Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 343, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095814

RESUMO

BACKGROUND: Cathelicidins are vital antimicrobial peptides expressed in diverse vertebrates, crucial for immunity. Despite being a new field, amphibian cathelicidin research holds promise. RESULTS: We isolated the cDNA sequence of the cathelicidin (Ll-CATH) gene from the liver transcriptome of the Chong'an Moustache Toad (Leptobrachium liui). We confirmed the authenticity of the cDNA sequence by rapid amplification of cDNA ends and reverse transcription PCR, and obtained the Ll-CATH amino acid sequence using the Open Reading Frame Finder, an online bioinformatics tool. Its translated protein contained a cathelin domain, signal peptide, and mature peptide, confirmed by amino acid sequence. The comparative analysis showed that the mature peptides were variable between the amphibian species, while the cathelin domain was conserved. The concentration of Ll-CATH protein and the expression of its gene varied in the tissues, with the spleen showing the highest levels. The expression levels of Ll-CATH in different tissues of toads was significantly increased post infection with Aeromonas hydrophila. Chemically synthesized Ll-CATH effectively combated Proteus mirabilis, Staphylococcus epidermidis, Vibrio harveyi, V. parahaemolyticus, and V. vulnificus; disrupted the membrane of V. harveyi, hydrolyzed its DNA. Ll-CATH induced chemotaxis and modulated the expression of pro-inflammatory cytokine genes in RAW264.7 macrophages. CONCLUSIONS: This study unveiled the antibacterial and immunomodulatory potential of amphibian cathelicidin, implying its efficacy against infections. Ll-CATH characterization expands our knowledge, emphasizing its in a bacterial infection therapy.


Assuntos
Antibacterianos , Anuros , Catelicidinas , Animais , Antibacterianos/farmacologia , Sequência de Aminoácidos , Fatores Imunológicos/farmacologia , Camundongos , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia
2.
Molecules ; 29(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39064986

RESUMO

Polysaccharide is one of the principal bioactive components found in medicinal mushrooms and has been proven to enhance host immunity. However, the possible mechanism of immunomodulatory activity of Cordyceps militaris polysaccharide is not fully understood. Hot water extraction and alcohol precipitation, DEAE-Sephadex A-25 chromatography, and Sephadex G-100 chromatography were used to isolate polysaccharide from C. militaris. A high-molecular-weight polysaccharide isolated from C. militaris was designated as HCMP, which had an Mw of 6.18 × 105 Da and was composed of arabinose, galactose, glucose, mannose, and xylose in a mole ratio of 2.00:8.01:72.54:15.98:1.02. The polysaccharide content of HCMP was 91.2% ± 0.16. The test in vitro showed that HCMP activated mouse macrophage RAW 264.7 cells by enhancing phagocytosis and NO production, and by regulating mRNA expressions of inflammation-related molecules in RAW 264.7 cells. Western blotting revealed that HCMP induced the phosphorylation of mitogen-activated protein kinases (MAPKs). Moreover, using inhibitors of MAPKs decreased the mRNA levels of inflammation-related molecules induced by HCMP. These data evidenced that the immunomodulatory effect of HCMP on RAW 264.7 macrophages was mediated via the MAPK signaling pathway. These findings suggested that HCMP could be developed as a potent immunomodulatory agent for use in functional foods and dietary supplements.


Assuntos
Cordyceps , Sistema de Sinalização das MAP Quinases , Macrófagos , Fagocitose , Animais , Camundongos , Cordyceps/química , Células RAW 264.7 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fagocitose/efeitos dos fármacos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/isolamento & purificação , Óxido Nítrico/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo
3.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731567

RESUMO

A neutral Polygonatum cyrtonema polysaccharide (NPCP) was isolated and purified from Polygonatum cyrtonema by various chromatographic techniques, including DEAE-52 and Sephadex-G100 chromatography. The structure of NPCP was characterized by HPLC, HPGPC, GC-MS, FT-IR, NMR, and SEM. Results showed that NPCP is composed of glucose (55.4%) and galactose (44.6%) with a molecular weight of 3.2 kDa, and the sugar chain of NPCP was →1)-α-D-Glc-(4→1)-ß-D-Gal-(3→. In vitro bioactivity experiments demonstrated that NPCP significantly enhanced macrophages proliferation and phagocytosis while inhibiting the M1 polarization induced by LPS as well as the M2 polarization induced by IL-4 and IL-13 in macrophages. Additionally, NPCP suppressed the secretion of IL-6 and TNF-α in both M1 and M2 cells but promoted the secretion of IL-10. These results suggest that NPCP could serve as an immunomodulatory agent with potential applications in anti-inflammatory therapy.


Assuntos
Macrófagos , Fagocitose , Polygonatum , Polissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Polygonatum/química , Camundongos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Animais , Fagocitose/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , Células RAW 264.7 , Citocinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/isolamento & purificação , Peso Molecular
4.
Molecules ; 29(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930835

RESUMO

Ginseng (Panax ginseng C.A. Mey) is known for its rich saponin compounds and tonic effects. To better utilize the medicinal value of ginseng, this study investigated the extraction process, components, free radical scavenging ability, and immunomodulatory activity of total saponins of ginseng fibrous roots. The response surface methodology was employed to optimize the extraction process of total saponins, and Q-Orbitrap high-resolution liquid chromatography-mass spectrometry (LC-MS) was used to identify the chemical constituents in the total saponins extract of ginseng fibrous roots (GRS). The results showed that the optimal extraction process was achieved with an ethanol concentration of 68%, a material-solvent ratio of 1:25 mL/g, and an extraction time of 20 min, yielding a total saponin content of 6.34% under these conditions. The extract contained four terpenoid compounds and four polyphenolic compounds. GRS exhibited considerable scavenging activity against DPPH and ABTS radicals, with IC50 values of 0.893 and 0.210 mg/mL, respectively. Moreover, GRS restored immune suppression in mice by increasing white blood cell, red blood cell, and neutrophil counts, and improving the lymphocyte. It also promoted immune system recovery, as evidenced by elevated serum levels of IL-2, IFN-γ, TNF-α, and IL-1ß in mice. GRS is a natural compound with promising potential for developing antioxidants and immunomodulatory foods.


Assuntos
Sequestradores de Radicais Livres , Panax , Extratos Vegetais , Raízes de Plantas , Saponinas , Panax/química , Saponinas/farmacologia , Saponinas/química , Saponinas/isolamento & purificação , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química , Raízes de Plantas/química , Animais , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Antioxidantes/farmacologia , Antioxidantes/química
5.
Prep Biochem Biotechnol ; 54(7): 859-871, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38149618

RESUMO

Polysaccharides derived from Auricularia auricula exhibit diverse biological activities and hold significant potential for commercial utilization as functional food ingredients. In this investigation, polysaccharides from A. auricula were obtained using six extraction techniques (ammonium oxalate solution extraction, sodium hydroxide solution extraction, hot water extraction, pectinase and cellulase-assisted extraction, ultrasonic-assisted extraction, and microwave-assisted extraction). Subsequently, a comprehensive comparison was conducted to evaluate their physicochemical properties and biological functionalities. The ammonium oxalate solution extraction method yielded a higher extraction rate (11.76%) and polysaccharide content (84.12%), as well as a higher uronic acid content (10.13%). Although the six Auricularia polysaccharides had different molecular weight distributions, monosaccharide molar ratios, similar monosaccharide compositions, and characteristic functional groups of polysaccharides, they exhibited different surface morphology. In vitro assays showed that polysaccharides extracted by ammonium oxalate solution possessed good scavenging ability against DPPH free radical, hydroxyl free radical and superoxide anion free radical as well as reduction power of iron ion. At the same time, both polysaccharides extracted by ammonium oxalate solution and sodium hydroxide solution promoted NO production in mouse macrophages along with the secretion of cytokines TNF-α, IL-1ß, and IL-6. These results indicated significant differences in the structure and characteristics among Auricularia polysaccharides prepared by various extraction methods, which may be related to the variety or origin of A. auricula; furthermore, their bioactivities varied accordingly in vitro assays where the ammonium oxalate solution extraction method was found more beneficial for obtaining high-quality bioactive Auricularia polysaccharides.


Assuntos
Auricularia , Camundongos , Animais , Auricularia/química , Células RAW 264.7 , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/isolamento & purificação , Polissacarídeos Fúngicos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Polissacarídeos/química , Peso Molecular , Óxido Nítrico , Fracionamento Químico/métodos , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo
6.
J Sci Food Agric ; 104(7): 3902-3912, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38264943

RESUMO

BACKGROUND: Cyclophosphamide (Cy) is a frequently used chemotherapeutic drug, but long-term Cy treatment can cause immunosuppression and intestinal mucosal damage. The intestinal mucosal barrier and gut flora play important roles in regulating host metabolism, maintaining physiological functions and protecting immune homeostasis. Dysbiosis of the intestinal flora affects the development of the intestinal microenvironment, as well as the development of various external systemic diseases and metabolic syndrome. RESULTS: The present study investigated the influence of sciadonic acid (SA) on Cy-induced immunosuppression in mice. The results showed that SA gavage significantly alleviated Cy-induced immune damage by improving the immune system organ index, immune response and oxidative stress. Moreover, SA restored intestinal morphology, improved villus integrity and activated the nuclear factor κB signaling pathway, stimulated cytokine production, and reduced serum lipopolysaccharide (LPS) levels. Furthermore, gut microbiota analysis indicated that SA increased t beneficial bacteria (Alistipes, Lachnospiraceae_NK4A136_group, Rikenella and Odoribacter) and decreased pathogenic bacteria (norank-f-Oscillospiraceae, Ruminococcus and Desulfovibrio) to maintain intestinal homeostasis. CONCLUSION: The present study provided new insights into the SA regulation of intestinal flora to enhance immune responses. © 2024 Society of Chemical Industry.


Assuntos
Ácidos Araquidônicos , Microbioma Gastrointestinal , Animais , Camundongos , Terapia de Imunossupressão , Bacteroidetes , Ciclofosfamida/efeitos adversos , Imunidade
7.
Crit Rev Food Sci Nutr ; : 1-31, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847125

RESUMO

Broccoli sprouts have been considered as functional foods which have received increasing attention because they have been highly prized for glucosinolates, phenolics, and vitamins in particular glucosinolates. One of hydrolysates-sulforaphane from glucoraphanin is positively associated with the attenuation of inflammatory, which could reduce diabetes, cardiovascular and cancer risk. In recent decades, the great interest in natural bioactive components especially for sulforaphane promotes numerous researchers to investigate the methods to enhance glucoraphanin levels in broccoli sprouts and evaluate the immunomodulatory activities of sulforaphane. Therefore, glucosinolates profiles are different in broccoli sprouts varied with genotypes and inducers. Physicochemical, biological elicitors, and storage conditions were widely studied to promote the accumulation of glucosinolates and sulforaphane in broccoli sprouts. These inducers would stimulate the biosynthesis pathway gene expression and enzyme activities of glucosinolates and sulforaphane to increase the concentration in broccoli sprouts. The immunomodulatory activity of sulforaphane was summarized to be a new therapy for diseases with immune dysregulation. The perspective of this review served as a potential reference for customers and industries by application of broccoli sprouts as a functional food and clinical medicine.

8.
Bioorg Chem ; 130: 106214, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332314

RESUMO

Polysaccharides from the Polygala tenuifolia Willd. have been shown multiple biological activities, however the structural feature and immunomodulatory activity are still rarely reported. In this study, a polysaccharide was obtained by purification, and its structural characteristics and immune activity were analyzed. The polysaccharide was a homogeneous macromolecular polysaccharide with smooth flat flakes surface structure and molecular weight of 2.34 × 105 Da, and composed of Rha, Ara, Xyl, Man, Glc, Gal. Methylation and NMR analyses confirmed that the repeating unit of polysaccharide was [→3)-α-Araf-(1 â†’ 3)-α-Araf-(1 â†’ 5)-α-Araf-(1 â†’ 5)-α-Araf-(1 â†’ 3)-α-Araf-(1 â†’ ]n, and the side chain was α-Araf-(1 â†’ 6)-ß-Galp-(1 â†’ 6)-ß-Glcp-(1 â†’ 6)-α-Manp-(1→, which was attached to the C3 of â†’ 3,5)-α-Araf-(1 â†’. In vitro, the RAW 264.7 cells were co-cultivated with LPS and polysaccharide, and the results revealed that the polysaccharide can promote cell proliferation, activate effectors to release cytokines (TNF-α, IL-6, IL-1ß), and then activate macrophages for immune activity. Therefore, we can infer that the polysaccharide might regard as a potential immunomodulator.


Assuntos
Polygala , Humanos , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Citocinas/metabolismo , Macrófagos/metabolismo
9.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445964

RESUMO

Clinacanthus nutans (Burm. f.) Lindau has been used as a traditional herbal medicine for treating snake bites, scalds, burns, and viral and bacterial infections. It has been attracting an increasing amount of attention because of its biological activities, including its antidiabetic, antioxidant, antibacterial, anticancer, anti-inflammatory, antiviral, and immunoregulatory activities. Here, we conducted a panoramic survey of the literature regarding the immunoregulatory, anti-inflammatory, and antiviral activities of C. nutans. We discovered that C. nutans extracts have virucidal activities against herpes simplex virus types 1 and 2, varicella-zoster virus, cyprinid herpesvirus 3, porcine reproductive and respiratory syndrome virus, mosquito-borne chikungunya virus, and potentially SARS-CoV-2; such activities likely result from C. nutans interfering with the entry, penetration, infection, and replication of viruses. We also reviewed the phytochemicals in C. nutans extracts that exhibit anti-inflammatory and immunoregulatory activities. This updated review of the antiviral, anti-inflammatory, and immunoregulatory activities of C. nutans may guide future agricultural practices and reveal clinical applications of C. nutans.


Assuntos
Acanthaceae , COVID-19 , Animais , Antivirais/farmacologia , Extratos Vegetais/farmacologia , SARS-CoV-2 , Anti-Inflamatórios/farmacologia
10.
Molecules ; 28(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37630314

RESUMO

The fraud phenomenon is currently widespread in the traditional Chinese medicine Radix Astragali (RA) market, especially where high-quality RA is substituted with low-quality RA. In this case, focused on polysaccharides from RA, the classification models were established for discrimination of RA from different growth patterns, origins, species, and growth years. 1H Nuclear Magnetic Resonance (H1-NMR) was used to establish the spectroscopy of polysaccharides from RA, which were used to distinguish RA via chemical pattern recognition methods. Specifically, orthogonal partial least squares discriminant analysis (OPLS-DA) and linear discriminant analysis (LDA) were used to successfully establish the classification models for RA from different growth patterns, origins, species, and growth years. The satisfactory parameters and high accuracy of internal and external verification of each model exhibited the reliable and good prediction ability of the developed models. In addition, the polysaccharide content and immunological activity were also tested, which was evaluated by the phagocytic activity of RAW 264.7. And the result showed that growth patterns and origins significantly affected the quality of RA. However, there was no significant difference in the aspects of origins and growth years. Accordingly, the developed strategy combined with chemical information, biological activity, and multivariate statistical method can provide new insight for the quality evaluation of traditional Chinese medicine.


Assuntos
Medicamentos de Ervas Chinesas , Imageamento por Ressonância Magnética , Polissacarídeos , Espectroscopia de Ressonância Magnética
11.
Molecules ; 28(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36677759

RESUMO

The molecular weight, the triple-helix conformation, the monosaccharide content, the manner of glycosidic linkages, and the polysaccharide conjugates of polysaccharides all affect bioactivity. The purpose of this study was to determine how different molecular weights affected the bioactivity of the Lycium barbarum polysaccharides (LBPs). By ethanol-graded precipitation and ultrafiltration membrane separation, one oligosaccharide (LBPs-1, 1.912 kDa) and two polysaccharides (LBPs-2, 7.481 kDa; LBPs-3, 46.239 kDa) were obtained from Lycium barbarum. While the major component of LBPs-1 and LBPs-2 was glucose, the main constituents of LBPs-3 were arabinose, galactose, and glucose. LBPs-2 and LBPs-3 exhibited triple-helix conformations, as evidenced by the Congo red experiment and AFM data. Sugar residues of LBPs-2 and LBPs-3 were elucidated by NMR spectra. The polysaccharides (LBPs-2 and LBPs-3) exhibited much higher antioxidant capacities than oligosaccharide (LBPs-1). LBPs-3 showed higher oxygen radical absorbance capacity (ORAC) and superoxide dismutase (SOD) activity than LBPs-2, but a lower capability for scavenging ABTS+ radicals. In zebrafish, LBPs-2 and LBPs-3 boosted the growth of T-lymphocytes and macrophages, enhanced the immunological response, and mitigated the immune damage generated by VTI. In addition to the molecular weight, the results indicated that the biological activities would be the consequence of various aspects, such as the monosaccharide composition ratio, the chemical composition, and the chemical reaction mechanism.


Assuntos
Medicamentos de Ervas Chinesas , Lycium , Animais , Lycium/química , Peso Molecular , Peixe-Zebra , Medicamentos de Ervas Chinesas/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Glucose
12.
Molecules ; 28(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175281

RESUMO

A new galactoglucomannan (C-0-1) was purified from the medicinal parasitic fungus of Cordyceps cicadae using an anion-exchange column and gel permeation column. The results of high-performance liquid chromatography and high-performance gel permeation chromatography indicated that C-0-1 consists of galactose, glucose, and mannose in a ratio of 5:1:4 and has a molecular weight of 23.3 kDa. The combined structural elucidation analysis methods including partial acid hydrolysis, methylation analysis, and NMR experiments revealed that C-0-1 was a comb-like polysaccharide with a core structure including (1→2)-α-D-Manp residues in the backbone and branches at O-6 of the main chain. (1→4)-α-D-Glcp, (1→2)-ß-D-Galf, (1→2,6)-ß-D-Galf, and terminal ß-Galf were located at the side chains. An in vitro experiment using RAW 264.7 cells indicated that C-0-1 exhibits good immunomodulatory activity by enhancing inducible nitric oxide synthase secretion and the production of some major inflammatory cytokines. On inhibiting the cytokine production using anti-pattern recognition receptors antibodies, it was revealed that the activation of macrophages is mainly carried out by C-0-1 through the mannose receptor. Toll-like receptor 4 and Toll-like receptor 2 were also involved in this identification process. An in vivo experiment on immunosuppressive mice treated with cyclophosphamide indicated that C-0-1 improves the secretion of serum-related cytokines (IFN-γ, TNF-α, IL-2, IL-4, and IL-10) and affects the balance of T helper cells Th1/Th2. Given the structural and bioactivity similarity between Cordyceps cicadae and Cordyceps sinensis, we can conclude that Cordyceps cicadae could be used as an important medicinal fungus like Cordyceps sinensis.


Assuntos
Cordyceps , Animais , Camundongos , Cordyceps/química , Citocinas , Micélio
13.
J Sci Food Agric ; 103(7): 3390-3401, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36754603

RESUMO

BACKGROUND: Cyclophosphamide (CTX) is a widely used chemotherapeutic agent for the treatment of malignant tumors and autoimmune diseases. However, it can cause immunosuppression and damage the intestinal mucosa. The development of new agents to counteract these side effects is becoming increasingly important. Previous studies have shown that the polysaccharides from Gastrodia elata (GEPs) have strong immune-enhancing effects; however, their functions regarding the intestines and the underlying mechanism are still unclear. In this study, the effects of GEPs on immunomodulatory activity, intestinal barrier function, and gut microbiota regulation were investigated in a mouse model of CTX-induced immunosuppression. RESULTS: Gastrodia elata polysaccharides attenuated the CTX-induced decrease in organ indices of the thymus and spleen, and promoted the secretion of immune-related cytokines and immunoglobulins in the serum. They also improved the intestinal pathology and restored the intestinal barrier function by elevating the expression of intestinal tight junction proteins, occludin and ZO-1. Moreover, GEPs restored the composition and abundance of the gut microbiota and increased the short-chain fatty acid (SCFA) content in the colon. The abundance of SCFA-producing bacteria (Muribaculaceae, Prevotellaceae, and Bacteroidaceae) also increased. CONCLUSIONS: Gastrodia elata polysaccharides can effectively alleviate immunosuppression and regulate the intestinal barrier integrity and the structure of gut microbiota in CTX-treated mice. They may be used as ingredients to develop functional foods for intestinal health. © 2023 Society of Chemical Industry.


Assuntos
Gastrodia , Microbioma Gastrointestinal , Camundongos , Animais , Gastrodia/química , Ciclofosfamida/efeitos adversos , Intestinos , Polissacarídeos/farmacologia , Polissacarídeos/química
14.
J Nutr ; 152(1): 331-342, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34601601

RESUMO

BACKGROUND: Milk proteins contain many encrypted bioactive peptides. Whether these bioactive peptides are released in the infant intestine and exert immunomodulatory activity remains unknown. OBJECTIVE: This study examined in vitro immunomodulatory activities of peptides from in vitro- and in vivo-digested human milk. METHODS: Peptides were extracted from in vitro-digested human milk and pooled intestinal samples from 8 infants fed human milk. Peptides extracted from in vitro-digested samples were fractionated. The in vitro effects of these peptides and fractions on the secretion of TNF-α and IL-8 in LPS-treated human immune THP-1 macrophages were evaluated. The significance of differences between in vitro peptide fraction treatment and control on cytokine production was analyzed by t test. LC-MS/MS-based peptidomics was conducted to identify the peptides. The peptides were screened for potential bioactivity using a sequence homology search using the Milk Bioactive Peptide Database (MBPDB). RESULTS: Six fractions of the peptide mixture extracted from the in vitro-digested human milk significantly inhibited TNF-α production by LPS-challenged THP-1 macrophages. Fractions F4, F8, F11, F14, and F17 attenuated IL-8 secretion, and F6/7 and F18 increased IL-8 secretion. Peptides extracted from the pooled in vivo intestinal samples attenuated both TNF-α and IL-8 secretion. There were 266 and 418 peptides identified in the in vitro and in vivo samples, respectively. Among the peptides, 34 and 50 in the in vitro and in vivo samples, respectively, had >80% sequence similarity to bioactive peptides in the MBPDB. CONCLUSIONS: Peptides released by in vitro and in vivo infant digestion of human milk were immunomodulatory in human immune cells; fractions F4, F8, and F11 were anti-inflammatory; and F6/7 and F18 were proinflammatory. Thirteen peptides were present in all fractions with anti-inflammatory activity, and 38 peptides were present in all fractions with proinflammatory activity. These peptides potentially contributed to the observed immunomodulatory activity of the peptide mixtures.


Assuntos
Leite Humano , Espectrometria de Massas em Tandem , Cromatografia Líquida , Digestão , Humanos , Macrófagos/metabolismo , Proteínas do Leite/metabolismo , Leite Humano/química , Peptídeos/metabolismo , Peptídeos/farmacologia
15.
Arch Microbiol ; 204(10): 619, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36098848

RESUMO

Probiotic attributes of lactic acid bacteria isolated from goat and sheep milk samples were analysed by culturing them on an MRS agar medium. The most potential isolates, GMB24 and SMB16, were identified by biochemical tests which had ability to tolerate different concentrations of acid and bile and phenol resistance. They were further identified as Enterococcus faecium GMB24 and Enterococcus hirae SMB16 by 16S rRNA gene sequencing approach. The probiotic potential of the isolates GMB24 and SMB16 were recorded including antimicrobial activity against pathogenic bacteria viz., Escherichia coli (MTCC118), Staphylococcus aureus (MTCC7443), Pseudomonas aeruginosa (MTCC424), Listeria monocytogens (MTCC657) and Salmonella typhimurium (MTCC733), and antibiotic susceptibility test. The isolates SMB16 and GMB24 exhibited a higher zone of inhibition against P. aeruginosa (19.00 ± 0.57 mm) and S. aureus (25.66 ± 0.88 mm), respectively. The data from these experiments were used for the principal component analysis (PCA) to assess the survivability of the isolates under different factors. The heatmap generated in this study clustered the bacterial isolates based on their phenotype properties. Further, immunomodulating activities of these probiotic bacteria were tested on neutrophil adhesion test, haemagglutinating antibody titer and delayed-type hypersensitivity. Probiotic E. faecium GMB24 and E. hirae SMB16, at 109 cells/mL doses per day, increased the neutrophil adhesion, haemagglutinating antibody titer and DTH in comparison to the untreated control group. The isolates showed negative test for haemolytic and gelatinase activities and hence were considered safe. E. faecium GMB24 and E. hirae SMB16 were shown to have high probiotic potential and immune-stimulant action.


Assuntos
Enterococcus faecium , Probióticos , Animais , Enterococcus faecium/genética , Streptococcus faecium ATCC 9790/genética , Cabras , Leite/microbiologia , Probióticos/farmacologia , RNA Ribossômico 16S/genética , Ovinos , Staphylococcus aureus/genética
16.
Bioorg Med Chem Lett ; 69: 128800, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35580727

RESUMO

In this study, six new 1,4-disubstituted bis-1,2,3-triazole compounds, N,N'-(1,2-phenylene)bis(2-(4-R-1H-1,2,3-triazol-1-yl)acetamide), were synthesized with high yield (88-96 %) by using click chemistry and their molecular structures were characterized by using NMR, FT-IR, HRMS and elemental analysis techniques. Previous studies suggest anti-inflammatory and analgesic activities for different 1,2,3-triazole derivatives and in the light of those studies we aimed to examine these novel derivatives immunomodulatory activities on the mammalian macrophages. Pro-inflammatory cytokines (TNF, IL6, GMCSF and IL12p40) secretion levels were tested in the presence of bis-1,2,3-triazole compounds when the macrophages were activated with LPS. These new derivatives were able to suppress the production of these cytokines at different levels. Intracellular phophorylated PI3K protein levels were measured due to its prominent role in inflammatory reactions. Our flow cytometry analysis results suggested that some of these compounds were partially effective through PI3K pathway. In different inflammatory and autoimmune disease settings these novel 1,2,3-triazole derivatives can be utilized as non-steroid based anti-inflammatory drug candidates.


Assuntos
Química Click , Triazóis , Animais , Anti-Inflamatórios/farmacologia , Citocinas , Mamíferos , Fosfatidilinositol 3-Quinases , Espectroscopia de Infravermelho com Transformada de Fourier , Triazóis/química
17.
Appl Microbiol Biotechnol ; 106(3): 981-993, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35076738

RESUMO

Peptidoglycan (PGN) is a unique component in the cytoderm of prokaryotes which can be recognized by different pathogen-associated molecular patterns (PAMPs) in eukaryotes, followed by a cascade of immune responses via different pathways. This review outlined the basic structure of PGN, its immunologic functions. The immunomodulation pathways mediated by PGN were elaborated. PGN induces specific immunity through stimulating different cytokine release and Th1/Th2-dominated immune responses during humoral/cellular immune response. The nonspecific immunity activation by PGN involves immunomodulation by different pattern recognition receptors (PRRs) including PGN recognition proteins (PGRPs), nucleotide oligomerization domain (NOD)-like receptors (NLRs), Toll-like receptors (TLRs), and C-type lectin receptors (CLRs). The sources and classification of PGRPs were summarized. In view of the stimulating activities of PGN and its monomers, the potential application of PGN as vaccine or adjuvant was prospected. This review provides systematic information on PGN functionalities from the point of immunoregulation, which might be useful in the deep exploitation of PGN.Key points. The immunological functions of PGN were illustrated. Cellular and humoral immunomodulation by PGN were outlined. The use of PGN as vaccine or adjuvant was prospected.


Assuntos
Peptidoglicano , Receptores Toll-Like , Citocinas , Imunidade Inata , Imunomodulação
18.
Mar Drugs ; 21(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36662186

RESUMO

The aim of this study is to investigate the differences in the accumulation capacity of chrysolaminarin among six Tribonema species and to isolate this polysaccharide for immunomodulatory activity evaluation. The results showed that T. aequale was the most productive strain with the highest content and productivity of chrysolaminarin, which were 17.20% (% of dry weight) and 50.91 mg/L/d, respectively. Chrysolaminarin was then extracted and isolated from this alga, and its monosaccharide composition was mainly composed of a glucose (61.39%), linked by ß-D-(1→3) (main chain) and ß-D-(1→6) (branch chain) glycosidic bonds, with a molecular weight of less than 6 kDa. In vitro immunomodulatory assays showed that it could activate RAW264.7 cells at a certain concentration (1000 µg/mL), as evidenced by the increased phagocytic activity and upregulated mRNA expression levels of IL-1ß, IL6, TNF-α and Nos2. Moreover, Western blot revealed that this polysaccharide stimulated the phosphorylation of p-65, p-38 and JNK in NF-κB and MAPK signaling pathways. Overall, these findings provide a reference for the further development and utilization of algae-based chrysolaminarin, while also offering an in-depth understanding of the immunoregulatory mechanism.


Assuntos
Microalgas , Estramenópilas , Animais , Camundongos , Microalgas/química , Polissacarídeos/química , Células RAW 264.7 , NF-kappa B
19.
Mar Drugs ; 20(7)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35877715

RESUMO

Marine organisms have been shown to be a valuable source for biologically active compounds for the prevention and treatment of cancer, inflammation, immune system diseases, and other pathologies. The advantage of studying organisms collected in the marine environment lies in their great biodiversity and in the variety of chemical structures of marine natural products. Various studies have focused on marine organism compounds with potential pharmaceutical applications, for instance, as immunomodulators, to treat cancer and immune-mediated diseases. Modulation of the immune system is defined as any change in the immune response that can result in the induction, expression, amplification, or inhibition of any phase of the immune response. Studies very often focus on the effects of marine-derived compounds on macrophages, as well as lymphocytes, by analyzing the release of mediators (cytokines) by using the immunological assay enzyme-linked immunosorbent assay (ELISA), Western blot, immunofluorescence, and real-time PCR. The main sources are fungi, bacteria, microalgae, macroalgae, sponges, mollusks, corals, and fishes. This review is focused on the marine-derived molecules discovered in the last three years as potential immunomodulatory drugs.


Assuntos
Produtos Biológicos , Neoplasias , Animais , Organismos Aquáticos/química , Bactérias , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Fungos/química , Imunidade , Neoplasias/tratamento farmacológico
20.
Mar Drugs ; 20(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35877740

RESUMO

Algae accumulate large amounts of polysaccharides in their cell walls or intercellular regions. Polysaccharides from algae possess high potential as promising candidates for marine drug development. In this study, a sulfated polysaccharide, UCP, from the green alga Ulva conglobata Kjellman was obtained by water extraction, anion-exchange, and size-exclusion chromatography purification, and its structure was characterized by a combination of chemical and spectroscopic methods. UCP mainly consisted of →4)-α/ß-l-Rhap-(1→, →4)-ß-d-Xylp-(1→ and →4)-ß-d-GlcAp-(1→ residues. Sulfate ester groups were substituted mainly at C-3 of →4)-l-Rhap-(1→ and C-2 of →4)-ß-d-Xylp-(1→. Partial glycosylation was at C-2 of →4)-α-l-Rhap-(1→ residues. UCP possessed a potent immunomodulatory effect in vitro, evaluated by the assays of lymphocyte proliferation and macrophage phagocytosis. The immunomodulatory activity of UCP in vivo was further investigated using immunosuppressive mice induced by cyclophosphamide. The results showed that UCP markedly increased the spleen and thymus indexes and ameliorated the cyclophosphamide-induced damage to the spleen and thymus. UCP could increase the levels of white blood cells, lymphocytes, and platelets, and improve the hematopoietic inhibition caused by cyclophosphamide. Moreover, UCP significantly promoted the secretions of the immunoglobulin (Ig)G, IgE, and IgM. The data demonstrated that UCP is a novel sulfated polysaccharide and may be a promising immunomodulatory agent.


Assuntos
Sulfatos , Ulva , Animais , Ciclofosfamida/farmacologia , Carboidratos da Dieta , Camundongos , Polissacarídeos/química , Polissacarídeos/farmacologia , Sulfatos/química , Sulfatos/farmacologia , Ulva/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA