells transfected with sh-ISLR, ISLR plasmids, or controls. TCGA results showed that ISLR expression was higher in GC tumor tissues compared to normal tissues, and its expression levels were related to lymph node metastasis, tumor size, and clinical stage. ISLR was highly expressed in tumor cells. ISLR knockdown suppressed cell viability, proliferation, migration, and invasion in HGC-27 cells, whereas ISLR overexpression led to opposite effects in AGS cells. Gene Set Enrichment Analysis showed that ISLR could activate the epithelial-mesenchymal transition (EMT) signaling pathway. Silencing of ISLR suppressed EMT in HGC-27 cells and overexpression of ISLR promoted EMT in AGS cells. ISLR was overexpressed in both GC cell lines and tumor tissues, and our study first showed that silencing of ISLR inhibited GC cell growth and metastasis by reversing EMT.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Gástricas , Linhagem Celular Tumoral , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Imunoglobulinas , Leucina , Neoplasias Gástricas/patologia
12.
Toxins (Basel) ; 14(9)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36136577

RESUMO

Zearalenone (ZEN) is one of the mycotoxins that pose high risks for human and animal health, as well as food safety. However, the regulators involved in ZEN cellular toxicity remain largely unknown. Herein, we showed that cell viability of porcine intestinal epithelial cells (IPEC-J2) tended to decrease with increasing doses of ZEN by the cell counting kit-8 assay. Expression of the ISLR2 (immunoglobulin superfamily containing leucine-rich repeat 2) gene in IPEC-J2 cells was significantly downregulated upon ZEN exposure. Furthermore, we found the dose-effect of ZEN on ISLR2 expression. We then overexpressed the ISLR2 gene and observed that overexpression of ISLR2 obviously reduced the effects of ZEN on cell viability, apoptosis rate and oxidative stress level. In addition, ISLR2 overexpression significantly decreased the expression of TNF-α and IFN-α induced by ZEN. Our findings revealed the effects of ZEN on the ISLR2 gene expression and indicated the ISLR2 gene as a novel regulator of ZEN-induced cytotoxicity, which provides potential molecular targets against ZEN toxicity.


Assuntos
Micotoxinas , Zearalenona , Animais , Células Epiteliais , Humanos , Imunoglobulinas , Leucina , Micotoxinas/toxicidade , Suínos , Fator de Necrose Tumoral alfa/genética , Zearalenona/toxicidade
13.
Nagoya J Med Sci ; 84(3): 484-496, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36237894

RESUMO

Cancer and fibrotic diseases are characterized by continuous inflammation, tissue wounds, and injuries. Cancer is a "wound that does not heal," and the uncontrolled proliferation of cancer cells disrupts normal tissue integrity and induces stromal fibroinflammatory reactions. Fibroblasts proliferate extensively in the stroma, playing a major role in the development of these diseases. There has been considerable evidence that fibroblasts contribute to fibrosis and tissue stiffening and promote disease progression via multiple mechanisms. However, recent emerging findings, mainly derived from single-cell transcriptomic analysis, indicated that fibroblasts are functionally heterogeneous, leading to the hypothesis that both disease-promoting and -restraining fibroblasts exist. We recently showed that a fibroblast population, defined by the expression of the glycosylphosphatidylinositol-anchored membrane protein Meflin may suppress but not promote fibrotic response and disease progression in cancer and fibrotic diseases. Although currently hypothetical, the primary function of Meflin-positive fibroblasts may be tissue repair after injury and cancer initiation occurred. This observation has led to the proposal of a potential therapy that converts the phenotype of fibroblasts from pro-tumor to anti-tumor. In this short review, we summarize our recent findings on the function of Meflin in the context of cancer and fibrotic diseases and discuss how we can utilize this knowledge on fibroblasts in translational medicine. We also discuss several aspects of the interpretation of survival analysis data, such as Kaplan-Meier analysis, to address the function of specific genes expressed in fibroblasts.


Assuntos
Glicosilfosfatidilinositóis , Neoplasias , Progressão da Doença , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Glicosilfosfatidilinositóis/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo
14.
Int J Mol Med ; 48(6)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34713300

RESUMO

Lung cancer is the second most frequent cancer type in both men and women, and it is considered to be one of the major causes of cancer­related mortality worldwide. However, few biomarkers are currently available for the diagnosis of lung cancer. The aim of the present study was to investigate the function of the immunoglobulin superfamily containing leucine­rich repeat (ISLR) gene in non­small cell lung cancer (NSCLC) cells, and to elucidate the underlying molecular mechanism of its action. The current study analysed ISLR expression in NSCLC tumour and normal tissues using The Cancer Genome Atlas cohort datasets. ISLR expression in NSCLC cell lines was determined using reverse transcription­quantitative PCR. Cell Counting Kit­8, soft agar colony formation, wound healing, Transwell, flow cytometry and glycolysis assays were performed to determine the effects of ISLR silencing or overexpression on cells. The expression levels of the genes involved in epithelial­mesenchymal transition (EMT), apoptosis and glycolysis were evaluated via western blotting. Transfected cells were exposed to the pathway activator, IL­6, to validate the regulatory pathway. ISLR was overexpressed in NSCLC tissues and cell lines. Overall, patients with high ISLR expression had lower survival rates. In addition, small interfering RNA­ISLR inhibited the proliferation, EMT, migration, invasion and glycolysis of NSCLC cells, and promoted their apoptosis. ISLR overexpression had the opposite effect on tumour progression and glycolysis in NSCLC cells. Gene set enrichment analysis and western blotting results indicated that the IL­6/Janus kinase (JAK)/STAT3 pathway was enriched in ISLR­related NSCLC. Knockdown of ISLR inhibited IL­6­induced proliferation, invasion, migration and glycolysis in human NSCLC cells. In summary, ISLR silencing can inhibit tumour progression and glycolysis in NSCLC cells by activating the IL­6/JAK/STAT3 signalling pathway, which is a potential molecular target for NSCLC diagnosis and treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Glicólise/genética , Imunoglobulinas/genética , Interleucina-6/genética , Janus Quinases/genética , Neoplasias Pulmonares/genética , Fator de Transcrição STAT3/genética , Células A549 , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/patologia , MicroRNAs/genética , RNA Interferente Pequeno/genética , Transdução de Sinais/genética
15.
Front Cell Dev Biol ; 9: 749924, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34676218

RESUMO

Fibroblasts synthesise the extracellular matrix (ECM) such as collagen and elastin, the excessive accumulation of which can lead to fibrosis and organ dysfunction under pathological conditions. Cancer-associated fibroblasts (CAFs) are major constituents of the tumour microenvironment (TME) that accompany the desmoplastic reaction responsible for anti-cancer treatment resistance. Thus, it is important to dissect the roles of CAFs in the TME to develop new therapeutic strategies for refractory cancers. Recent progress in the studies of CAF biology suggests that the functions of CAFs are complicated and that they are composed of functionally distinct populations, including cancer-promoting CAFs (pCAFs) and cancer-restraining CAFs (rCAFs). We recently identified a new cell surface marker for rCAFs in pancreatic and colon cancers, designated as Meflin (mesenchymal stromal cell- and fibroblast-expressing Linx paralogue)/Islr (immunoglobulin super family containing leucine-rich repeat). Based on the distribution of Meflin/Islr-positive cells, we also considered it a specific candidate marker for mesenchymal stroma/stem cells. Meflin/Islr-positive CAFs have been shown to suppress cancer progression by being involved in regulating collagen structures and BMP signalling in the TME. This review describes the function of Meflin/Islr in cancer fibrosis as well as in cardiac and lung fibrosis and its potential in the development of new cancer therapeutics.

16.
Front Genet ; 11: 620, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612640

RESUMO

For datasets of gastric cancer collected by TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus) repositories, we applied a bioinformatics approach to obtain expression data for the ISLR (immunoglobulin superfamily containing leucine-rich repeat) gene, which is highly expressed in gastric cancer tissues and closely associated with clinical prognosis. Although we did not observe an overall association of ISLR mutation, high expression or copy number variation with survival, hypomethylation of four methylated sites (assessed by the probes cg05195566, cg17258195, cg09664357, and cg07297039) of ISLR was negatively correlated with high expression levels of ISLR and was associated with poor clinical prognosis. In addition, we detected a correlation between ISLR expression and the infiltration levels of several immune cells, especially CD8+ T cells, macrophages and dendritic cells. We also identified a series of genes that were positively and negatively correlated with ISLR expression based on the TCGA-STAD, GSE13861, and GSE29272 datasets. Principal component analysis and random forest analysis were employed to further screen for six hub genes, including ISLR, COL1A2, CDH11, SPARC, COL3A1, and COL1A1, which exhibited a good ability to differentiate between tumor and normal samples. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway and gene set enrichment analysis data also suggested a potential relationship between ISLR gene expression and epithelial-mesenchymal transition (EMT). ISLR expression was negatively correlated with sensitivity to PX-12 and NSC632839. Taken together, these results show that the ISLR gene is involved in gastric carcinogenesis, and the underlying molecular mechanisms may include DNA methylation, EMT, and immune cell infiltration.

17.
Oncol Rep ; 44(3): 838-848, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32705221

RESUMO

Malignant mesothelioma is an aggressive neoplasm for which effective treatments are lacking. We often encounter mesothelioma cases with a profound desmoplastic reaction, suggesting the involvement of cancer­associated fibroblasts (CAFs) in mesothelioma progression. While the roles of CAFs have been extensively studied in other tumors and have led to the view that the cancer stroma contains heterogeneous populations of CAFs, their roles in mesothelioma remain unknown. We previously showed that connective tissue growth factor (CTGF), a secreted protein, is produced by both mesothelioma cells and fibroblasts and promotes the invasion of mesothelioma cells in vitro. In this study, we examined the clinical relevance of CAFs in mesothelioma. Using surgical specimens of epithelioid malignant pleural mesothelioma, we evaluated the clinicopathological significance of the expression of α­smooth muscle actin (αSMA), the most widely used marker of CAFs, the expression of CTGF, and the extent of fibrosis by immunohistochemistry and Elastica­Masson staining. We also analyzed the expression of mesenchymal stromal cell­ and fibroblast­expressing Linx paralogue (Meflin; ISLR), a recently reported CAF marker that labels cancer­restraining CAFs and differ from αSMA­positive CAFs, by in situ hybridization. The extent of fibrosis and CTGF expression in mesothelioma cells did not correlate with patient prognosis. However, the expression of αSMA and CTGF, but not Meflin, in CAFs correlated with poor prognosis. The data suggest that CTGF+ CAFs are involved in mesothelioma progression and represent a potential molecular target for mesothelioma therapy.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Mesotelioma Maligno/mortalidade , Pleura/patologia , Neoplasias Pleurais/mortalidade , Actinas/análise , Actinas/metabolismo , Idoso , Fator de Crescimento do Tecido Conjuntivo/análise , Progressão da Doença , Feminino , Fibrose , Humanos , Imunoglobulinas/análise , Imunoglobulinas/metabolismo , Estimativa de Kaplan-Meier , Masculino , Mesotelioma Maligno/patologia , Mesotelioma Maligno/terapia , Pessoa de Meia-Idade , Terapia Neoadjuvante , Pleura/cirurgia , Neoplasias Pleurais/patologia , Neoplasias Pleurais/terapia , Taxa de Sobrevida
18.
J Pediatr Urol ; 16(4): 466.e1-466.e9, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32620509

RESUMO

INTRODUCTION AND OBJECTIVE: Reliable urinary biomarker proteins would be invaluable in identifying children with ureteropelvic junction obstruction (UPJO) as the existing biomarker proteins are inconsistent in their predictive ability. Therefore, the aim of this study was to identify consistent and reliable urinary biomarker proteins in children with UPJO. METHODS: To identify candidate biomarker proteins, total protein from age-restricted (<2 years) and sex-matched (males) control (n = 22) and UPJO (n = 21) urine samples was analyzed by mass spectrometry. Proteins that were preferentially identified in UPJO samples were selected (2-step process) and ranked according to their diagnostic odds ratio value. The top ten proteins with highest odds ratio values were selected and tested individually by ELISA. The total amount of each protein was normalized to urine creatinine and the median with interquartile ranges for control and UPJO samples was determined. Additionally, fold change (UPJO/Control) of medians of the final panel of 5 proteins was also determined. Finally, we calculated the average + 3(SD) and average + 4(SD) values of each of the 5 proteins in the control samples and used it as an arbitrary cutoff to classify individual control and UPJO samples. RESULTS: In the first step of our selection process, we identified 171 proteins in UPJO samples that were not detected in the majority of the control samples (16/22 samples, or 72.7%). Of the 171 proteins, only 50 proteins were detected in at least 11/21 (52.4%) of the UPJO samples and hence were selected in the second step. Subsequently, these 50 proteins were ranked according to the odds ratio value and the top 10 ranked proteins were validated by ELISA. Five of the 10 proteins - prostaglandin-reductase-1, ficolin-2, nicotinate-nucleotide pyrophosphorylase [carboxylating], immunoglobulin superfamily-containing leucine-rich-repeat-protein and vascular cell adhesion molecule-1 were present at higher levels in the UPJO samples (fold-change of the median protein concentrations ranging from 2.9 to 9.4) and emerged as a panel of biomarkers to identify obstructive uropathy. Finally, the order of prevalence of the 5 proteins in UPJO samples is PTGR1>FCN2>QPRT>ISLR>VCAM1. CONCLUSION: In summary, this unique screening strategy led to the identification of previously unknown biomarker proteins that when screened collectively, may reliably distinguish between obstructed vs. non-obstructed infants and may prove useful in identifying informative biomarker panels for biological samples from many diseases.


Assuntos
Obstrução Ureteral , Biomarcadores , Criança , Pré-Escolar , Humanos , Lactente , Pelve Renal , Lipocalina-2 , Masculino , Projetos Piloto , Obstrução Ureteral/diagnóstico , Urinálise
19.
J Neurosci Methods ; 239: 238-45, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25445247

RESUMO

BACKGROUND: Recent functional magnetic resonance imaging (fMRI) decoding techniques allow us to predict the contents of sensory and motor events or participants' mental states from multi-voxel patterns of fMRI signals. Sparse logistic regression (SLR) is a useful pattern classification algorithm that has the advantage of being able to automatically select voxels to avoid over-fitting. However, SLR suffers from over-pruning, in which many voxels that are potentially useful for prediction are discarded. NEW METHOD: We propose an ensemble solution for over-pruning, called "Iterative Recycling" (iRec), in which sparse classifiers are trained iteratively by recycling over-pruned voxels. RESULTS: Our simulation demonstrates that iRec can effectively rectify over-pruning in SLR and improve its classification accuracy. We also conduct an fMRI experiment in which eight healthy volunteers perform a finger-tapping task with their index or middle fingers. The results indicate that SLR with iRec (iSLR) can predict the finger used more accurately than SLR. Further, iSLR is able to identify a voxel cluster representing the finger movements in the biologically plausible contralateral primary sensory-motor cortices in each participant. We also successfully dissociated the regularly arranged representation for each finger in the cluster. CONCLUSION AND COMPARISON WITH OTHER METHODS: To the best of our knowledge, ours is the first study to propose a solution for over-pruning with ensemble-learning that is applicable to any sparse algorithm. In addition, from the viewpoint of machine learning, we provide the novel idea of using the sparse classification algorithm to generate accurate divergent base classifiers.


Assuntos
Mapeamento Encefálico , Encéfalo/irrigação sanguínea , Encéfalo/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética , Simulação por Computador , Humanos , Oxigênio/sangue , Desempenho Psicomotor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA