Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 677: 126-131, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37573767

RESUMO

Human pancreatic cancer cell lines harbor a small population of tumor repopulating cells (TRCs). Soft 3D fibrin gel allows efficient selection and growth of these tumorigenic TRCs. However, rapid and high-throughput identification and classification of pancreatic TRCs remain technically challenging. Here, we developed deep learning (DL) models paired with machine learning (ML) models to readily identify and classify 3D fibrin gel-selected TRCs into sub-types. Using four different human pancreatic cell lines, namely, MIA PaCa-2, PANC-1, CFPAC-1, and HPAF-II, we classified 3 main sub-types to be present within the TRC population. Our best model was an Inception-v3 convolutional neural network (CNN) used as a feature extractor paired with a Support Vector Machine (SVM) classifier with radial basis function (rbf) kernel which obtained a test accuracy of 90%. In addition, we compared this hybrid method of supervised classification with other methods of supervised classifications and showed that our working model outperforms others. With the help of unsupervised machine learning algorithms, we also validated that the pancreatic TRC subpopulation can be clustered into 3 sub-types. Collectively, our robust model can detect and readily classify tumorigenic TRC subpopulation label-free in a high-throughput fashion which can be very beneficial in clinical settings.


Assuntos
Redes Neurais de Computação , Neoplasias Pancreáticas , Humanos , Aprendizado de Máquina , Pâncreas , Linhagem Celular , Máquina de Vetores de Suporte , Carcinogênese , Neoplasias Pancreáticas/diagnóstico
2.
BMC Med Imaging ; 23(1): 134, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37718458

RESUMO

Continuous release of image databases with fully or partially identical inner categories dramatically deteriorates the production of autonomous Computer-Aided Diagnostics (CAD) systems for true comprehensive medical diagnostics. The first challenge is the frequent massive bulk release of medical image databases, which often suffer from two common drawbacks: image duplication and corruption. The many subsequent releases of the same data with the same classes or categories come with no clear evidence of success in the concatenation of those identical classes among image databases. This issue stands as a stumbling block in the path of hypothesis-based experiments for the production of a single learning model that can successfully classify all of them correctly. Removing redundant data, enhancing performance, and optimizing energy resources are among the most challenging aspects. In this article, we propose a global data aggregation scale model that incorporates six image databases selected from specific global resources. The proposed valid learner is based on training all the unique patterns within any given data release, thereby creating a unique dataset hypothetically. The Hash MD5 algorithm (MD5) generates a unique hash value for each image, making it suitable for duplication removal. The T-Distributed Stochastic Neighbor Embedding (t-SNE), with a tunable perplexity parameter, can represent data dimensions. Both the Hash MD5 and t-SNE algorithms are applied recursively, producing a balanced and uniform database containing equal samples per category: normal, pneumonia, and Coronavirus Disease of 2019 (COVID-19). We evaluated the performance of all proposed data and the new automated version using the Inception V3 pre-trained model with various evaluation metrics. The performance outcome of the proposed scale model showed more respectable results than traditional data aggregation, achieving a high accuracy of 98.48%, along with high precision, recall, and F1-score. The results have been proved through a statistical t-test, yielding t-values and p-values. It's important to emphasize that all t-values are undeniably significant, and the p-values provide irrefutable evidence against the null hypothesis. Furthermore, it's noteworthy that the Final dataset outperformed all other datasets across all metric values when diagnosing various lung infections with the same factors.


Assuntos
COVID-19 , Pneumonia , Humanos , COVID-19/diagnóstico por imagem , Raios X , Pneumonia/diagnóstico por imagem , Algoritmos , Pulmão/diagnóstico por imagem
3.
Sensors (Basel) ; 22(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35632365

RESUMO

Car crashes are among the top ten leading causes of death; they could mainly be attributed to distracted drivers. An advanced driver-assistance technique (ADAT) is a procedure that can notify the driver about a dangerous scenario, reduce traffic crashes, and improve road safety. The main contribution of this work involved utilizing the driver's attention to build an efficient ADAT. To obtain this "attention value", the gaze tracking method is proposed. The gaze direction of the driver is critical toward understanding/discerning fatal distractions, pertaining to when it is obligatory to notify the driver about the risks on the road. A real-time gaze tracking system is proposed in this paper for the development of an ADAT that obtains and communicates the gaze information of the driver. The developed ADAT system detects various head poses of the driver and estimates eye gaze directions, which play important roles in assisting the driver and avoiding any unwanted circumstances. The first (and more significant) task in this research work involved the development of a benchmark image dataset consisting of head poses and horizontal and vertical direction gazes of the driver's eyes. To detect the driver's face accurately and efficiently, the You Only Look Once (YOLO-V4) face detector was used by modifying it with the Inception-v3 CNN model for robust feature learning and improved face detection. Finally, transfer learning in the InceptionResNet-v2 CNN model was performed, where the CNN was used as a classification model for head pose detection and eye gaze angle estimation; a regression layer to the InceptionResNet-v2 CNN was added instead of SoftMax and the classification output layer. The proposed model detects and estimates head pose directions and eye directions with higher accuracy. The average accuracy achieved by the head pose detection system was 91%; the model achieved a RMSE of 2.68 for vertical and 3.61 for horizontal eye gaze estimations.


Assuntos
Aprendizado Profundo , Movimentos Oculares , Olho , Fixação Ocular , Movimentos da Cabeça
4.
Sensors (Basel) ; 22(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35271011

RESUMO

Traditional methods for behavior detection of distracted drivers are not capable of capturing driver behavior features related to complex temporal features. With the goal to improve transportation safety and to reduce fatal accidents on roads, this research article presents a Hybrid Scheme for the Detection of Distracted Driving called HSDDD. This scheme is based on a strategy of aggregating handcrafted and deep CNN features. HSDDD is based on three-tiered architecture. The three tiers are named as Coordination tier, Concatenation tier and Classification tier. We first obtain HOG features by using handcrafted algorithms, and then at the coordination tier, we leverage four deep CNN models including AlexNet, Inception V3, Resnet50 and VGG-16 for extracting DCNN features. DCNN extracted features are fused with HOG extracted features at the Concatenation tier. Then PCA is used as a feature selection technique. PCA takes both the extracted features and removes the redundant and irrelevant information, and it improves the classification performance. After feature fusion and feature selection, the two classifiers, KNN and SVM, at the Classification tier take the selected features and classify the ten classes of distracted driving behaviors. We evaluate our proposed scheme and observe its performance by using the accuracy metrics.


Assuntos
Aprendizado Profundo , Direção Distraída , Algoritmos , Máquina de Vetores de Suporte
5.
J Xray Sci Technol ; 30(2): 365-376, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35068415

RESUMO

BACKGROUND: Chest X-ray images are widely used to detect many different lung diseases. However, reading chest X-ray images to accurately detect and classify different lung diseases by doctors is often difficult with large inter-reader variability. Thus, there is a huge demand for developing computer-aided automated schemes of chest X-ray images to help doctors more accurately and efficiently detect lung diseases depicting on chest X-ray images. OBJECTIVE: To develop convolution neural network (CNN) based deep learning models and compare their feasibility and performance to classify 14 chest diseases or pathology patterns based on chest X-rays. METHOD: Several CNN models pre-trained using ImageNet dataset are modified as transfer learning models and applied to classify between 14 different chest pathology and normal chest patterns depicting on chest X-ray images. In this process, a deep convolution generative adversarial network (DC-GAN) is also trained to mitigate the effects of small or imbalanced dataset and generate synthetic images to balance the dataset of different diseases. The classification models are trained and tested using a large dataset involving 91,324 frontal-view chest X-ray images. RESULTS: In this study, eight models are trained and compared. Among them, ResNet-152 model achieves an accuracy of 67% and 62% with and without data augmentation, respectively. Inception-V3, NasNetLarge, Xcaption, ResNet-50 and InceptionResNetV2 achieve accuracy of 68%, 62%, 66%, 66% and 54% respectively. Additionally, Resnet-152 with data augmentation achieves an accuracy of 83% but only for six classes. CONCLUSION: This study solves the problem of having fewer data by using GAN-based techniques to add synthetic images and demonstrates the feasibility of applying transfer learning CNN method to help classify 14 types of chest diseases depicting on chest X-ray images.


Assuntos
COVID-19 , Aprendizado Profundo , Algoritmos , Humanos , Redes Neurais de Computação , SARS-CoV-2 , Raios X
6.
Expert Syst Appl ; 204: 117410, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35502163

RESUMO

Since the advent of COVID-19, the number of deaths has increased exponentially, boosting the requirement for various research studies that may correctly diagnose the illness at an early stage. Using chest X-rays, this study presents deep learning-based algorithms for classifying patients with COVID illness, healthy controls, and pneumonia classes. Data gathering, pre-processing, feature extraction, and classification are the four primary aspects of the approach. The pictures of chest X-rays utilized in this investigation came from various publicly available databases. The pictures were filtered to increase image quality in the pre-processing stage, and the chest X-ray images were de-noised using the empirical wavelet transform (EWT). Following that, four deep learning models were used to extract features. The first two models, Inception-V3 and Resnet-50, are based on transfer learning models. The Resnet-50 is combined with a temporal convolutional neural network (TCN) to create the third model. The fourth model is our suggested RESCOVIDTCNNet model, which integrates EWT, Resnet-50, and TCN. Finally, an artificial neural network (ANN) and a support vector machine were used to classify the data (SVM). Using five-fold cross-validation for 3-class classification, our suggested RESCOVIDTCNNet achieved a 99.5 percent accuracy. Our prototype can be utilized in developing nations where radiologists are in low supply to acquire a diagnosis quickly.

7.
Fa Yi Xue Za Zhi ; 38(2): 223-230, 2022 Apr 25.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-35899511

RESUMO

OBJECTIVES: To apply the convolutional neural network (CNN) Inception_v3 model in automatic identification of acceleration and deceleration injury based on CT images of brain, and to explore the application prospect of deep learning technology in forensic brain injury mechanism inference. METHODS: CT images from 190 cases with acceleration and deceleration brain injury were selected as the experimental group, and CT images from 130 normal brain cases were used as the control group. The above-mentioned 320 imaging data were divided into training validation dataset and testing dataset according to random sampling method. The model classification performance was evaluated by the accuracy rate, precision rate, recall rate, F1-value and AUC value. RESULTS: In the training process and validation process, the accuracy rate of the model to classify acceleration injury, deceleration injury and normal brain was 99.00% and 87.21%, which met the requirements. The optimized model was used to test the data of the testing dataset, the result showed that the accuracy rate of the model in the test set was 87.18%, and the precision rate, recall rate, F1-score and AUC of the model to recognize acceleration injury were 84.38%, 90.00%, 87.10% and 0.98, respectively, to recognize deceleration injury were 86.67%, 72.22%, 78.79% and 0.92, respectively, to recognize normal brain were 88.57%, 89.86%, 89.21% and 0.93, respectively. CONCLUSIONS: Inception_v3 model has potential application value in distinguishing acceleration and deceleration injury based on brain CT images, and is expected to become an auxiliary tool to infer the mechanism of head injury.


Assuntos
Lesões Encefálicas , Aprendizado Profundo , Encéfalo/diagnóstico por imagem , Humanos , Redes Neurais de Computação
8.
BMC Genomics ; 22(Suppl 3): 281, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078279

RESUMO

BACKGROUND: Horizontal gene transfer is the main source of adaptability for bacteria, through which genes are obtained from different sources including bacteria, archaea, viruses, and eukaryotes. This process promotes the rapid spread of genetic information across lineages, typically in the form of clusters of genes referred to as genomic islands (GIs). Different types of GIs exist, and are often classified by the content of their cargo genes or their means of integration and mobility. While various computational methods have been devised to detect different types of GIs, no single method is capable of detecting all types. RESULTS: We propose a method, which we call Shutter Island, that uses a deep learning model (Inception V3, widely used in computer vision) to detect genomic islands. The intrinsic value of deep learning methods lies in their ability to generalize. Via a technique called transfer learning, the model is pre-trained on a large generic dataset and then re-trained on images that we generate to represent genomic fragments. We demonstrate that this image-based approach generalizes better than the existing tools. CONCLUSIONS: We used a deep neural network and an image-based approach to detect the most out of the correct GI predictions made by other tools, in addition to making novel GI predictions. The fact that the deep neural network was re-trained on only a limited number of GI datasets and then successfully generalized indicates that this approach could be applied to other problems in the field where data is still lacking or hard to curate.


Assuntos
Ilhas Genômicas , Redes Neurais de Computação , Eucariotos/genética , Transferência Genética Horizontal , Genômica
9.
Sensors (Basel) ; 21(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199873

RESUMO

Diabetic retinopathy, an eye disease commonly afflicting diabetic patients, can result in loss of vision if prompt detection and treatment are not done in the early stages. Once the symptoms are identified, the severity level of the disease needs to be classified for prescribing the right medicine. This study proposes a deep learning-based approach, for the classification and grading of diabetic retinopathy images. The proposed approach uses the feature map of ResNet-50 and passes it to Random Forest for classification. The proposed approach is compared with five state-of-the-art approaches using two category Messidor-2 and five category EyePACS datasets. These two categories on the Messidor-2 dataset include 'No Referable Diabetic Macular Edema Grade (DME)' and 'Referable DME' while five categories consist of 'Proliferative diabetic retinopathy', 'Severe', 'Moderate', 'Mild', and 'No diabetic retinopathy'. The results show that the proposed approach outperforms compared approaches and achieves an accuracy of 96% and 75.09% for these datasets, respectively. The proposed approach outperforms six existing state-of-the-art architectures, namely ResNet-50, VGG-19, Inception-v3, MobileNet, Xception, and VGG16.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Edema Macular , Retinopatia Diabética/diagnóstico , Humanos
10.
Sensors (Basel) ; 21(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34641006

RESUMO

In turning, the wear control of a cutting tool benefits product quality enhancement, tool-related costs' optimisation, and assists in avoiding undesired events. In small series and individual production, the machine operator is the one who determines when to change a cutting tool, based upon their experience. Bad decisions can often lead to greater costs, production downtime, and scrap. In this paper, a Tool Condition Monitoring (TCM) system is presented that automatically classifies tool wear of turning tools into four classes (no, low, medium, high wear). A cutting tool was monitored with infrared (IR) camera immediately after the cut and in the following 60 s. The Convolutional Neural Network Inception V3 was used to analyse and classify the thermographic images, which were divided into different groups depending on the time of acquisition. Based on classification result, one gets information about the cutting capability of the tool for further machining. The proposed model, combining Infrared Thermography, Computer Vision, and Deep Learning, proved to be a suitable method with results of more than 96% accuracy. The most appropriate time of image acquisition is 6-12 s after the cut is finished. While existing temperature based TCM systems focus on measuring a cutting tool absolute temperature, the proposed system analyses a temperature distribution (relative temperatures) on the whole image based on image features.


Assuntos
Redes Neurais de Computação , Termografia
11.
Int Ophthalmol ; 41(11): 3727-3741, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34212255

RESUMO

PURPOSE: Glaucoma is the leading cause of irreversible blindness worldwide. It is estimated that over 60 million people around the world have this disease, with only part of them knowing they have it. Timely and early diagnosis is vital to delay/prevent patient blindness. Deep learning (DL) could be a tool for ophthalmologists to give a more informed and objective diagnosis. However, there is a lack of studies that apply DL for glaucoma detection to Latino population. Our contribution is to use transfer learning to retrain MobileNet and Inception V3 models with images of the retinal nerve fiber layer thickness map of Mexican patients, obtained with optical coherence tomography (OCT) from the Instituto de la Visión, a clinic in the northern part of Mexico. METHODS: The IBM Foundational Methodology for Data Science was used in this study. The MobileNet and Inception V3 topologies were chosen as the analytical approaches to classify OCT images in two classes, namely glaucomatous and non-glaucomatous. The OCT files were collected from a Zeiss OCT machine at the Instituto de la Visión, and classified by an expert into the two classes under study. These images conform a dataset of 333 files in total. Since this research work is focused on RNFL thickness map images, the OCT files were cropped to obtain only the RNFL thickness map images of the corresponding eye. This action was carried out for images in both classes, glaucomatous and non-glaucomatous. Since some images were damaged (with black spots in which data was missing), these images were cut-out and cut-off. After the preparation process, 50 images per class were used for training. Fifteen images per class, different than the ones used in the training stage, were used for running predictions. In total, 260 images were used in the experiments, 130 per eye. Four models were generated, two trained with MobileNet, one for the left eye and one for the right eye, and another two trained with Inception V3. TensorFlow was used for running transfer learning. RESULTS: The evaluation results of the MobileNet model for the left eye are, accuracy: 86%, precision: 87%, recall: 87%, and F1 score: 87%. The evaluation results of the MobileNet model for the right eye are, accuracy: 90%, precision: 90%, recall: 90%, and F1 score: 90%. The evaluation results of the Inception V3 model for the left eye are, accuracy: 90%, precision: 90%, recall: 90%, and F1 score: 90%. The evaluation results of the Inception V3 model for the right eye are, accuracy: 90%, precision: 90%, recall: 90%, and F1 score: 90%. CONCLUSION: In average, the evaluation results for right eye images were the same for both models. The Inception V3 model showed slight better average results than the MobileNet model in the case of classifying left eye images.


Assuntos
Glaucoma , Tomografia de Coerência Óptica , Glaucoma/diagnóstico , Hispânico ou Latino , Humanos , Pressão Intraocular , Aprendizado de Máquina , Fibras Nervosas , Células Ganglionares da Retina , Campos Visuais
12.
Int J Med Sci ; 17(10): 1439-1448, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32624700

RESUMO

Background: As 2019 ends coronavirus disease start expanding all over the world. It is highly transmissible disease that can affect respiratory tract and can leads to organ failure. In 2020 it is declared by world health organization as "Public health emergency of international concerns". The current situation of Covid-19 and chest related diseases have already gone through radical change with the advancements of image processing tools. There is no effective method which can accurately identify all chest related diseases and tackle the multiple class problems with reliable results. Method: There are many potentially impactful applications of Deep Learning to fighting the Covid-19 from Chest X-Ray/CT Images, however, most are still in their early stages due to lack of data sharing as it continues to inhibit overall progress in a variety of medical research problems. Based on COVID-19 radiographical changes in CT images, this work aims to detect the possibility of COVID-19 in the patient. This work provides a significant contribution in terms of Gan based synthetic data and four different types of deep learning- based models which provided state of the art comparable results. Results: A Deep Neural Network model provides a significant contribution in terms of detecting COVID-19 and provides effective analysis of chest related diseases with respect to age and gender. Our model achieves 89% accuracy in terms of Gan based synthetic data and four different types of deep learning- based models which provided state of the art comparable results. Conclusion: If the gap in identifying of all viral pneumonias is not filled with effective automation of chest disease detection the healthcare industry may have to bear unfavorable circumstances.


Assuntos
Infecções por Coronavirus/diagnóstico por imagem , Aprendizado Profundo , Pneumonia Viral/diagnóstico por imagem , Radiografia Torácica , COVID-19 , Infecções por Coronavirus/complicações , Feminino , Humanos , Masculino , Pandemias , Pneumonia Viral/complicações
13.
Sensors (Basel) ; 20(16)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806780

RESUMO

The surface quality of aluminum ingot is crucial for subsequent products, so it is necessary to adaptively detect different types of defects in milled aluminum ingots surfaces. In order to quickly apply the calculations to a real production line, a novel two-stage detection approach is proposed. Firstly, we proposed a novel mask gradient response-based threshold segmentation (MGRTS) in which the mask gradient response is the gradient map after the strong gradient has been eliminated by the binary mask, so that the various defects can be effectively extracted from the mask gradient response map by iterative threshold segmentation. In the region of interest (ROI) extraction, we combine the MGRTS and the Difference of Gaussian (DoG) to effectively improve the detection rate. In the aspect of the defect classification, we train the inception-v3 network with a data augmentation technology and the focal loss in order to overcome the class imbalance problem and improve the classification accuracy. The comparative study shows that the proposed method is efficient and robust for detecting various defects on an aluminum ingot surface with complex milling grain. In addition, it has been applied to the actual production line of an aluminum ingot milling machine, which satisfies the requirement of accuracy and real time very well.

14.
Sensors (Basel) ; 20(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560464

RESUMO

It has recently been shown in Re-Identification (Re-ID) work that full-body images of people reveal their somatotype, even after change in apparel. A significant advantage of this biometric trait is that it can easily be captured, even at a distance, as a full-body image of a person, taken by a standard 2D camera. In this work, full-body image-based somatotype is investigated as a novel soft biometric feature for person recognition at a distance and on-the-move. The two common scenarios of (i) identification and (ii) verification are both studied and evaluated. To this end, two different deep networks have been recruited, one for the identification and one for the verification scenario. Experiments have been conducted on popular, publicly available datasets and the results indicate that somatotype can indeed be a valuable biometric trait for identity recognition at a distance and on-the-move (and hence also suitable for non-collaborative individuals) due to the ease of obtaining the required images. This soft biometric trait can be especially useful under a wider biometric fusion scheme.


Assuntos
Identificação Biométrica , Somatotipos , Algoritmos , Humanos , Movimento
15.
Biomed Eng Lett ; 14(4): 891-902, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38946808

RESUMO

Highly complex cognitive works require more brain power. The productivity of a person suffers due to this strain, which is sometimes referred to as a mental burden or psychological load. A person's mental health and safety in high-stress working conditions can be improved with the help of mental workload assessment. A photoplethysmogram (PPG) signal is a non-invasive and easily acquired physiological signal that contains information related to blood volume changes in the micro-vascular bed of tissues and can indicate psychologically relevant information to assess a person's mental workload (MW). An individual under a high MW possesses an increase in sympathetic nervous system activity, which results in morphological changes in the PPG waveform. In this work, a time-frequency analysis framework is developed to capture these distinguishing PPG features for the automatic assessment of MW. In particular, a cross-wavelet coherence (WTC) approach is proposed to extract simultaneous time-frequency information of the PPG during MW relative to the resting PPG. The suggested technique is validated on a publicly available data set of 22 healthy individuals who took part in an N-back task with PPG recording. Under three different fixed window lengths, images are obtained using WTC between PPG records during N-back task activity and rest. The images are used further to obtain PPG classification in two broad classes of low and high MW using a customized pre-trained Inception-V3 model. The best validation and test accuracy of 93.86% and 93.07%, respectively obtained in the window setting of 1200 samples used for WTC image creation.

16.
Heliyon ; 10(9): e29912, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699004

RESUMO

Early detection of plant leaf diseases accurately and promptly is very crucial for safeguarding agricultural crop productivity and ensuring food security. During their life cycle, plant leaves get diseased because of multiple factors like bacteria, fungi, weather conditions, etc. In this work, the authors propose a model that aids in the early detection of leaf diseases using a novel hierarchical residual vision transformer using improved Vision Transformer and ResNet9 models. The proposed model can extract more meaningful and discriminating details by reducing the number of trainable parameters with a smaller number of computations. The proposed method is evaluated on the Local Crop dataset, Plant Village dataset, and Extended Plant Village Dataset with 13, 38, and 51 different leaf disease classes. The proposed model is trained using the best trail parameters of Improved Vision Transformer and classified the features using ResNet 9. Performance evaluation is carried out on a wide aspects over the aforementioned datasets and results revealed that the proposed model outperforms other models such as InceptionV3, MobileNetV2, and ResNet50.

17.
Accid Anal Prev ; 197: 107457, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219599

RESUMO

This research leverages a novel deep learning model, Inception-v3, to predict pedestrian crash severity using data collected over five years (2016-2021) from Louisiana. The final dataset incorporates forty different variables related to pedestrian attributes, environmental conditions, and vehicular specifics. Crash severity was classified into three categories: fatal, injury, and no injury. The Boruta algorithm was applied to determine the importance of variables and investigate contributing factors to pedestrian crash severity, revealing several associated aspects, including pedestrian gender, pedestrian and driver impairment, posted speed limits, alcohol involvement, pedestrian age, visibility obstruction, roadway lighting conditions, and both pedestrian and driver conditions, including distraction and inattentiveness. To address data imbalance, the study employed Random Under Sampling (RUS) and the Synthetic Minority Oversampling Technique (SMOTE). The DeepInsight technique transformed numeric data into images. Subsequently, five crash severity prediction models were developed with Inception-v3, considering various scenarios, including original, under-sampled, over-sampled, a combination of under and over-sampled data, and the top twenty-five important variables. Results indicated that the model applying both over and under sampling outperforms models based on other data balancing techniques in terms of several performance metrics, including accuracy, sensitivity, precision, specificity, false negative ratio (FNR), false positive ratio (FPR), and F1-score. This model achieved prediction accuracies of 93.5%, 77.5%, and 85.9% for fatal, injury, and no injury categories, respectively. Additionally, comparative analysis based on several performance metrics and McNemar's tests demonstrated that the predictive performance of the Inception-v3 deep learning model is statistically superior compared to traditional machine learning and statistical models. The insights from this research can be effectively harnessed by safety professionals, emergency service providers, traffic management centers, and vehicle manufacturers to enhance their safety measures and applications.


Assuntos
Aprendizado Profundo , Pedestres , Ferimentos e Lesões , Humanos , Acidentes de Trânsito , Modelos Estatísticos , Algoritmos , Ferimentos e Lesões/epidemiologia
18.
Math Biosci Eng ; 21(1): 1625-1649, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38303481

RESUMO

Fake face identity is a serious, potentially fatal issue that affects every industry from the banking and finance industry to the military and mission-critical applications. This is where the proposed system offers artificial intelligence (AI)-based supported fake face detection. The models were trained on an extensive dataset of real and fake face images, incorporating steps like sampling, preprocessing, pooling, normalization, vectorization, batch processing and model training, testing-, and classification via output activation. The proposed work performs the comparative analysis of the three fusion models, which can be integrated with Generative Adversarial Networks (GAN) based on the performance evaluation. The Model-3, which contains the combination of DenseNet-201+ResNet-102+Xception, offers the highest accuracy of 0.9797, and the Model-2 with the combination of DenseNet-201+ResNet-50+Inception V3 offers the lowest loss value of 0.1146; both are suitable for the GAN integration. Additionally, the Model-1 performs admirably, with an accuracy of 0.9542 and a loss value of 0.1416. A second dataset was also tested where the proposed Model-3 provided maximum accuracy of 86.42% with a minimum loss of 0.4054.


Assuntos
Inteligência Artificial , Indústrias
19.
Sci Rep ; 14(1): 17615, 2024 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080324

RESUMO

The process of brain tumour segmentation entails locating the tumour precisely in images. Magnetic Resonance Imaging (MRI) is typically used by doctors to find any brain tumours or tissue abnormalities. With the use of region-based Convolutional Neural Network (R-CNN) masks, Grad-CAM and transfer learning, this work offers an effective method for the detection of brain tumours. Helping doctors make extremely accurate diagnoses is the goal. A transfer learning-based model has been suggested that offers high sensitivity and accuracy scores for brain tumour detection when segmentation is done using R-CNN masks. To train the model, the Inception V3, VGG-16, and ResNet-50 architectures were utilised. The Brain MRI Images for Brain Tumour Detection dataset was utilised to develop this method. This work's performance is evaluated and reported in terms of recall, specificity, sensitivity, accuracy, precision, and F1 score. A thorough analysis has been done comparing the proposed model operating with three distinct architectures: VGG-16, Inception V3, and Resnet-50. Comparing the proposed model, which was influenced by the VGG-16, to related works also revealed its performance. Achieving high sensitivity and accuracy percentages was the main goal. Using this approach, an accuracy and sensitivity of around 99% were obtained, which was much greater than current efforts.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Interpretação de Imagem Assistida por Computador/métodos , Algoritmos , Sensibilidade e Especificidade
20.
Front Oncol ; 14: 1300997, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894870

RESUMO

Breast cancer (BC) is the leading cause of female cancer mortality and is a type of cancer that is a major threat to women's health. Deep learning methods have been used extensively in many medical domains recently, especially in detection and classification applications. Studying histological images for the automatic diagnosis of BC is important for patients and their prognosis. Owing to the complication and variety of histology images, manual examination can be difficult and susceptible to errors and thus needs the services of experienced pathologists. Therefore, publicly accessible datasets called BreakHis and invasive ductal carcinoma (IDC) are used in this study to analyze histopathological images of BC. Next, using super-resolution generative adversarial networks (SRGANs), which create high-resolution images from low-quality images, the gathered images from BreakHis and IDC are pre-processed to provide useful results in the prediction stage. The components of conventional generative adversarial network (GAN) loss functions and effective sub-pixel nets were combined to create the concept of SRGAN. Next, the high-quality images are sent to the data augmentation stage, where new data points are created by making small adjustments to the dataset using rotation, random cropping, mirroring, and color-shifting. Next, patch-based feature extraction using Inception V3 and Resnet-50 (PFE-INC-RES) is employed to extract the features from the augmentation. After the features have been extracted, the next step involves processing them and applying transductive long short-term memory (TLSTM) to improve classification accuracy by decreasing the number of false positives. The results of suggested PFE-INC-RES is evaluated using existing methods on the BreakHis dataset, with respect to accuracy (99.84%), specificity (99.71%), sensitivity (99.78%), and F1-score (99.80%), while the suggested PFE-INC-RES performed better in the IDC dataset based on F1-score (99.08%), accuracy (99.79%), specificity (98.97%), and sensitivity (99.17%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA