Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 41: 99-125, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36630597

RESUMO

Our defenses against infection rely on the ability of the immune system to distinguish invading pathogens from self. This task is exceptionally challenging, if not seemingly impossible, in the case of retroviruses that have integrated almost seamlessly into the host. This review examines the limits of innate and adaptive immune responses elicited by endogenous retroviruses and other retroelements, the targets of immune recognition, and the consequences for host health and disease. Contrary to theoretical expectation, endogenous retroelements retain substantial immunogenicity, which manifests most profoundly when their epigenetic repression is compromised, contributing to autoinflammatory and autoimmune disease and age-related inflammation. Nevertheless, recent evidence suggests that regulated immune reactivity to endogenous retroelements is integral to immune system development and function, underpinning cancer immunosurveillance, resistance to infection, and responses to the microbiota. Elucidation of the interaction points with endogenous retroelements will therefore deepen our understanding of immune system function and contribution to disease.


Assuntos
Doenças Autoimunes , Retroelementos , Humanos , Animais , Imunidade Inata , Retroviridae
2.
Immunity ; 56(1): 180-192.e11, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36563676

RESUMO

The reinvigoration of anti-tumor T cells in response to immune checkpoint blockade (ICB) therapy is well established. Whether and how ICB therapy manipulates antibody-mediated immune response in cancer environments, however, remains elusive. Using tandem mass spectrometric analysis of modification of immunoglobulin G (IgG) from hepatoma tissues, we identified a role of ICB therapy in catalyzing IgG sialylation in the Fc region. Effector T cells triggered sialylation of IgG via an interferon (IFN)-γ-ST6Gal-I-dependent pathway. DC-SIGN+ macrophages represented the main target cells of sialylated IgG. Upon interacting with sialylated IgG, DC-SIGN stimulated Raf-1-elicited elevation of ATF3, which inactivated cGAS-STING pathway and eliminated subsequent type-I-IFN-triggered antitumorigenic immunity. Although enhanced IgG sialylation in tumors predicted improved therapeutic outcomes for patients receiving ICB therapy, impeding IgG sialylation augmented antitumorigenic T cell immunity after ICB therapy. Thus, targeting antibody-based negative feedback action of ICB therapy has potential for improving efficacy of cancer immunotherapies.


Assuntos
Carcinoma Hepatocelular , Interferon Tipo I , Neoplasias Hepáticas , Humanos , Imunoglobulina G , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Imunoterapia/métodos
3.
Mol Cell ; 84(11): 2087-2103.e8, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38815579

RESUMO

RNA splicing is pivotal in post-transcriptional gene regulation, yet the exponential expansion of intron length in humans poses a challenge for accurate splicing. Here, we identify hnRNPM as an essential RNA-binding protein that suppresses cryptic splicing through binding to deep introns, maintaining human transcriptome integrity. Long interspersed nuclear elements (LINEs) in introns harbor numerous pseudo splice sites. hnRNPM preferentially binds at intronic LINEs to repress pseudo splice site usage for cryptic splicing. Remarkably, cryptic exons can generate long dsRNAs through base-pairing of inverted ALU transposable elements interspersed among LINEs and consequently trigger an interferon response, a well-known antiviral defense mechanism. Significantly, hnRNPM-deficient tumors show upregulated interferon-associated pathways and elevated immune cell infiltration. These findings unveil hnRNPM as a guardian of transcriptome integrity by repressing cryptic splicing and suggest that targeting hnRNPM in tumors may be used to trigger an inflammatory immune response, thereby boosting cancer surveillance.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo M , Íntrons , Elementos Nucleotídeos Longos e Dispersos , Splicing de RNA , RNA de Cadeia Dupla , Humanos , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , Interferons/metabolismo , Interferons/genética , Animais , Células HEK293 , Camundongos , Transcriptoma , Éxons , Sítios de Splice de RNA , Elementos Alu/genética
4.
Mol Cell ; 83(1): 90-104.e4, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36521492

RESUMO

RIG-I is essential for host defense against viral pathogens, as it triggers the release of type I interferons upon encounter with viral RNA molecules. In this study, we show that RIG-I is rapidly and efficiently activated by small quantities of incoming viral RNA and that it relies exclusively on the constitutively expressed resident pool of RIG-I receptors for a strong antiviral response. Live-cell imaging of RIG-I following stimulation with viral or synthetic dsRNA reveals that RIG-I signaling occurs without mass aggregation at the mitochondrial membrane. By contrast, interferon-induced RIG-I protein becomes embedded in cytosolic aggregates that are functionally unrelated to signaling. These findings suggest that endogenous RIG-I efficiently recognizes viral RNA and rapidly relays an antiviral signal to MAVS via a transient signaling complex and that cellular aggregates of RIG-I have a function that is distinct from signaling.


Assuntos
Interferon Tipo I , Transdução de Sinais , Transdução de Sinais/genética , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Antivirais/farmacologia , Interferon Tipo I/genética , RNA de Cadeia Dupla/genética , RNA Viral/genética , Imunidade Inata
5.
Mol Cell ; 83(23): 4370-4385.e9, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38016475

RESUMO

Targeting epigenetic regulators to potentiate anti-PD-1 immunotherapy converges on the activation of type I interferon (IFN-I) response, mimicking cellular response to viral infection, but how its strength and duration are regulated to impact combination therapy efficacy remains largely unknown. Here, we show that mitochondrial CPT1A downregulation following viral infection restrains, while its induction by epigenetic perturbations sustains, a double-stranded RNA-activated IFN-I response. Mechanistically, CPT1A recruits the endoplasmic reticulum-localized ZDHHC4 to catalyze MAVS Cys79-palmitoylation, which promotes MAVS stabilization and activation by inhibiting K48- but facilitating K63-linked ubiquitination. Further elevation of CPT1A incrementally increases MAVS palmitoylation and amplifies the IFN-I response, which enhances control of viral infection and epigenetic perturbation-induced antitumor immunity. Moreover, CPT1A chemical inducers augment the therapeutic effect of combined epigenetic treatment with PD-1 blockade in refractory tumors. Our study identifies CPT1A as a stabilizer of MAVS activation, and its link to epigenetic perturbation can be exploited for cancer immunotherapy.


Assuntos
Interferon Tipo I , Viroses , Humanos , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Lipoilação , Epigênese Genética , Imunidade Inata
6.
EMBO J ; 43(14): 2929-2953, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834853

RESUMO

PARP-catalysed ADP-ribosylation (ADPr) is important in regulating various cellular pathways. Until recently, PARP-dependent mono-ADP-ribosylation has been poorly understood due to the lack of sensitive detection methods. Here, we utilised an improved antibody to detect mono-ADP-ribosylation. We visualised endogenous interferon (IFN)-induced ADP-ribosylation and show that PARP14 is a major enzyme responsible for this modification. Fittingly, this signalling is reversed by the macrodomain from SARS-CoV-2 (Mac1), providing a possible mechanism by which Mac1 counteracts the activity of antiviral PARPs. Our data also elucidate a major role of PARP9 and its binding partner, the E3 ubiquitin ligase DTX3L, in regulating PARP14 activity through protein-protein interactions and by the hydrolytic activity of PARP9 macrodomain 1. Finally, we also present the first visualisation of ADPr-dependent ubiquitylation in the IFN response. These approaches should further advance our understanding of IFN-induced ADPr and ubiquitin signalling processes and could shed light on how different pathogens avoid such defence pathways.


Assuntos
ADP-Ribosilação , Interferons , Poli(ADP-Ribose) Polimerases , Ubiquitina-Proteína Ligases , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Interferons/metabolismo , Ubiquitinação , Células HEK293 , SARS-CoV-2/metabolismo , Transdução de Sinais , COVID-19/virologia , COVID-19/metabolismo , Proteínas de Neoplasias
7.
Immunity ; 47(3): 421-434.e3, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28930658

RESUMO

Environmental insults are often detected by multiple sensors that activate diverse signaling pathways and transcriptional regulators, leading to a tailored transcriptional output. To understand how a tailored response is coordinated, we examined the inflammatory response elicited in mouse macrophages by ionizing radiation (IR). RNA-sequencing studies revealed that most radiation-induced genes were strongly dependent on only one of a small number of sensors and signaling pathways, notably the DNA damage-induced kinase ATM, which regulated many IR-response genes, including interferon response genes, via an atypical IRF1-dependent, STING-independent mechanism. Moreover, small, defined sets of genes activated by p53 and NRF2 accounted for the selective response to radiation in comparison to a microbial inducer of inflammation. Our findings reveal that genes comprising an environmental response are activated by defined sensing mechanisms with a high degree of selectivity, and they identify distinct components of the radiation response that might be susceptible to therapeutic perturbation.


Assuntos
Regulação da Expressão Gênica/efeitos da radiação , Inflamação/genética , Inflamação/metabolismo , Radiação Ionizante , Transdução de Sinais , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Análise por Conglomerados , Proteína Quinase Ativada por DNA/metabolismo , Relação Dose-Resposta à Radiação , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Humanos , Interferons/metabolismo , Interferons/farmacologia , Macrófagos/metabolismo , Macrófagos/efeitos da radiação , Proteínas de Membrana/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Transcrição Gênica/efeitos da radiação , Ativação Transcricional , Regulador Transcricional ERG/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Dev Biol ; 516: 47-58, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39094818

RESUMO

CMTR2 is an mRNA cap methyltransferase with poorly understood physiological functions. It catalyzes 2'-O-ribose methylation of the second transcribed nucleotide of mRNAs, potentially serving to mark RNAs as "self" to evade the cellular innate immune response. Here we analyze the consequences of Cmtr2 deficiency in mice. We discover that constitutive deletion of Cmtr2 results in mouse embryos that die during mid-gestation, exhibiting defects in embryo size, placental malformation and yolk sac vascularization. Endothelial cell deletion of Cmtr2 in mice results in vascular and hematopoietic defects, and perinatal lethality. Detailed characterization of the constitutive Cmtr2 KO phenotype shows an activation of the p53 pathway and decreased proliferation, but no evidence of interferon pathway activation. In summary, our study reveals the essential roles of Cmtr2 in mammalian cells beyond its immunoregulatory function.


Assuntos
Desenvolvimento Embrionário , Metiltransferases , Animais , Feminino , Camundongos , Gravidez , Proliferação de Células , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Células Endoteliais/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética , Camundongos Knockout , Placenta/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Saco Vitelino/metabolismo , Saco Vitelino/embriologia
9.
J Virol ; 98(7): e0058524, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38869319

RESUMO

Senecavirus A (SVA), a picornavirus, causes vesicular diseases and epidemic transient neonatal losses in swine, resulting in a multifaceted economic impact on the swine industry. SVA counteracts host antiviral response through multiple strategies facilitatng viral infection and transmission. However, the mechanism of how SVA modulates interferon (IFN) response remains elusive. Here, we demonstrate that SVA 3C protease (3Cpro) blocks the transduction of Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway to antagonize type I IFN response. Mechanistically, 3Cpro selectively cleaves and degrades STAT1 and STAT2 while does not target JAK1, JAK2, and IRF9, through its protease activity. Notably, SVA 3Cpro cleaves human and porcine STAT1 on a Leucine (L)-Aspartic acid (D) motif, specifically L693/D694. In the case of STAT2, two cleavage sites were identified: glutamine (Q) 707 was identified in both human and porcine, while the second cleavage pattern differed, with residues 754-757 (Valine-Leucine-Glutamine-Serine motifs) in human STAT2 and Q758 in porcine STAT2. These cleavage patterns by SVA 3Cpro partially differ from previously reported classical motifs recognized by other picornaviral 3Cpro, highlighting the distinct characteristics of SVA 3Cpro. Together, these results reveal a mechanism by which SVA 3Cpro antagonizes IFN-induced antiviral response but also expands our knowledge about the substrate recognition patterns for picornaviral 3Cpro.IMPORTANCESenecavirus A (SVA), the only member in the Senecavirus genus within the Picornaviridae family, causes vesicular diseases in pigs that are clinically indistinguishable from foot-and-mouth disease (FMD), a highly contagious viral disease listed by the World Organization for Animal Health (WOAH). Interferon (IFN)-mediated antiviral response plays a pivotal role in restricting and controlling viral infection. Picornaviruses evolved numerous strategies to antagonize host antiviral response. However, how SVA modulates the JAK-STAT signaling pathway, influencing the type I IFN response, remains elusive. Here, we identify that 3Cpro, a protease of SVA, functions as an antagonist for the IFN response. 3Cpro utilizes its protease activity to cleave STAT1 and STAT2, thereby diminishing the host IFN response to promote SVA infection. Our findings underscore the significance of 3Cpro as a key virulence factor in the antagonism of the type I signaling pathway during SVA infection.


Assuntos
Cisteína Endopeptidases , Infecções por Picornaviridae , Picornaviridae , Fator de Transcrição STAT1 , Fator de Transcrição STAT2 , Transdução de Sinais , Proteínas Virais , Animais , Suínos , Fator de Transcrição STAT2/metabolismo , Humanos , Infecções por Picornaviridae/virologia , Infecções por Picornaviridae/imunologia , Infecções por Picornaviridae/metabolismo , Fator de Transcrição STAT1/metabolismo , Cisteína Endopeptidases/metabolismo , Proteínas Virais/metabolismo , Proteases Virais 3C , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Células HEK293 , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/metabolismo , Linhagem Celular , Janus Quinases/metabolismo , Janus Quinases/antagonistas & inibidores
10.
EMBO Rep ; 24(12): e57912, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37818799

RESUMO

The risk of developing severe COVID-19 rises dramatically with age. Schoolchildren are significantly less likely than older people to die from SARS-CoV-2 infection, but the molecular mechanisms underlying this age-dependence are unknown. In primary infections, innate immunity is critical due to the lack of immune memory. Children, in particular, have a significantly stronger interferon response due to a primed state of their airway epithelium. In single-cell transcriptomes of nasal turbinates, we find increased frequencies of immune cells and stronger cytokine-mediated interactions with epithelial cells, resulting in increased epithelial expression of viral sensors (RIG-I, MDA5) via IRF1. In vitro, adolescent peripheral blood mononuclear cells produce more cytokines, priming A549 cells for stronger interferon responses to SARS-CoV-2. Taken together, our findings suggest that increased numbers of immune cells in the airways of children and enhanced cytokine-based interactions with epithelial cells tune the setpoint of the epithelial antiviral system. Our findings shed light on the molecular basis of children's remarkable resistance to COVID-19 and may suggest a novel concept for immunoprophylactic treatments.


Assuntos
COVID-19 , SARS-CoV-2 , Criança , Adolescente , Humanos , Idoso , Leucócitos Mononucleares , Células Epiteliais , Interferons , Imunidade Inata , Citocinas , Antivirais/farmacologia , Antivirais/uso terapêutico
11.
Cell Mol Life Sci ; 81(1): 313, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066826

RESUMO

Bromodomain and extra-terminal (BET) proteins are relevant chromatin adaptors involved in the transcriptional control of thousands of genes. Two tandem N-terminal bromodomains are essential for chromatin attachment through acetyl-histone recognition. Recently, the BET proteins members BRD2 and BRD4 were found to interact with the SARS-CoV-2 envelope (E) protein, raising the question of whether the interaction constitutes a virus hijacking mechanism for transcription alteration in the host cell. To shed light on this question, we have compared the transcriptome of cells overexpressing E with that of cells treated with the BET inhibitor JQ1. Notably, E overexpression leads to a strong upregulation of natural immunity- and interferon response-related genes. However, BET inhibition results in the downregulation of most of these genes, indicating that these two conditions, far from causing a significant overlap of the altered transcriptomes, course with quite different outputs. Concerning the interaction of E protein with BET members, and differing from previous reports indicating that it occurs through BET bromodomains, we find that it relies on SEED and SEED-like domains, BET regions rich in Ser, Asp, and Glu residues. By taking advantage of this specific interaction, we have been able to direct selective degradation of E protein through a PROTAC system involving a dTAG-SEED fusion, highlighting the possible therapeutic use of this peptide for targeted degradation of a viral essential protein.


Assuntos
Proteínas de Ciclo Celular , SARS-CoV-2 , Fatores de Transcrição , Triazóis , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Triazóis/farmacologia , Azepinas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Domínios Proteicos , Transcrição Gênica/efeitos dos fármacos , COVID-19/virologia , COVID-19/metabolismo , Células HEK293 , Ligação Proteica , Proteínas que Contêm Bromodomínio
12.
Proc Natl Acad Sci U S A ; 119(28): e2202370119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35749382

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections initiate in the bronchi of the upper respiratory tract and are able to disseminate to the lower respiratory tract, where infections can cause an acute respiratory distress syndrome with a high degree of mortality in elderly patients. We used reconstituted primary bronchial epithelia from adult and child donors to follow the SARS-CoV-2 infection dynamics. We show that, in epithelia from adult donors, infections initiate in multiciliated cells and spread within 24 to 48 h throughout the whole epithelia. Syncytia formed of ciliated and basal cells appeared at the apical side of the epithelia within 3 to 4 d and were released into the apical lumen, where they contributed to the transmittable virus dose. A small number of reconstituted epithelia were intrinsically more resistant to virus infection, limiting virus spread to different degrees. This phenotype was more frequent in epithelia derived from children versus adults and correlated with an accelerated release of type III interferon. Treatment of permissive adult epithelia with exogenous type III interferon restricted infection, while type III interferon gene knockout promoted infection. Furthermore, a transcript analysis revealed that the inflammatory response was specifically attenuated in children. Taken together, our findings suggest that apical syncytia formation is an underappreciated source of virus propagation for tissue or environmental dissemination, whereas a robust type III interferon response such as commonly seen in young donors restricted SARS-CoV-2 infection. Thus, the combination of interferon restriction and attenuated inflammatory response in children might explain the epidemiological observation of age-related susceptibility to COVID-19.


Assuntos
Brônquios , COVID-19 , Células Gigantes , Interferons , Mucosa Respiratória , SARS-CoV-2 , Idoso , Brônquios/imunologia , Brônquios/virologia , COVID-19/imunologia , COVID-19/virologia , Criança , Suscetibilidade a Doenças , Células Gigantes/imunologia , Células Gigantes/virologia , Humanos , Interferons/imunologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/virologia , SARS-CoV-2/imunologia , Interferon lambda
13.
J Allergy Clin Immunol ; 153(4): 1083-1094, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38110059

RESUMO

BACKGROUND: Impaired interferon response and allergic sensitization may contribute to virus-induced wheeze and asthma development in young children. Plasmacytoid dendritic cells (pDCs) play a key role in antiviral immunity as critical producers of type I interferons. pDCs also express the high-affinity IgE receptor through which type I interferon production may be negatively regulated. Whether antiviral function of pDCs is associated with recurrent episodes of wheeze in young children is not well understood. OBJECTIVE: We sought to evaluate the phenotype and function of circulating pDCs in children with a longitudinally defined wheezing phenotype. METHODS: We performed multiparameter flow cytometry on PBMCs from 38 children presenting to the emergency department with an acute episode of respiratory wheeze and 19 controls. RNA sequencing on isolated pDCs from the same individuals was also performed. For each subject, their longitudinal exacerbation phenotype was determined using the Western Australia public hospital database. RESULTS: We observed a significant depletion of circulating pDCs in young children with a persistent phenotype of wheeze. The same individuals also displayed upregulation of the FcεRI on their pDCs. Based on transcriptomic analysis, pDCs from these individuals did not mount a robust systemic antiviral response as observed in children who displayed a nonrecurrent wheezing phenotype. CONCLUSIONS: Our data suggest that circulating pDC phenotype and function are altered in young children with a persistent longitudinal exacerbation phenotype. Expression of high-affinity IgE receptor is increased and their function as major interferon producers is impaired during acute exacerbations of wheeze.


Assuntos
Asma , Interferon Tipo I , Criança , Humanos , Pré-Escolar , Receptores de IgE , Sons Respiratórios , Interferon Tipo I/metabolismo , Células Dendríticas
14.
J Infect Dis ; 230(3): 706-715, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38195164

RESUMO

The varicella-zoster virus (VZV) infects >95% of the population. VZV reactivation causes herpes zoster (HZ), known as shingles, primarily affecting the elderly and individuals who are immunocompromised. However, HZ can occur in otherwise healthy individuals. We analyzed the immune signature and risk profile in patients with HZ using a genome-wide association study across different UK Biobank HZ cohorts. Additionally, we conducted one of the largest HZ human leukocyte antigen association studies to date, coupled with transcriptomic analysis of pathways underlying HZ susceptibility. Our findings highlight the significance of the major histocompatibility complex locus for HZ development, identifying 5 protective and 4 risk human leukocyte antigen alleles. This demonstrates that HZ susceptibility is largely governed by variations in the major histocompatibility complex. Furthermore, functional analyses revealed the upregulation of type I interferon and adaptive immune responses. These findings provide fresh molecular insights into the pathophysiology and activation of innate and adaptive immune responses triggered by symptomatic VZV reactivation.


Assuntos
Estudo de Associação Genômica Ampla , Antígenos HLA , Herpes Zoster , Herpesvirus Humano 3 , Humanos , Herpes Zoster/imunologia , Herpes Zoster/virologia , Herpesvirus Humano 3/imunologia , Antígenos HLA/genética , Antígenos HLA/imunologia , Idoso , Masculino , Pessoa de Meia-Idade , Predisposição Genética para Doença , Feminino , Imunidade Adaptativa , Reino Unido/epidemiologia , Adulto , Imunidade Inata
15.
Diabetologia ; 67(4): 623-640, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38349399

RESUMO

AIMS/HYPOTHESIS: Type 1 diabetes is a T cell-mediated autoimmune disease characterised by pancreatic beta cell destruction. In this study, we explored the pathogenic immune responses in initiation of type 1 diabetes and new immunological targets for type 1 diabetes prevention and treatment. METHODS: We obtained peripheral blood samples from four individuals with newly diagnosed latent autoimmune diabetes in adults (LADA) and from four healthy control participants. Single-cell RNA-sequencing (scRNA-seq) was performed on peripheral blood mononuclear cells to uncover transcriptomic profiles of early LADA. Validation was performed through flow cytometry in a cohort comprising 54 LADA, 17 adult-onset type 2 diabetes, and 26 healthy adults, matched using propensity score matching (PSM) based on age and sex. A similar PSM method matched 15 paediatric type 1 diabetes patients with 15 healthy children. Further flow cytometry analysis was performed in both peripheral blood and pancreatic tissues of non-obese diabetic (NOD) mice. Additionally, cell adoptive transfer and clearance assays were performed in NOD mice to explore the role of this monocyte subset in islet inflammation and onset of type 1 diabetes. RESULTS: The scRNA-seq data showed that upregulated genes in peripheral T cells and monocytes from early-onset LADA patients were primarily enriched in the IFN signalling pathway. A new cluster of classical monocytes (cluster 4) was identified, and the proportion of this cluster was significantly increased in individuals with LADA compared with healthy control individuals (11.93% vs 5.93%, p=0.017) and that exhibited a strong IFN signature marked by SIGLEC-1 (encoding sialoadhesin). These SIGLEC-1+ monocytes expressed high levels of genes encoding C-C chemokine receptors 1 or 2, as well as genes for chemoattractants for T cells and natural killer cells. They also showed relatively low levels of genes for co-stimulatory and HLA molecules. Flow cytometry analysis verified the elevated levels of SIGLEC-1+ monocytes in the peripheral blood of participants with LADA and paediatric type 1 diabetes compared with healthy control participants and those with type 2 diabetes. Interestingly, the proportion of SIGLEC-1+ monocytes positively correlated with disease activity and negatively with disease duration in the LADA patients. In NOD mice, the proportion of SIGLEC-1+ monocytes in the peripheral blood was highest at the age of 6 weeks (16.88%), while the peak occurred at 12 weeks in pancreatic tissues (23.65%). Adoptive transfer experiments revealed a significant acceleration in diabetes onset in the SIGLEC-1+ group compared with the SIGLEC-1- or saline control group. CONCLUSIONS/INTERPRETATION: Our study identified a novel group of SIGLEC-1+ monocytes that may serve as an important indicator for early diagnosis, activity assessment and monitoring of therapeutic efficacy in type 1 diabetes, and may also be a novel target for preventing and treating type 1 diabetes. DATA AVAILABILITY: RNA-seq data have been deposited in the GSA human database ( https://ngdc.cncb.ac.cn/gsa-human/ ) under accession number HRA003649.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Adulto , Animais , Criança , Humanos , Lactente , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Interferons/metabolismo , Leucócitos Mononucleares/metabolismo , Camundongos Endogâmicos NOD , Monócitos/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo
16.
BMC Genomics ; 25(1): 650, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951796

RESUMO

BACKGROUND: Viperin, also known as radical S-adenosyl-methionine domain containing protein 2 (RSAD2), is an interferon-inducible protein that is involved in the innate immune response against a wide array of viruses. In mammals, Viperin exerts its antiviral function through enzymatic conversion of cytidine triphosphate (CTP) into its antiviral analog ddhCTP as well as through interactions with host proteins involved in innate immune signaling and in metabolic pathways exploited by viruses during their life cycle. However, how Viperin modulates the antiviral response in fish remains largely unknown. RESULTS: For this purpose, we developed a fathead minnow (Pimephales promelas) clonal cell line in which the unique viperin gene has been knocked out by CRISPR/Cas9 genome-editing. In order to decipher the contribution of fish Viperin to the antiviral response and its regulatory role beyond the scope of the innate immune response, we performed a comparative RNA-seq analysis of viperin-/- and wildtype cell lines upon stimulation with recombinant fathead minnow type I interferon. CONCLUSIONS: Our results revealed that Viperin does not exert positive feedback on the canonical type I IFN but acts as a negative regulator of the inflammatory response by downregulating specific pro-inflammatory genes and upregulating repressors of the NF-κB pathway. It also appeared to play a role in regulating metabolic processes, including one carbon metabolism, bone formation, extracellular matrix organization and cell adhesion.


Assuntos
Cyprinidae , Inflamação , Animais , Cyprinidae/metabolismo , Cyprinidae/genética , Inflamação/metabolismo , Inflamação/genética , Imunidade Inata , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Linhagem Celular , Sistemas CRISPR-Cas , Interferon Tipo I/metabolismo , Edição de Genes , Regulação da Expressão Gênica
17.
EMBO J ; 39(18): e103922, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32812257

RESUMO

Translational readthrough, i.e., elongation of polypeptide chains beyond the stop codon, was initially reported for viral RNA, but later found also on eukaryotic transcripts, resulting in proteome diversification and protein-level modulation. Here, we report that AGO1x, an evolutionarily conserved translational readthrough isoform of Argonaute 1, is generated in highly proliferative breast cancer cells, where it curbs accumulation of double-stranded RNAs (dsRNAs) and consequent induction of interferon responses and apoptosis. In contrast to other mammalian Argonaute protein family members with primarily cytoplasmic functions, AGO1x exhibits nuclear localization in the vicinity of nucleoli. We identify AGO1x interaction with the polyribonucleotide nucleotidyltransferase 1 (PNPT1) and show that the depletion of this protein further augments dsRNA accumulation. Our study thus uncovers a novel function of an Argonaute protein in buffering the endogenous dsRNA-induced interferon responses, different than the canonical function of AGO proteins in the miRNA effector pathway. As AGO1x expression is tightly linked to breast cancer cell proliferation, our study thus suggests a new direction for limiting tumor growth.


Assuntos
Proteínas Argonautas/metabolismo , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Fatores de Iniciação em Eucariotos/metabolismo , Interferons/metabolismo , Proteínas de Neoplasias/metabolismo , RNA de Cadeia Dupla/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Argonautas/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fatores de Iniciação em Eucariotos/genética , Exorribonucleases/genética , Exorribonucleases/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Interferons/genética , Proteínas de Neoplasias/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais/genética
18.
Br J Haematol ; 204(1): 206-220, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37726227

RESUMO

Progression to aggressive secondary acute myeloid leukaemia (sAML) poses a significant challenge in the management of myeloproliferative neoplasms (MPNs). Since the physiopathology of MPN is closely linked to the activation of interferon (IFN) signalling and that AML initiation and aggressiveness is driven by leukaemia stem cells (LSCs), we investigated these pathways in MPN to sAML progression. We found that high IFN signalling correlated with low LSC signalling in MPN and AML samples, while MPN progression and AML transformation were characterized by decreased IFN signalling and increased LSC signature. A high LSC to IFN expression ratio in MPN patients was associated with adverse clinical prognosis and higher colony forming potential. Moreover, treatment with hypomethylating agents (HMAs) activates the IFN signalling pathway in MPN cells by inducing a viral mimicry response. This response is characterized by double-stranded RNA (dsRNA) formation and MDA5/RIG-I activation. The HMA-induced IFN response leads to a reduction in LSC signature, resulting in decreased stemness. These findings reveal the frequent evasion of viral mimicry during MPN-to-sAML progression, establish the LSC-to-IFN expression ratio as a progression biomarker, and suggests that HMAs treatment can lead to haematological response in murine models by re-activating dsRNA-associated IFN signalling.


Assuntos
Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Humanos , Animais , Camundongos , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/complicações , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Prognóstico , Biomarcadores , Interferons/uso terapêutico
19.
Gastroenterology ; 164(6): 921-936.e1, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36764492

RESUMO

BACKGROUND & AIMS: Aberrant DNA methylation is frequent in colorectal cancer (CRC), but underlying mechanisms and pathologic consequences are poorly understood. METHODS: We disrupted active DNA demethylation genes Tet1 and/or Tdg from ApcMin mice and characterized the methylome and transcriptome of colonic adenomas. Data were compared to human colonic adenocarcinomas (COAD) in The Cancer Genome Atlas. RESULTS: There were increased numbers of small intestinal adenomas in ApcMin mice expressing the TdgN151A allele, whereas Tet1-deficient and Tet1/TdgN151A-double heterozygous ApcMin colonic adenomas were larger with features of erosion and invasion. We detected reduction in global DNA hypomethylation in colonic adenomas from Tet1- and Tdg-mutant ApcMin mice and hypermethylation of CpG islands in Tet1-mutant ApcMin adenomas. Up-regulation of inflammatory, immune, and interferon response genes was present in Tet1- and Tdg-mutant colonic adenomas compared to control ApcMin adenomas. This up-regulation was also seen in murine colonic organoids and human CRC lines infected with lentiviruses expressing TET1 or TDG short hairpin RNA. A 127-gene inflammatory signature separated colonic adenocarcinomas into 4 groups, closely aligned with their microsatellite or chromosomal instability and characterized by different levels of DNA methylation and DNMT1 expression that anticorrelated with TET1 expression. Tumors with the CpG island methylator phenotype (CIMP) had concerted high DNMT1/low TET1 expression. TET1 or TDG knockdown in CRC lines enhanced killing by natural killer cells. CONCLUSIONS: Our findings reveal a novel epigenetic regulation, linked to the type of genomic instability, by which TET1/TDG-mediated DNA demethylation decreases methylation levels and inflammatory/interferon/immune responses. CIMP in CRC is triggered by an imbalance of methylating activities over demethylating activities. These mice represent a model of CIMP CRC.


Assuntos
Adenocarcinoma , Adenoma , Neoplasias do Colo , Neoplasias Colorretais , Animais , Humanos , Camundongos , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenoma/genética , Adenoma/patologia , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ilhas de CpG/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Epigênese Genética , Oxigenases de Função Mista/genética , Fenótipo , Proteínas Proto-Oncogênicas/genética
20.
J Virol ; 97(12): e0187022, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37991365

RESUMO

IMPORTANCE: Twenty-five years after the first report that HIV-2 infection can reduce HIV-1-associated pathogenesis in dual-infected patients, the mechanisms are still not well understood. We explored these mechanisms in cell culture and showed first that these viruses can co-infect individual cells. Under specific conditions, HIV-2 inhibits HIV-1 through two distinct mechanisms, a broad-spectrum interferon response and an HIV-1-specific inhibition conferred by the HIV-2 TAR. The former could play a prominent role in dually infected individuals, whereas the latter targets HIV-1 promoter activity through competition for HIV-1 Tat binding when the same target cell is dually infected. That mechanism suppresses HIV-1 transcription by stalling RNA polymerase II complexes at the promoter through a minimal inhibitory region within the HIV-2 TAR. This work delineates the sequence of appearance and the modus operandi of each mechanism.


Assuntos
Coinfecção , Regulação Viral da Expressão Gênica , Repetição Terminal Longa de HIV , HIV-1 , HIV-2 , Interferons , RNA Viral , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Humanos , Coinfecção/imunologia , Coinfecção/virologia , Repetição Terminal Longa de HIV/genética , HIV-1/genética , HIV-1/imunologia , HIV-2/genética , HIV-2/imunologia , HIV-2/metabolismo , RNA Viral/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Interferons/imunologia , Regiões Promotoras Genéticas/genética , Ligação Competitiva , RNA Polimerase II/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA