Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 631
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 39: 667-693, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637018

RESUMO

Traditionally, the innate and adaptive immune systems are differentiated by their specificity and memory capacity. In recent years, however, this paradigm has shifted: Cells of the innate immune system appear to be able to gain memory characteristics after transient stimulation, resulting in an enhanced response upon secondary challenge. This phenomenon has been called trained immunity. Trained immunity is characterized by nonspecific increased responsiveness, mediated via extensive metabolic and epigenetic reprogramming. Trained immunity explains the heterologous effects of vaccines, which result in increased protection against secondary infections. However, in chronic inflammatory conditions, trained immunity can induce maladaptive effects and contribute to hyperinflammation and progression of cardiovascular disease, autoinflammatory syndromes, and neuroinflammation. In this review we summarize the current state of the field of trained immunity, its mechanisms, and its roles in both health and disease.


Assuntos
Memória Imunológica , Vacinas , Animais , Diferenciação Celular , Humanos , Sistema Imunitário , Imunidade Inata
2.
Annu Rev Biochem ; 86: 541-566, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28399655

RESUMO

The innate immune system functions as the first line of defense against invading bacteria and viruses. In this context, the cGAS/STING [cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase/STING] signaling axis perceives the nonself DNA associated with bacterial and viral infections, as well as the leakage of self DNA by cellular dysfunction and stresses, to elicit the host's immune responses. In this pathway, the noncanonical cyclic dinucleotide 2',3'-cyclic GMP-AMP (2',3'-cGAMP) functions as a second messenger for signal transduction: 2',3'-cGAMP is produced by the enzyme cGAS upon its recognition of double-stranded DNA, and then the 2',3'-cGAMP is recognized by the receptor STING to induce the phosphorylation of downstream factors, including TBK1 (TANK binding kinase 1) and IRF3 (interferon regulatory factor 3). Numerous crystal structures of the components of this cGAS/STING signaling axis have been reported and these clarify the structural basis for their signal transduction mechanisms. In this review, we summarize recent progress made in the structural dissection of this signaling pathway and indicate possible directions of forthcoming research.


Assuntos
DNA/imunologia , Imunidade Inata , Nucleotídeos Cíclicos/imunologia , Nucleotidiltransferases/imunologia , Sistemas do Segundo Mensageiro/imunologia , Animais , Bactérias , Cristalografia por Raios X , Citosol/química , Citosol/imunologia , DNA/química , DNA/genética , Regulação da Expressão Gênica , Humanos , Fator Regulador 3 de Interferon/química , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Modelos Moleculares , Nucleotídeos Cíclicos/química , Nucleotídeos Cíclicos/genética , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Fosforilação , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Sistemas do Segundo Mensageiro/genética
3.
Semin Immunol ; 68: 101778, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37267758

RESUMO

Recent developments in sequencing technologies, the computer and data sciences, as well as increasingly high-throughput immunological measurements have made it possible to derive holistic views on pathophysiological processes of disease and treatment effects directly in humans. We and others have illustrated that incredibly predictive data for immune cell function can be generated by single cell multi-omics (SCMO) technologies and that these technologies are perfectly suited to dissect pathophysiological processes in a new disease such as COVID-19, triggered by SARS-CoV-2 infection. Systems level interrogation not only revealed the different disease endotypes, highlighted the differential dynamics in context of disease severity, and pointed towards global immune deviation across the different arms of the immune system, but was already instrumental to better define long COVID phenotypes, suggest promising biomarkers for disease and therapy outcome predictions and explains treatment responses for the widely used corticosteroids. As we identified SCMO to be the most informative technologies in the vest to better understand COVID-19, we propose to routinely include such single cell level analysis in all future clinical trials and cohorts addressing diseases with an immunological component.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Imunidade Inata , Análise de Sistemas
4.
Immunol Rev ; 313(1): 46-59, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36097870

RESUMO

Structures of alternative pathway proteins have offered a comprehensive structural basis for understanding the molecular mechanisms governing activation and regulation of the amplification pathway of the complement cascade. Although properdin (FP) is required in vivo to sustain a functional alternative pathway, structural studies have been lagging behind due to the extended structure and polydisperse nature of FP. We review recent progress with respect to structure determination of FP and its proconvertase/convertase complexes. These structures identify in detail regions in C3b, factor B and FP involved in their mutual interactions. Structures of FP oligomers obtained by integrative studies have shed light on how FP activity depends on its oligomerization state. The accumulated structural knowledge allows us to rationalize the effect of point mutations causing FP deficiency. The structural basis for FP inhibition by the tick CirpA proteins is reviewed and the potential of alphafold2 predictions for understanding the interaction of FP with other tick proteins and the NKp46 receptor on host immune cells is discussed. The accumulated structural knowledge forms a comprehensive basis for understanding molecular interactions involving FP, pathological conditions arising from low levels of FP, and the molecular strategies used by ticks to suppress the alternative pathway.


Assuntos
Ativação do Complemento , Properdina , Humanos , Properdina/genética , Properdina/metabolismo , Via Alternativa do Complemento
5.
EMBO J ; 40(22): e108234, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34586646

RESUMO

DNA methylation is a fundamental epigenetic modification, important across biological processes. The maintenance methyltransferase DNMT1 is essential for lineage differentiation during development, but its functions in tissue homeostasis are incompletely understood. We show that epidermis-specific DNMT1 deletion severely disrupts epidermal structure and homeostasis, initiating a massive innate immune response and infiltration of immune cells. Mechanistically, DNA hypomethylation in keratinocytes triggered transposon derepression, mitotic defects, and formation of micronuclei. DNA release into the cytosol of DNMT1-deficient keratinocytes activated signaling through cGAS and STING, thus triggering inflammation. Our findings show that disruption of a key epigenetic mark directly impacts immune and tissue homeostasis, and potentially impacts our understanding of autoinflammatory diseases and cancer immunotherapy.


Assuntos
Metilação de DNA , Dermatite/genética , Epiderme/fisiopatologia , Nucleotidiltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Aberrações Cromossômicas , Citosol/fisiologia , DNA (Citosina-5-)-Metiltransferase 1/genética , Dermatite/imunologia , Dermatite/patologia , Humanos , Imunidade Inata/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Queratinócitos/imunologia , Queratinócitos/metabolismo , Queratinócitos/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Transgênicos , Nucleotidiltransferases/genética
6.
EMBO J ; 40(24): e108662, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34825707

RESUMO

Chronic neuroinflammation is a pathogenic component of Alzheimer's disease (AD) that may limit the ability of the brain to clear amyloid deposits and cellular debris. Tight control of the immune system is therefore key to sustain the ability of the brain to repair itself during homeostasis and disease. The immune-cell checkpoint receptor/ligand pair PD-1/PD-L1, known for their inhibitory immune function, is expressed also in the brain. Here, we report upregulated expression of PD-L1 and PD-1 in astrocytes and microglia, respectively, surrounding amyloid plaques in AD patients and in the APP/PS1 AD mouse model. We observed juxtamembrane shedding of PD-L1 from astrocytes, which may mediate ectodomain signaling to PD-1-expressing microglia. Deletion of microglial PD-1 evoked an inflammatory response and compromised amyloid-ß peptide (Aß) uptake. APP/PS1 mice deficient for PD-1 exhibited increased deposition of Aß, reduced microglial Aß uptake, and decreased expression of the Aß receptor CD36 on microglia. Therefore, ineffective immune regulation by the PD-1/PD-L1 axis contributes to Aß plaque deposition during chronic neuroinflammation in AD.


Assuntos
Doença de Alzheimer/imunologia , Precursor de Proteína beta-Amiloide/genética , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Regulação para Cima , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/toxicidade , Animais , Astrócitos/metabolismo , Antígenos CD36/metabolismo , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Deleção de Genes , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Pessoa de Meia-Idade
7.
Development ; 149(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34528064

RESUMO

Visual information is transmitted from the eye to the brain along the optic nerve, a structure composed of retinal ganglion cell (RGC) axons. The optic nerve is highly vulnerable to damage in neurodegenerative diseases, such as glaucoma, and there are currently no FDA-approved drugs or therapies to protect RGCs from death. Zebrafish possess remarkable neuroprotective and regenerative abilities. Here, utilizing an optic nerve transection (ONT) injury and an RNA-seq-based approach, we identify genes and pathways active in RGCs that may modulate their survival. Through pharmacological perturbation, we demonstrate that Jak/Stat pathway activity is required for RGC survival after ONT. Furthermore, we show that immune responses directly contribute to RGC death after ONT; macrophages/microglia are recruited to the retina and blocking neuroinflammation or depleting these cells after ONT rescues survival of RGCs. Taken together, these data support a model in which crosstalk between macrophages/microglia and RGCs, mediated by Jak/Stat pathway activity, regulates RGC survival after optic nerve injury.


Assuntos
Imunidade Inata , Janus Quinases/imunologia , Traumatismos do Nervo Óptico/imunologia , Células Ganglionares da Retina/imunologia , Fatores de Transcrição STAT/imunologia , Transdução de Sinais/imunologia , Proteínas de Peixe-Zebra/imunologia , Peixe-Zebra/imunologia , Animais , Animais Geneticamente Modificados , Feminino , Janus Quinases/genética , Masculino , Traumatismos do Nervo Óptico/genética , Fatores de Transcrição STAT/genética , Transdução de Sinais/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
8.
Proc Natl Acad Sci U S A ; 119(41): e2208029119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36194634

RESUMO

Stability constrains evolution. While much is known about constraints on destabilizing mutations, less is known about the constraints on stabilizing mutations. We recently identified a mutation in the innate immune protein S100A9 that provides insight into such constraints. When introduced into human S100A9, M63F simultaneously increases the stability of the protein and disrupts its natural ability to activate Toll-like receptor 4. Using chemical denaturation, we found that M63F stabilizes a calcium-bound conformation of hS100A9. We then used NMR to solve the structure of the mutant protein, revealing that the mutation distorts the hydrophobic binding surface of hS100A9, explaining its deleterious effect on function. Hydrogen-deuterium exchange (HDX) experiments revealed stabilization of the region around M63F in the structure, notably Phe37. In the structure of the M63F mutant, the Phe37 and Phe63 sidechains are in contact, plausibly forming an edge-face π-stack. Mutating Phe37 to Leu abolished the stabilizing effect of M63F as probed by both chemical denaturation and HDX. It also restored the biological activity of S100A9 disrupted by M63F. These findings reveal that Phe63 creates a molecular staple with Phe37 that stabilizes a nonfunctional conformation of the protein, thus disrupting function. Using a bioinformatic analysis, we found that S100A9 proteins from different organisms rarely have Phe at both positions 37 and 63, suggesting that avoiding a pathological stabilizing interaction indeed constrains S100A9 evolution. This work highlights an important evolutionary constraint on stabilizing mutations, namely, that they must avoid inappropriately stabilizing nonfunctional protein conformations.


Assuntos
Cálcio , Proteínas Mutantes , Receptor 4 Toll-Like , Calgranulina B , Deutério , Evolução Molecular , Humanos , Espectroscopia de Ressonância Magnética , Conformação Proteica
9.
Clin Immunol ; 261: 109939, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38382658

RESUMO

Systemic lupus erythematosus (SLE) is a potentially fatal chronic autoimmune disease which is underlain by complex dysfunction of the innate and adaptive immune systems. Although a series of well-defined genetic and environmental factors have been implicated in disease etiology, neither the development nor the persistence of SLE is well understood. Given that several disease susceptibility genes and environmental factors interact and influence inflammatory lineage specification through metabolism, the field of immunometabolism has become a forefront of cutting edge research. Along these lines, metabolic checkpoints of pathogenesis have been identified as targets of effective therapeutic interventions in mouse models and validated in clinical trials. Ongoing studies focus on mitochondrial oxidative stress, activation of the mechanistic target of rapamycin, calcium signaling, glucose utilization, tryptophan degradation, and metabolic cross-talk between gut microbiota and the host immune system.


Assuntos
Lúpus Eritematoso Sistêmico , Animais , Camundongos , Sistema Imunitário
10.
Clin Immunol ; 258: 109872, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113963

RESUMO

Pulmonary and extrapulmonary acute respiratory distress syndrome (ARDS) is a life-threatening respiratory failure associated with high mortality. Despite progress in our understanding of the pathological mechanism causing the crippling illness, there are currently no targeted pharmaceutical treatments available for it. Recent discoveries have emphasized the existence of a potential nexus between gut and lung health fueling novel approaches including probiotics for the treatment of ARDS. We thus investigated the prophylactic-potential of Lactobacillus rhamnosus-(LR) in lipopolysaccharide (LPS)-induced pulmonary and cecal ligation puncture (CLP) induced extrapulmonary ARDS mice. Our in-vivo findings revealed that pretreatment with LR significantly ameliorated vascular-permeability (edema) of the lungs via modulating the neutrophils along with significantly reducing the expression of inflammatory-cytokines in the BALF, lungs and serum in both pulmonary and extrapulmonary mice-models. Interestingly, our ex-vivo immunofluorescence and flow cytometric data suggested that mechanistically LR via short chain fatty acids (butyrate being the most potent and efficient in ameliorating the pathophysiology of both pulmonary and extra-pulmonary ARDS) targets the phagocytic and neutrophils extracellular traps (NETs) releasing potential of neutrophils. Moreover, our in-vivo data further corroborated our ex-vivo findings and suggested that butyrate exhibits enhanced potential in ameliorating the pathophysiology of ARDS via reducing the infiltration of neutrophils into the lungs. Altogether, our study establishes the prophylactic role of LR and its associated metabolites in the prevention and management of both pulmonary and extrapulmonary ARDS via targeting neutrophils.


Assuntos
Lacticaseibacillus rhamnosus , Síndrome do Desconforto Respiratório , Animais , Camundongos , Neutrófilos/metabolismo , Pulmão/patologia , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/etiologia , Butiratos/metabolismo , Lipopolissacarídeos
11.
Toxicol Appl Pharmacol ; 483: 116809, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38211931

RESUMO

Xanthohumol (XN) is a prominent prenylated flavonoid present in the hop plant (Humulus lupulus L.). Despite undoubted pro-healing properties of hop plant, there is still a need for clinical investigations confirming these effects as well as the underlying molecular mechanisms. The present study was designed to (1) establish the role of XN in non-invasive inflammation induced by chemical damage to zebrafish hair cells, (2) clarify if it influences cell injury severity, neutrophil migration, macrophage activation, cell regeneration, and (3) find out whether it modulates the gene expression profile of chosen immune and stress response markers. All experiments were performed on 3 dpf zebrafish larvae. After fertilization the embryos were transferred to appropriate XN solutions (0.1 µM, 0.3 µM and 0.5 µM). The 40 min 10 µM CuSO4 exposure evoked severe damage to posterior lateral line hair cells triggering a robust acute inflammatory response. Four readouts were selected as the indicators of XN role in the process of inflammation: 1) hair cell death, 2) neutrophil migration towards damaged hair cells, 3) macrophage activation and recruitment to damaged hair cells, 4) hair cell regeneration. The assessments involved in vivo confocal microscopy imaging and qPCR based molecular analysis. It was demonstrated that XN (1) influences death pathway of damaged hair cells by redirecting their severe necrotic phenotype into apoptotic one, (2) impacts the immune response via regulating neutrophil migration, macrophage recruitment and activation (3) modulates gene expression of immune system markers and (4) accelerates hair cell regeneration.


Assuntos
Humulus , Propiofenonas , Animais , Humulus/química , Humulus/metabolismo , Peixe-Zebra/metabolismo , Flavonoides/química , Propiofenonas/toxicidade , Propiofenonas/química , Propiofenonas/metabolismo , Imunidade Inata , Inflamação/induzido quimicamente , Cabelo/metabolismo
12.
Cereb Cortex ; 33(8): 4626-4644, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36169578

RESUMO

Synapse loss and altered plasticity are significant contributors to memory loss in aged individuals. Microglia, the innate immune cells of the brain, play critical roles in maintaining synapse function, including through a recently identified role in regulating the brain extracellular matrix. This study sought to determine the relationship between age, microglia, and extracellular matrix structure densities in the macaque retrosplenial cortex. Twenty-nine macaques ranging in age from young adult to aged were behaviorally characterized on 3 distinct memory tasks. Microglia, parvalbumin (PV)-expressing interneurons and extracellular matrix structures, known as perineuronal nets (PNNs), were immuno- and histochemically labeled. Our results indicate that microglia densities increase in the retrosplenial cortex of aged monkeys, while the proportion of PV neurons surrounded by PNNs decreases. Aged monkeys with more microglia had fewer PNN-associated PV neurons and displayed slower learning and poorer performance on an object recognition task. Stepwise regression models using age and the total density of aggrecan, a chondroitin sulfate proteoglycan of PNNs, better predicted memory performance than did age alone. Together, these findings indicate that elevated microglial activity in aged brains negatively impacts cognition in part through mechanisms that alter PNN assembly in memory-associated brain regions.


Assuntos
Giro do Cíngulo , Microglia , Animais , Macaca mulatta/metabolismo , Microglia/metabolismo , Giro do Cíngulo/metabolismo , Matriz Extracelular/metabolismo , Parvalbuminas/metabolismo , Transtornos da Memória
13.
Gen Comp Endocrinol ; 345: 114387, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788784

RESUMO

Stressors in the environment of aquatic organisms can profoundly affect their immune system. The stress response in fish involves the activation of the hypothalamus-pituitary-interrenal (HPI) axis, leading to the release of several stress hormones, among them glucocorticoids, such as cortisol, which bind and activate corticosteroid receptors, namely the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR). These receptors are highly expressed on immune cells, thereby allowing stress to have a potent effect that is classically considered to suppress immune function. In this review, we highlight the conserved structure and function of GR and MR among vertebrates and describe their role in modulating inflammation by regulating the expression of pro-inflammatory and anti-inflammatory genes. In particular, the involvement of MR during inflammation is reviewed, which in many studies has been shown to be immune-enhancing. In recent years, the use of zebrafish as a model organism has opened up new possibilities to study the effects of stress on inflammation, making it possible to investigate knockout lines for MR and/or GR, in combination with transgenic models with fluorescently labeled leukocyte subpopulations that enable the visualization and manipulation of these immune cells. The potential roles of other hormones of the HPI axis, such as corticotrophin-releasing hormone (Crh) and adrenocorticotropic hormone (Acth), in immune modulation are also discussed. Overall, this review highlights the need for further research to elucidate the specific roles of GR, MR and other stress hormones in regulating immune function in fish. Understanding these mechanisms will contribute to improving fish health and advancing our knowledge of stress signalling.


Assuntos
Receptores de Esteroides , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Receptores de Esteroides/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Glucocorticoides/metabolismo , Inflamação , Sistema Hipotálamo-Hipofisário/metabolismo
14.
Int J Mol Sci ; 25(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39000373

RESUMO

Atherosclerotic vascular disease disproportionately affects persons living with HIV (PLWH) compared to those without. The reasons for the excess risk include dysregulated immune response and inflammation related to HIV infection itself, comorbid conditions, and co-infections. Here, we review an updated understanding of immune and inflammatory pathways underlying atherosclerosis in PLWH, including effects of viral products, soluble mediators and chemokines, innate and adaptive immune cells, and important co-infections. We also present potential therapeutic targets which may reduce cardiovascular risk in PLWH.


Assuntos
Aterosclerose , Infecções por HIV , Inflamação , Humanos , Infecções por HIV/imunologia , Infecções por HIV/complicações , Aterosclerose/imunologia , Inflamação/imunologia , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/etiologia , Animais , Imunidade Inata
15.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928389

RESUMO

Antimicrobial peptides (AMPs) are crucial components of the innate immune system in various organisms, including humans. Beyond their direct antimicrobial effects, AMPs play essential roles in various physiological processes. They induce angiogenesis, promote wound healing, modulate immune responses, and serve as chemoattractants for immune cells. AMPs regulate the microbiome and combat microbial infections on the skin, lungs, and gastrointestinal tract. Produced in response to microbial signals, AMPs help maintain a balanced microbial community and provide a first line of defense against infection. In preterm infants, alterations in microbiome composition have been linked to various health outcomes, including sepsis, necrotizing enterocolitis, atopic dermatitis, and respiratory infections. Dysbiosis, or an imbalance in the microbiome, can alter AMP profiles and potentially lead to inflammation-mediated diseases such as chronic lung disease and obesity. In the following review, we summarize what is known about the vital role of AMPs as multifunctional peptides in protecting newborn infants against infections and modulating the microbiome and immune response. Understanding their roles in preterm infants and high-risk populations offers the potential for innovative approaches to disease prevention and treatment.


Assuntos
Peptídeos Antimicrobianos , Recém-Nascido Prematuro , Microbiota , Humanos , Recém-Nascido , Imunidade Inata , Animais , Disbiose/microbiologia
16.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396788

RESUMO

Innate immune cells, including macrophages, are functionally affected by thyroid hormone (TH). Macrophages can undergo phenotypical alterations, shifting between proinflammatory (M1) and immunomodulatory (M2) profiles. Cellular TH concentrations are, among others, determined by TH transporters. To study the effect of TH and TH transporters on macrophage polarization, specific proinflammatory and immunomodulatory markers were analyzed in bone marrow-derived macrophages (BMDMs) depleted of triiodothyronine (T3) and BMDMs with a knockout (KO) of Mct8 and Mct10 and a double KO (dKO) of Mct10/Mct8. Our findings show that T3 is important for M1 polarization, while a lack of T3 stimulates M2 polarization. Mct8 KO BMDMs are unaffected in their T3 responsiveness, but exhibit slight alterations in M2 polarization, while Mct10 KO BMDMs show reduced T3 responsiveness, but unaltered polarization markers. KO of both the Mct8 and Mct10 transporters decreased T3 availability and, contrary to the T3-depleted BMDMs, showed partially increased M1 markers and unaltered M2 markers. These data suggest a role for TH transporters besides transport of TH in BMDMs. This study highlights the complex role of TH transporters in macrophages and provides a new angle on the interaction between the endocrine and immune systems.


Assuntos
Macrófagos , Simportadores , Hormônios Tireóideos , Animais , Camundongos , Macrófagos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Simportadores/genética , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/farmacologia , Tri-Iodotironina/farmacologia , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo
17.
Nervenarzt ; 2024 Jul 02.
Artigo em Alemão | MEDLINE | ID: mdl-38953921

RESUMO

BACKGROUND: Neurodegenerative diseases represent an increasing challenge in ageing societies, as only limited treatment options are currently available. OBJECTIVE: New research methods and interdisciplinary interaction of different disciplines have changed the way neurological disorders are viewed and paved the way for the comparatively new field of neuroimmunology, which was established in the early 1980s. Starting from neurological autoimmune diseases, such as multiple sclerosis, knowledge about the involvement of immunological processes in other contexts, such as stroke or traumatic brain injury, has been significantly expanded in recent years. MATERIAL AND METHODS: This review article provides an overview of the role of the immune system and the resulting potential for novel treatment approaches. RESULTS: The immune system plays a central role in fighting infections but is also able to react to the body's own signals under sterile conditions and cause inflammation and subsequent adaptive immune responses through the release of immune mediators and the recruitment and differentiation of certain immune cell types. This can be beneficial in initiating healing processes; however, chronic inflammatory conditions usually have destructive consequences for the tissue and the organism and must be interrupted. CONCLUSION: It is now known that different cells of the immune system play an important role in neurological diseases. Regulatory mechanisms, which are mediated by regulatory T cells or Th2 cells, are usually associated with a good prognosis, whereas inflammatory processes and polarization towards Th1 or Th17 have a destructive character. Novel immunomodulators, which are also increasingly being used in cancer treatment, can now be used in a tissue-specific manner and therefore offer great potential for use in neurological diseases.

18.
J Neurosci ; 42(16): 3329-3343, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35273084

RESUMO

NF-κB proteins are well known as transcription factors important in immune system activation. In this highly conserved role, they contribute to changes in behavior in response to infection and in response to a variety of other insults and experiences. In some mammalian neurons, NF-κBs can be found at the synapse and translocate to the nucleus to alter gene expression when activated by synaptic activity. Here, we demonstrate that, in Drosophila melanogaster, NF-κB action is important both inside and outside the nucleus and that the Dif gene has segregated nuclear and non-nuclear NF-κB action into different protein isoforms. The DifA isoform is a canonical nuclear-acting NF-κB protein that enters the nucleus and is important for combating infection. The DifB variant, but not the DifA variant, is found in the central nervous system (mushroom bodies and antennal lobes). DifB does not enter the nucleus and co-localizes with a synaptic protein. In males and females, a DifB mutant alters alcohol behavioral sensitivity without an obvious effect on combating infection, whereas a DifA mutant does not affect alcohol sensitivity but compromises the immune response. These data are evidence that the non-nuclear DifB variant contributes to alcohol behavioral sensitivity by a nongenomic mechanism that diverges from the NF-κB transcriptional effects used in the peripheral immune system. Enrichment of DifB in brain regions rich in synapses and biochemical enrichment of DifB in the synaptoneurosome fraction indicates that the protein may act locally at the synapse.SIGNIFICANCE STATEMENT NF-κBs are transcription factors used by innate immune signaling pathways to protect against infection. Alcohol abuse also activates these pathways, which contributes to the addictive process and the health consequences associated with alcohol abuse. In the mammalian nervous system, NF-κBs localize to synapses, but it is axiomatic that they effect change by acting in the nucleus. However, for the Drosophila Dif gene, immune and neural function segregate into different protein isoforms. Whereas the nuclear isoform (DifA) activates immune genes in response to infection, the CNS isoform acts nongenomically to modulate alcohol sensitivity. Immunohistochemical and biochemical assays localize DifB to synapse-rich regions. Direct synaptic action would provide a novel and rapid way for NF-κB signaling to modulate behavior.


Assuntos
Alcoolismo , Proteínas de Drosophila , Animais , Proteínas de Ligação a DNA/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Imunidade Inata , Masculino , Mamíferos , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Isoformas de Proteínas , Fatores de Transcrição
19.
J Physiol ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37639379

RESUMO

Hypoxic ischaemic brain injury after resuscitation from cardiac arrest is associated with dismal clinical outcomes. To date, most clinical interventions have been geared towards the restoration of cerebral oxygen delivery after resuscitation; however, outcomes in clinical trials are disappointing. Therefore, alternative disease mechanism(s) are likely to be at play, of which the response of the innate immune system to sterile injured tissue in vivo after reperfusion has garnered significant interest. The innate immune system is composed of three pillars: (i) cytokines and signalling molecules; (ii) leucocyte migration and activation; and (iii) the complement cascade. In animal models of hypoxic ischaemic brain injury, pro-inflammatory cytokines are central to propagation of the response of the innate immune system to cerebral ischaemia-reperfusion. In particular, interleukin-1 beta and downstream signalling can result in direct neural injury that culminates in cell death, termed pyroptosis. Leucocyte chemotaxis and activation are central to the in vivo response to cerebral ischaemia-reperfusion. Both parenchymal microglial activation and possible infiltration of peripherally circulating monocytes might account for exacerbation of an immunopathological response in humans. Finally, activation of the complement cascade intersects with multiple aspects of the innate immune response by facilitating leucocyte activation, further cytokine release and endothelial activation. To date, large studies of immunomodulatory therapies have not been conducted; however, lessons learned from historical studies using therapeutic hypothermia in humans suggest that quelling an immunopathological response might be efficacious. Future work should delineate the precise pathways involved in vivo in humans to target specific signalling molecules.

20.
Infect Immun ; 91(4): e0003623, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36995231

RESUMO

Pseudomonas aeruginosa keratitis occurs following trauma, in immunocompromised patients, and in otherwise healthy contact lens wearers. Characterized by a light-blocking infiltrate, P. aeruginosa keratitis is the most serious complication associated with contact lens wear and, in severe cases, can lead to vision loss. Bacterial extracellular vesicles (B EVs) are membrane-enclosed nanometer-scale particles secreted from bacteria and are packed with bioactive molecules. B EVs have been shown to mediate biological functions that regulate host pathogenic responses. In the present study, we isolated P. aeruginosa-derived EVs using size exclusion chromatography and compared the proteomic compositions and functional activities of P. aeruginosa-derived EVs and P. aeruginosa-derived free protein (FP) on corneal epithelial cells and neutrophils. Importantly, P. aeruginosa-derived EVs and FP exhibited unique protein profiles, with EVs being enriched in P. aeruginosa virulence proteins. P. aeruginosa-derived EVs promoted corneal epithelial cell secretion of interleukin-6 (IL-6) and IL-8, whereas these cytokines were not upregulated following treatment with FP. In contrast, FP had a negative effect on the host inflammatory response and impaired neutrophil killing. Both P. aeruginosa-derived EVs and FP promoted intracellular bacterial survival in corneal epithelial cells. Collectively, these data suggest that P. aeruginosa-derived EVs and FP may play a critical role in the pathogenesis of corneal infection by interfering with host innate immune defense mechanisms.


Assuntos
Lentes de Contato , Vesículas Extracelulares , Ceratite , Infecções por Pseudomonas , Humanos , Pseudomonas aeruginosa , Proteômica , Ceratite/microbiologia , Lentes de Contato/microbiologia , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA