Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 780
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Dev Biol ; 509: 51-58, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342400

RESUMO

Glucose and fatty acids (FA) metabolism disturbances during oocyte in vitro maturation (IVM) affect their metabolism and surrounding cumulus cells, but only inhibition of glucose metabolism decreases embryo culture efficiency. Therefore, the present experiment aimed to reveal if glucose or FA metabolism inhibition leads to the disruption of embryo developmental potential, and to characterize the metabolic landscape of embryos reaching the blastocyst stage. Inhibitors of glucose (IO + DHEA) or FA (ETOMOXIR) metabolism were applied during IVM, and the control group was matured under standard conditions. Blastocysts obtained from experimental and control groups were analyzed with regard to lipidome and metabolome (mass spectrometry), transcriptome (RNA-Seq) and fluorescence lipid droplets staining (BODIPY). We showed that inhibition of glucose and fatty acid metabolism leads to cellular stress response compromising the quality of preimplantation embryos. The inhibition of energy metabolism affects membrane fluidity as well as downregulates fatty acids biosynthesis and gene expression of trophectoderm cell line markers. Therefore, we conclude that oocyte maturation environment exerts a substantial effect on preimplantation development programming at cellular and molecular levels.


Assuntos
Células do Cúmulo , Oócitos , Feminino , Bovinos , Animais , Oócitos/metabolismo , Células do Cúmulo/metabolismo , Desenvolvimento Embrionário , Metabolismo Energético , Blastocisto/metabolismo , Glucose/metabolismo , Ácidos Graxos/metabolismo
2.
Biol Reprod ; 111(1): 1-10, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38662582

RESUMO

Despite the currently relatively low effectiveness of producing bovine embryos in vitro, there is a growing interest in applying this laboratory method in the field of reproduction. Many aspects of the procedure need to be improved. One of the main problems is the inferior developmental competence of in vitro matured oocytes that are collected using the ovum pick-up method. The mechanisms of oocyte capacitation and maturation, as well as the in vivo conditions in which they grow and mature, should be carefully analyzed. A deliberate application of the identified mechanisms and beneficial factors affecting the in vitro procedures seems to be essential for achieving higher developmental competence of the oocytes that are subjected to fertilization. The results may be improved by developing and employing a laboratory maturation protocol that corresponds with appropriate preparation of donors before the ovum pick-up, an optimized hormonal treatment program, the appropriate size of ovarian follicles at the time of aspiration, and a fine-tuned coasting period.


Assuntos
Fertilização in vitro , Técnicas de Maturação in Vitro de Oócitos , Oócitos , Animais , Bovinos , Oócitos/fisiologia , Feminino , Fertilização in vitro/veterinária , Fertilização in vitro/métodos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Técnicas de Maturação in Vitro de Oócitos/métodos , Desenvolvimento Embrionário/fisiologia , Recuperação de Oócitos/veterinária , Recuperação de Oócitos/métodos
3.
Biol Reprod ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073915

RESUMO

One of the major causes of oocyte quality deterioration, chromosome segregation abnormalities manifest mainly during meiosis I, which occurs before and during ovulation. However, currently, there is a technical limitation in the introduction of mRNA into premature oocytes without impairing embryonic developmental ability. In this study, we established a low-invasive electroporation (EP) method to introduce mRNA into pre-ovulatory, germinal vesicle (GV) mouse oocytes in an easier manner than the traditional microinjection method. The EP method with an optimized impedance value resulted in the efficient introduction of mRNAs encoding enhanced green fluorescent protein (EGFP) into the GV oocytes surrounded by cumulus cells at a survival rate of 95.0%. Furthermore, the introduction of histone H2B-EGFP mRNA into the GV oocytes labeled most of the oocytes without affecting the blastocyst development rate, indicating the feasibility of the visualization of oocyte chromosomal dynamics that enable us to assay chromosomal integrity in oocyte maturation and cell count in embryonic development. The establishment of this EP method offers extensive assays to select pre-implantation embryos and enables the surveying of essential factors for mammalian oocyte quality determination.

4.
Hum Reprod ; 39(8): 1752-1766, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876973

RESUMO

STUDY QUESTION: Which actively translated maternal transcripts are differentially regulated between clinically relevant in vitro and in vivo maturation (IVM) conditions in mouse oocytes and zygotes? SUMMARY ANSWER: Our findings uncovered significant differences in the global transcriptome as well as alterations in the translation of specific transcripts encoding components of energy production, cell cycle regulation, and protein synthesis in oocytes and RNA metabolism in zygotes. WHAT IS KNOWN ALREADY: Properly regulated translation of stored maternal transcripts is a crucial factor for successful development of oocytes and early embryos, particularly due to the transcriptionally silent phase of meiosis. STUDY DESIGN, SIZE, DURATION: This is a basic science study utilizing an ICR mouse model, best suited for studying in vivo maturation. In the treatment group, fully grown germinal vesicle oocytes from stimulated ovaries were in vitro matured to the metaphase II (MII) stage either as denuded without gonadotropins (IVM DO), or as cumulus-oocyte complexes (IVM COC) in the presence of 0.075 IU/ml recombinant FSH (rFSH) and 0.075 IU/ml recombinant hCG (rhCG). To account for changes in developmental competence, IVM COC from non-stimulated ovaries (IVM COC-) were included. In vivo matured MII oocytes (IVO) from stimulated ovaries were used as a control after ovulation triggering with rhCG. To simulate standard IVM conditions, we supplemented media with amino acids, vitamins, and bovine serum albumin. Accordingly, in vitro pronuclear zygotes (IMZ) were generated by IVF from IVM DO, and were compared to in vivo pronuclear zygotes (IVZ). All experiments were performed in quadruplicates with samples collected for both polyribosome fractionation and total transcriptome analysis. Samples were collected over three consecutive months. PARTICIPANTS/MATERIALS, SETTING, METHODS: All ICR mice were bred under legal permission for animal experimentation (no. MZE-24154/2021-18134) obtained from the Ministry of Agriculture of the Czech Republic. Actively translated (polyribosome occupied) maternal transcripts were detected in in vitro and in vivo matured mouse oocytes and zygotes by density gradient ultracentrifugation, followed by RNA isolation and high-throughput RNA sequencing. Bioinformatic analysis was performed and subsequent data validation was done by western blotting, radioactive isotope, and mitotracker dye labelling. MAIN RESULTS AND THE ROLE OF CHANCE: Gene expression analysis of acquired polysome-derived high-throughput RNA sequencing data revealed significant changes (RPKM ≥ 0.2; P ≤ 0.005) in translation between in vitro and in vivo matured oocytes and respectively produced pronuclear zygotes. Surprisingly, the comparison between IVM DO and IVM COC RNA-seq data of both fractionated and total transcriptome showed very few transcripts with more than a 2-fold difference. Data validation by radioactive isotope labelling revealed a decrease in global translation bof20% in IVM DO and COC samples in comparison to IVO samples. Moreover, IVM conditions compromised oocyte energy metabolism, which was demonstrated by both changes in polysome recruitment of each of 13 mt-protein-coding transcripts as well as by validation using mitotracker red staining. LARGE SCALE DATA: The data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE241633 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE241633). LIMITATIONS, REASONS FOR CAUTION: It is extremely complicated to achieve in vivo consistency in animal model systems such as porcine or bovine. To achieve a high reproducibility of in vivo stimulations, the ICR mouse model was selected. However, careful interpretation of our findings with regard to assisted reproductive techniques has to be made by taking into consideration intra-species differences between the mouse model and humans. Also, the sole effect of the cumulus cells' contribution could not be adequately addressed by comparing IVM COC and IVM DO, because the IVM DO were matured without gonadotropin supplementation. WIDER IMPLICATIONS OF THE FINDINGS: Our findings confirmed the inferiority of standard IVM technology compared with the in vivo approach. It also pointed at compromised biological processes employed in the critical translational regulation of in vitro matured MII oocytes and pronuclear zygotes. By highlighting the importance of proper translational regulation during in vitro oocyte maturation, this study should prompt further clinical investigations in the context of translation. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Czech Grant Agency (22-27301S), Charles University Grant Agency (372621), Ministry of Education, Youth and Sports (EXCELLENCE CZ.02.1.01/0.0/0.0/15_003/0000460 OP RDE), and Institutional Research Concept RVO67985904. No competing interest is declared.


Assuntos
Células do Cúmulo , Desenvolvimento Embrionário , Técnicas de Maturação in Vitro de Oócitos , Camundongos Endogâmicos ICR , Oócitos , Animais , Oócitos/metabolismo , Feminino , Camundongos , Desenvolvimento Embrionário/fisiologia , Células do Cúmulo/metabolismo , Biossíntese de Proteínas , Transcriptoma , Zigoto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Gonadotropina Coriônica/farmacologia
5.
Hum Reprod ; 39(3): 586-594, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38177084

RESUMO

STUDY QUESTION: Do ongoing pregnancy rates (OPRs) differ in predicted hyperresponders undergoing ART after IVM of oocytes compared with conventional ovarian stimulation (OS) for IVF/ICSI? SUMMARY ANSWER: One cycle of IVM is non-inferior to one cycle of OS in women with serum anti-Müllerian hormone (AMH) levels ≥10 ng/ml. WHAT IS KNOWN ALREADY: Women with high antral follicle count and elevated serum AMH levels, indicating an increased functional ovarian reserve, are prone to hyperresponse during ART treatment. To avoid iatrogenic complications of OS, IVM has been proposed as a mild-approach alternative treatment in predicted hyperresponders, including women with polycystic ovary syndrome (PCOS) who are eligible for ART. To date, inferior pregnancy rates from IVM compared to OS have hampered the uptake of IVM by ART clinics. However, it is unclear whether the efficiency gap between IVM and OS may differ depending on the extent of AMH elevation. STUDY DESIGN, SIZE, DURATION: This study is a retrospective cohort analysis of clinical and laboratory data from the first completed highly purified hMG (HP-hMG) primed, non-hCG-triggered IVM or OS (FSH or HP-hMG stimulation in a GnRH antagonist protocol) cycle with ICSI in predicted hyperresponders ≤36 years of age at a tertiary referral university hospital. A total of 1707 cycles were included between January 2016 and June 2022. PARTICIPANTS/MATERIALS, SETTING, METHODS: Predicted hyperresponse was defined as a serum AMH level ≥3.25 ng/ml (Elecsys® AMH, Roche Diagnostics). The primary outcome was cumulative ongoing pregnancy rate assessed 10-11 weeks after embryo transfer (ET). The predefined non-inferiority limit was -10.0%. The analysis was adjusted for AMH strata. Time-to-pregnancy, defined as the number of ET cycles until ongoing pregnancy was achieved, was a secondary outcome. Statistical analysis was performed using a multivariable regression model controlling for potential confounders. MAIN RESULTS AND THE ROLE OF CHANCE: Data from 463 IVM cycles were compared with those from 1244 OS cycles. Women in the IVM group more often had a diagnosis of Rotterdam PCOS (434/463, 93.7%) compared to those undergoing OS (522/1193, 43.8%), were significantly younger (29.5 years versus 30.5 years, P ≤ 0.001), had a higher BMI (25.7 kg/m2 versus 25.1 kg/m2, P ≤ 0.01) and higher AMH (11.6 ng/ml versus 5.3 ng/ml, P ≤ 0.001). Although IVM cycles yielded more cumulus-oocyte complexes (COCs) (24.5 versus 15.0 COC, P ≤ 0.001), both groups had similar numbers of mature oocytes (metaphase II (MII)) (11.9 MII versus 10.6 MII, P = 0.9). In the entire cohort, non-adjusted cumulative OPR from IVM was significantly lower (198/463, 42.8%) compared to OS (794/1244, 63.8%), P ≤ 0.001. When analysing OPR across different serum AMH strata, cumulative OPR in both groups converged with increasing serum AMH, and OPR from IVM was non-inferior compared to OS from serum AMH levels >10 ng/ml onwards (113/221, 51.1% (IVM); 29/48, 60.4% (OS)). The number of ETs needed to reach an ongoing pregnancy was comparable in both the IVM and the OS group (1.6 versus 1.5 ET's, P = 0.44). Multivariable regression analysis adjusting for ART type, age, BMI, oocyte number, and PCOS phenotype showed that the number of COCs was the only parameter associated with OPR in predicted hyperresponders with a serum AMH >10 ng/ml. LIMITATIONS, REASONS FOR CAUTION: These data should be interpreted with caution as the retrospective nature of the study holds the possibility of unmeasured confounding factors. WIDER IMPLICATIONS OF THE FINDINGS: Among subfertile women who are eligible for ART, IVM, and OS resulted in comparable reproductive outcomes in a subset of women with a serum AMH ≥10 ng/ml. These findings should be corroborated by a randomised controlled trial (RCT) comparing both treatments in selected patients with elevated AMH. STUDY FUNDING/COMPETING INTEREST(S): There was no external funding for this study. P.D. has been consultant to Merck Healthcare KGaA (Darmstadt, Germany) from April 2021 till June 2023 and is a Merck employee (Medical Director, Global Medical Affairs Fertility) with Merck Healthcare KGAaA (Darmstadt, Germany) since July 2023. He declares honoraria for lecturing from Merck KGaA, MSD, Organon, and Ferring. The remaining authors declared no conflict of interest pertaining to this study. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Síndrome do Ovário Policístico , Feminino , Humanos , Gravidez , Hormônio Antimülleriano , Oócitos , Síndrome do Ovário Policístico/terapia , Injeções de Esperma Intracitoplásmicas , Estudos Retrospectivos , Adulto
6.
Amino Acids ; 56(1): 2, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38285159

RESUMO

By affecting the ovarian pool of follicles and their enclosed oocytes, heat stress has an impact on dairy cow fertility. This study aimed to determine how heat shock (HS) during in vitro maturation affected the ability of the bovine cumulus-oocyte complexes (COCs) to develop, as well as their metabolism of amino acids (AAs). In this study, COCs were in vitro matured for 23 h at 38.5 °C (control; n = 322), 39.5 °C (mild HS (MHS); n = 290), or 40.5 °C (severe HS (SHS); n = 245). In comparison to the control group, the MHS and SHS groups significantly decreased the percentage of metaphase-II oocytes, as well as cumulus cell expansion and viability. The SHS decreased the rates of cleavage and blastocyst formation in comparison to the control and MHS. Compared to the control and MHS-COCs, the SHS-COCs produced significantly more phenylalanine, threonine, valine, arginine, alanine, glutamic acid, and citrulline while depleting less leucine, glutamine, and serine. Data showed that SHS-COCs had the highest appearance and turnover of all AAs and essential AAs. Heat shock was positively correlated with the appearance of glutamic acid, glutamine, isoleucine, alanine, serine, valine, phenylalanine, and asparagine. Network analysis identified the relationship between HS and alanine or glutamic acid, as well as the relationship between blastocyst and cleavage rates and ornithine. The findings imply that SHS may have an impact on the quality and metabolism of AAs in COCs. Moreover, the use of a multistep analysis could simply identify the AAs most closely linked to HS and the developmental competence of bovine COCs.


Assuntos
Glutamina , Oócitos , Feminino , Bovinos , Animais , Ácido Glutâmico , Alanina , Resposta ao Choque Térmico , Fenilalanina , Valina , Citrulina , Serina
7.
Reprod Biomed Online ; 48(3): 103571, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244346

RESUMO

RESEARCH QUESTION: Are blastocysts derived from in-vitro-matured metaphase I (MI) oocytes less likely to produce usable embryos for transfer compared with those derived from in-vivo-matured oocytes in cycles undergoing preimplantation genetic testing (PGT)? DESIGN: The primary outcome was usable blastocyst rate, which was compared between blastocysts derived from in-vitro-matured MI oocytes after ovarian stimulation and from in-vivo-matured oocytes. Logistic regression analysis using generalized estimating equations was used to control for confounders in the analysis of factors that may influence the chance of a blastocyst being usable and in the comparison of embryological outcomes. Student's t-test, Mann-Whitney U test, chi-squared tests or Fisher's exact tests were used to compare clinical and pregnancy outcomes. RESULTS: A total of 1810 injected metaphase II (MII) oocytes from 154 PGT cycles involving 154 couples were included in this study. A total of 1577 MII oocytes were in-vivo-matured and 233 were in-vitro-matured MI oocytes. The usable blastocyst rate was similar between the in-vitro-matured MI oocyte group and the in-vivo-matured oocyte group (adjusted RR 0.97, 95% CI 0.40 to 2.34). Three live births were achieved using usable blastocysts derived from in-vitro-matured MI oocytes. CONCLUSIONS: If in-vitro-matured MI oocytes can be fertilized and develop into blastocysts, their ability to provide usable embryos for transfer is similar compared with those developed from in-vivo-matured oocytes. These blastocysts could be considered valuable for women with few viable embryos in assisted reproductive technology cycles.


Assuntos
Oócitos , Resultado da Gravidez , Gravidez , Humanos , Feminino , Metáfase , Oócitos/fisiologia , Testes Genéticos , Blastocisto/fisiologia
8.
Reprod Biomed Online ; 48(1): 103379, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37919136

RESUMO

RESEARCH QUESTION: Does rescue in-vitro maturation (IVM) in the presence or absence of cumulus cells, affect the progress of meiosis I, compared with oocytes that mature in vivo? DESIGN: This prospective study was conducted in a university-affiliated fertility centre. Ninety-five young oocyte donors (mean age 25.57 ± 4.47) with a normal karyotype and no known fertility problems were included. A total of 390 oocytes (116 mature metaphase II [MII] and 274 immature oocytes) were analysed. The immature oocytes underwent rescue IVM in the presence of cumulus cells (CC; IVM+CC; n = 137) or without them (IVM-CC; n = 137), and IVM rate was calculated. Chromosome copy number analysis using next-generation sequencing (NGS) was performed on all rescue IVM oocytes reaching MII as well as those that were mature at the time of initial denudation (in-vivo-matured oocytes [IVO]). RESULTS: Maturation rates were similar in IVM+CC and IVM-CC oocytes (62.8 versus 71.5%, P = 0.16). Conclusive cytogenetic results were obtained from 65 MII oocytes from the IVM+CC group, 87 from the IVM-CC group, and 99 from the IVO group. Oocyte euploidy rates for the three groups were similar, at 75.4%, 83.9% and 80.8%, respectively (P = 0.42). CONCLUSIONS: The results suggest that culture of germinal vesicle and metaphase I oocytes in the presence of cumulus cells does not improve rates of IVM. In general, the process of rescue IVM does not appear to alter the frequency of oocytes with a normal chromosome copy number.


Assuntos
Segregação de Cromossomos , Técnicas de Maturação in Vitro de Oócitos , Humanos , Adulto Jovem , Adulto , Estudos Prospectivos , Oócitos , Meiose
9.
Reprod Biomed Online ; 48(4): 103648, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364519

RESUMO

RESEARCH QUESTION: Are there differences in immature oocyte retrieval following luteal phase in-vitro maturation (IVM) compared with follicular phase IVM in women with oocyte maturation abnormalities (OMAs). DESIGN: From January 2019 to May 2023, a retrospective cohort study at a private IVF centre included 36 women with 53 IVM cycles in Group 1 (follicular phase) and 24 women with 32 IVM cycles in Group 2 (luteal phase). Additionally, nine women had both follicular and luteal phase IVM cycles for intracycle variability analysis. RESULTS: There were no differences in oocyte maturation stages between the groups at collection. Group 1 and Group 2 exhibited comparable median metaphase II oocyte rates per patient at 48 h after collection [40.0%, interquartile range (IQR) 0.0-66.7% versus 22.5%, IQR 0.0-52.9%] (P = 0.53). The median fertilization rate in Group 1 (66.7%, IQR 50.0-66.7%) was found to be comparable with that in Group 2 (66.7%, IQR 50.0-66.7%). There were no significant differences in the yielded embryo grades and pregnancy rates between the groups. Comparing follicular and luteal phase IVM within the same menstrual cycle in nine patients, no differences were observed in metaphase II oocyte maturation rates (P > 0.05). CONCLUSIONS: This study found no significant differences in oocyte maturation, fertilization rate, embryo quality or pregnancy outcomes between luteal phase and follicular phase IVM in women with OMAs. These findings suggest that luteal phase IVM can be used similarly to follicular phase IVM, offering a potential avenue to enhance embryo yield for women with OMAs.


Assuntos
Fase Folicular , Fase Luteal , Gravidez , Humanos , Feminino , Técnicas de Maturação in Vitro de Oócitos , Estudos Retrospectivos , Oócitos , Fertilização in vitro
10.
BMC Vet Res ; 20(1): 272, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918770

RESUMO

BACKGROUND: In vitro embryo production is a highly demanded reproductive technology in horses, which requires the recovery (in vivo or post-mortem) and in vitro maturation (IVM) of oocytes. Oocytes subjected to IVM exhibit poor developmental competence compared to their in vivo counterparts, being this related to a suboptimal composition of commercial maturation media. The objective of this work was to study the effect of different concentrations of secretome obtained from equine preovulatory follicular fluid (FF) on cumulus-oocyte complexes (COCs) during IVM. COCs retrieved in vivo by ovum pick up (OPU) or post-mortem from a slaughterhouse (SLA) were subjected to IVM in the presence or absence of secretome (Control: 0 µg/ml, S20: 20 µg/ml or S40: 40 µg/ml). After IVM, the metabolome of the medium used for oocyte maturation prior (Pre-IVM) and after IVM (Post-IVM), COCs mRNA expression, and oocyte meiotic competence were analysed. RESULTS: IVM leads to lactic acid production and an acetic acid consumption in COCs obtained from OPU and SLA. However, glucose consumption after IVM was higher in COCs from OPU when S40 was added (Control Pre-IVM vs. S40 Post-IVM: 117.24 ± 7.72 vs. 82.69 ± 4.24; Mean µM ± SEM; p < 0.05), while this was not observed in COCs from SLA. Likewise, secretome enhanced uptake of threonine (Control Pre-IVM vs. S20 Post-IVM vs. S40 Post-IVM: 4.93 ± 0.33 vs. 3.04 ± 0.25 vs. 2.84 ± 0.27; Mean µM ± SEM; p < 0.05) in COCs recovered by OPU. Regarding the relative mRNA expression of candidate genes related to metabolism, Lactate dehydrogenase A (LDHA) expression was significantly downregulated when secretome was added during IVM at 20-40 µg/ml in OPU-derived COCs (Control vs. S20 vs. S40: 1.77 ± 0.14 vs. 1 ± 0.25 vs. 1.23 ± 0.14; fold change ± SEM; p < 0.05), but not in SLA COCs. CONCLUSIONS: The addition of secretome during in vitro maturation (IVM) affects the gene expression of LDHA, glucose metabolism, and amino acid turnover in equine cumulus-oocyte complexes (COCs), with diverging outcomes observed between COCs retrieved using ovum pick up (OPU) and slaughterhouse-derived COCs (SLA).


Assuntos
Meios de Cultura , Células do Cúmulo , Líquido Folicular , Técnicas de Maturação in Vitro de Oócitos , Oócitos , Animais , Cavalos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Líquido Folicular/metabolismo , Líquido Folicular/química , Técnicas de Maturação in Vitro de Oócitos/veterinária , Células do Cúmulo/metabolismo , Células do Cúmulo/efeitos dos fármacos , Feminino , Meios de Cultura/farmacologia , Secretoma/metabolismo
11.
Zygote ; : 1-7, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953841

RESUMO

In vitro maturation of oocytes (IVM) represents an assisted reproductive technique that involves the minimal or absence of ovarian stimulation and is beneficial to specific groups of patients. These may include women with polycystic ovarian syndrome and/or patients who need a fertility preservation option before undergoing gonadotoxic treatment. However, when IVM is applied in cases where it is not recommended, it can be considered as an add-on technique, as described by the ESHRE Guideline Group on Female Fertility Preservation. Interestingly, IVM has not been proven yet to be as effective as conventional IVF in the laboratory, in terms of clinical pregnancy and live birth rates, while concerns have been raised for its long-term safety. As a result, both safety and efficacy of IVM remain still questionable and additional data are needed to draw conclusions.

12.
J Assist Reprod Genet ; 41(4): 1067-1076, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438769

RESUMO

PURPOSE: When resecting endometriomas with the stripping technique, in the majority of cases, a thin line of adjacent ovarian cortex is attached to the endometrioma. In this study, we performed histological analysis to determine (antral) follicle density in the ovarian cortex tissue attached to stripped endometriomas and assessed patient- and surgical characteristics that could affect this. METHODS: Histological slides of previously removed endometriomas were assessed. Follicles in the attached ovarian tissue were classified according to maturation, and follicular density was determined. Immunofluorescent staining of antral follicles in a subset of endometriomas was also performed. RESULTS: In 90 out of 96 included endometriomas (93.7%), ovarian tissue attached to the cyst wall was observed. One thousand nine hundred forty-four follicles at different maturation stages were identified (3 follicles/mm3). Follicle density was negatively associated with age (p < 0.001). Antral follicles (< 7-mm diameter) were present in the ovarian tissue attached to 35 endometriomas (36.5%) derived from younger patients compared to endometriomas where none were detected (30 versus 35 years, p = 0.003). Antral follicle density was 1 follicle/mm3. Based on immunofluorescence, healthy antral follicles were identified in two out of four examined endometriomas. CONCLUSIONS: Ovarian tissue attached to stripped endometriomas holds potential as a non-invasive source for antral follicles. In theory, application of IVM could be an interesting alternative FP option in young patients with endometriomas who undergo cystectomy in order to transform the surgical collateral damage to a potential oocyte source. Our results encourage future research with fresh tissue to further assess the quality and potential of these follicles. TRIAL REGISTRATION: Clinical Trials.gov Identifier: B21.055 (METC LDD), date of registration 12-08-2021, retrospectively registered.


Assuntos
Endometriose , Folículo Ovariano , Humanos , Feminino , Endometriose/patologia , Folículo Ovariano/patologia , Folículo Ovariano/crescimento & desenvolvimento , Adulto , Ovário/patologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-38990423

RESUMO

Female fertility preservation is a rapidly growing field in medicine. Oocyte cryopreservation and assisted reproductive technique with vitrified-warmed oocytes have been successful with in vivo matured oocytes after conventional ovarian stimulation protocols. The use of in vitro matured oocytes after vitrification and warming has been limited. Capacitation in vitro maturation (CAPA-IVM) represents the latest refinement of IVM protocols and provides in vitro matured oocytes with improved competence. This case report describes the first successful live birth following oocyte vitrification from a CAPA-IVM cycle. This milestone achievement holds a significant promise to expand fertility preservation options and improve accessibility for women wishing to cryopreserve their eggs for future use.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38814543

RESUMO

PURPOSE: Determine if the gene expression profiles of ovarian support cells (OSCs) and cumulus-free oocytes are bidirectionally influenced by co-culture during in vitro maturation (IVM). METHODS: Fertility patients aged 25 to 45 years old undergoing conventional ovarian stimulation donated denuded immature oocytes for research. Oocytes were randomly allocated to either OSC-IVM culture (intervention) or Media-IVM culture (control) for 24-28 h. The OSC-IVM culture condition was composed of 100,000 OSCs in suspension culture with human chorionic gonadotropin (hCG), recombinant follicle stimulating hormone (rFSH), androstenedione, and doxycycline supplementation. The Media-IVM control lacked OSCs and contained the same supplementation. A limited set of in vivo matured MII oocytes were donated for comparative evaluation. Endpoints consisted of MII formation rate, morphological and spindle quality assessment, and gene expression analysis compared to in vitro and in vivo controls. RESULTS: OSC-IVM resulted in a statistically significant improvement in MII formation rate compared to the Media-IVM control, with no apparent effect on morphology or spindle assembly. OSC-IVM MII oocytes displayed a closer transcriptomic maturity signature to IVF-MII controls than Media-IVM control MII oocytes. The gene expression profile of OSCs was modulated in the presence of oocytes, displaying culture- and time-dependent differential gene expression during IVM. CONCLUSION: The OSC-IVM platform is a novel tool for rescue maturation of human oocytes, yielding oocytes with improved nuclear maturation and a closer transcriptomic resemblance to in vivo matured oocytes, indicating a potential enhancement in oocyte cytoplasmic maturation. These improvements on oocyte quality after OSC-IVM are possibly occurring through bidirectional crosstalk of cumulus-free oocytes and ovarian support cells.

15.
Artigo em Inglês | MEDLINE | ID: mdl-39046561

RESUMO

PURPOSE: To assess the developmental competence of oocytes matured following rescue in vitro maturation (IVM). METHODS: PubMed, EmBASE, and SCOPUS were systematically searched for peer-reviewed original papers using relevant keywords and Medical Subject Heading terms. Study quality was assessed using the Newcastle-Ottawa Scale. Odds ratios with a 95% confidence interval were calculated by applying a random effects model. The primary outcomes were fertilization and blastulation rates. Secondary outcomes included abnormal fertilization, cleavage, euploidy, clinical pregnancy, and live-birth rates. RESULT: Twenty-four studies were included in the meta-analysis. The oocytes matured following rescue IVM showed significantly reduced fertilization, cleavage, blastulation, and clinical pregnancy rates compared to sibling in vivo-matured oocytes. No significant differences were found for the euploidy and live-birth rates in euploid blastocyst transfer. In poor responders, a reduced fertilization rate was observed using in vitro-matured GV but not with in vitro-matured MI. A reduced cleavage rate in MI matured overnight compared to < 6 incubation hours was found. CONCLUSION: Our results showed compromised developmental competence in oocytes matured following rescue IVM. However, in poor responders, rescue IVM could maximize the efficiency of the treatment. Notably, our data suggests using in vitro MI matured within 6 incubation hours. CLINICAL TRIAL REGISTRATION NUMBER: CRD42023467232.

16.
BMC Biol ; 21(1): 285, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066646

RESUMO

BACKGROUND: Immature cumulus-oocyte complexes are retrieved to obtain mature oocytes by in vitro maturation (IVM), a laboratory tool in reproductive medicine to obtain mature oocytes. Unfortunately, the efficiency of IVM is not satisfactory. To circumvent this problem, we therefore intended to commence with the composition of ovarian follicular fluid (FF), an important microenvironment influencing oocyte growth. It is well known that FF has a critical role in oocyte development and maturation. However, the components in human FF remain largely unknown, particularly with regard to small molecular peptides. RESULTS: In current study, the follicular fluid derived from human mature and immature follicles were harvested. The peptide profiles of FF were further investigated by using combined ultrafiltration and LC-MS/MS. The differential peptides were preliminary determined by performing differentially expressed analysis. Human and mouse oocyte culture were used to verify the influence of differential peptides on oocyte development. Constructing plasmids, cell transfecting, Co-IP, PLA etc. were used to reveal the detail molecular mechanism. The results from differentially expressed peptide as well as cultured human and mouse oocytes analyses showed that highly conserved C3a-peptide, a cleavage product of complement C3a, definitely affected oocytes development. Intriguingly, C3a-peptide possessed a novel function that promoted F-actin aggregation and spindle migration, raised the percentage of oocytes at the MII stage, without increasing the chromosome aneuploidy ratio, especially in poor-quality oocytes. These effects of C3a-peptide were attenuated by C3aR morpholino inhibition, suggesting that C3a-peptide affected oocytes development by collaborating with its classical receptor, C3aR. Specially, we found that C3aR co-localized to the spindle with ß-tubulin to recruit F-actin toward the spindle and subcortical region of the oocytes through specific binding to MYO10, a key regulator for actin organization, spindle morphogenesis and positioning in oocytes. CONCLUSIONS: Our results provide a new perspective for improving IVM culture systems by applying FF components and also provide molecular insights into the physiological function of C3a-peptide, its interaction with C3aR, and their roles in enabling meiotic division of oocytes.


Assuntos
Actinas , Complemento C3a , Líquido Folicular , Oócitos , Fragmentos de Peptídeos , Animais , Feminino , Humanos , Camundongos , Actinas/metabolismo , Cromatografia Líquida , Células do Cúmulo/metabolismo , Líquido Folicular/fisiologia , Oócitos/crescimento & desenvolvimento , Espectrometria de Massas em Tandem , Complemento C3a/fisiologia , Fragmentos de Peptídeos/fisiologia , Técnicas de Maturação in Vitro de Oócitos
17.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000031

RESUMO

In vitro maturation (IVM) is a promising fertility restoration strategy for patients with nonobstructive azoospermia or for prepubertal boys to obtain fertilizing-competent spermatozoa. However, in vitro spermatogenesis is still not achieved with human immature testicular tissue. Knowledge of various human testicular transcriptional profiles from different developmental periods helps us to better understand the testis development. This scoping review aims to describe the testis development and maturation from the fetal period towards adulthood and to find information to optimize IVM. Research papers related to native and in vitro cultured human testicular cells and single-cell RNA-sequencing (scRNA-seq) were identified and critically reviewed. Special focus was given to gene ontology terms to facilitate the interpretation of the biological function of related genes. The different consecutive maturation states of both the germ and somatic cell lineages were described. ScRNA-seq regularly showed major modifications around 11 years of age to eventually reach the adult state. Different spermatogonial stem cell (SSC) substates were described and scRNA-seq analyses are in favor of a paradigm shift, as the Adark and Apale spermatogonia populations could not distinctly be identified among the different SSC states. Data on the somatic cell lineage are limited, especially for Sertoli cells due technical issues related to cell size. During cell culture, scRNA-seq data showed that undifferentiated SSCs were favored in the presence of an AKT-signaling pathway inhibitor. The involvement of the oxidative phosphorylation pathway depended on the maturational state of the cells. Commonly identified cell signaling pathways during the testis development and maturation highlight factors that can be essential during specific maturation stages in IVM.


Assuntos
Espermatogênese , Testículo , Transcriptoma , Humanos , Espermatogênese/genética , Masculino , Testículo/metabolismo , Testículo/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Espermatogônias/metabolismo , Espermatogônias/citologia , Análise de Célula Única/métodos
18.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892259

RESUMO

Differences in structural and functional properties between oocytes and cumulus cells (CCs) may cause low vitrification efficiency for cumulus-oocyte complexes (COCs). We have suggested that the disconnection of CCs and oocytes in order to further cryopreservation in various ways will positively affect the viability after thawing, while further co-culture in vitro will contribute to the restoration of lost intercellular gap junctions. This study aimed to determine the optimal method of cryopreservation of the suspension of CCs to mature GV oocytes in vitro and to determine the level of mRNA expression of the genes (GJA1, GJA4; BCL2, BAX) and gene-specific epigenetic marks (DNMT3A) after cryopreservation and in vitro maturation (IVM) in various culture systems. We have shown that the slow freezing of CCs in microstraws preserved the largest number of viable cells with intact DNA compared with the methods of vitrification and slow freezing in microdroplets. Cryopreservation caused the upregulation of the genes Cx37 and Cx43 in the oocytes to restore gap junctions between cells. In conclusion, the presence of CCs in the co-culture system during IVM of oocytes played an important role in the regulation of the expression of the intercellular proteins Cx37 and Cx43, apoptotic changes, and oocyte methylation. Slow freezing in microstraws was considered to be an optimal method for cryopreservation of CCs.


Assuntos
Criopreservação , Células do Cúmulo , Junções Comunicantes , Oócitos , Animais , Oócitos/metabolismo , Oócitos/citologia , Criopreservação/métodos , Junções Comunicantes/metabolismo , Células do Cúmulo/metabolismo , Células do Cúmulo/citologia , Bovinos , Feminino , Conexina 43/metabolismo , Conexina 43/genética , Conexinas/metabolismo , Conexinas/genética , Vitrificação , Técnicas de Cocultura/métodos , Sobrevivência Celular , Técnicas de Maturação in Vitro de Oócitos/métodos
19.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542236

RESUMO

Cumulus cell (CC) expansion is pivotal for oocyte maturation, during which CCs release factors that initiate paracrine signaling within the follicular fluid (FF). The FF is abundant in extracellular vesicles (EVs) that facilitate intercellular communication. Although bovine and murine EVs can control cumulus expansion, these effects have not been observed in equines. This study aimed to assess the impact of FF-derived EVs (ffEVs) on equine CC expansion, viability, and transcriptome. Cumulus-oocyte complexes (COCs) that underwent in vitro maturation (IVM) in the presence (200 µg protein/mL) or absence (control) of ffEVs were assessed for cumulus expansion and viability. CCs were isolated after 12 h of IVM, followed by RNA extraction, cDNA library generation, and subsequent transcriptome analysis using next-generation sequencing. Confocal microscopy images illustrated the internalization of labeled ffEVs by CCs. Supplementation with ffEVs significantly enhanced cumulus expansion in both compacted (Cp, p < 0.0001) and expanded (Ex, p < 0.05) COCs, while viability increased in Cp groups (p < 0.01), but decreased in Ex groups (p < 0.05), compared to the controls. Although transcriptome analysis revealed a subtle effect on CC RNA profiles, differentially expressed genes encompassed processes (e.g., MAPK and Wnt signaling) potentially crucial for cumulus properties and, consequently, oocyte maturation.


Assuntos
Vesículas Extracelulares , Líquido Folicular , Feminino , Animais , Cavalos , Bovinos , Camundongos , Transcriptoma , Sobrevivência Celular , Células do Cúmulo , Oócitos , Vesículas Extracelulares/genética , RNA , Técnicas de Maturação in Vitro de Oócitos
20.
Trop Anim Health Prod ; 56(3): 105, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502249

RESUMO

Buffaloes are considered animals of the future with the ability to survive under unfavorable conditions. However, the lack of access to superior germplasm poses a significant challenge to increasing buffalo production. Resveratrol has been shown to improve oocyte quality and developmental competence in various animals during in vitro embryo development. However, limited information is available on the use of resveratrol to improve the in vitro maturation and development competence of Nili Ravi buffalo oocytes. Therefore, the current study aimed to investigate the influence of different concentrations of resveratrol on the maturation, fertilization, and development of buffalo oocytes under in vitro conditions. Oocytes were collected from ovaries and subjected to in vitro maturation (IVM) using varying concentrations of resveratrol (0 µM, 0.5 µM, 1 µM, 1.5 µM, and 2 µM), and the maturation process was assessed using a fluorescent staining technique. Results indicated no significant differences in oocyte maturation, morula rate, and blastocyst rate among the various resveratrol concentrations. However, the cleavage rate notably increased with 1 µM and 1.5 µM concentrations of resveratrol (p < 0.05). In conclusion, the study suggests that adding 1 µM of resveratrol into the maturation media may enhance the cleavage and blastocyst hatching of oocytes of Nili Ravi buffaloes. These findings hold promise for advancing buffalo genetics, reproductive performance, and overall productivity, offering potential benefits to the dairy industry, especially in Asian countries.


Assuntos
Bison , Búfalos , Feminino , Animais , Resveratrol/farmacologia , Fertilização in vitro/veterinária , Oócitos , Ovário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA