Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biometals ; 34(6): 1263-1273, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34410577

RESUMO

The objective of the present study was to investigate the impact of zinc and copper on some biomarkers in a model organism Galleria mellonella L. We investigated the effects of Cu and Zn (10, 50, and 100 mg/100 g diets) on different biomarkers such as oxidative stress parameters (SOD and CAT activities and MDA levels), energy resources (protein, lipid and glycogen levels), electrolyte contents (Ca, Na, and K levels), total hemocyte count (THC), and growth and development of G. mellonella. Additionally, the accumulation levels of the used metals were also studied. Cu caused a significant decrease in protein, lipid and glycogen levels. SOD and CAT activities significantly increased at all concentrations of Cu, while they significantly increased at only high concentrations of Zn (50 and 100 mg). Lipid peroxidation levels (MDA) significantly elevated at high concentrations of both metals. It was determined that the Cu and Zn accumulation increased depending on the increase of the concentration. Zn caused an alteration in Ca level at the concentrations of 50 and 100 mg, and K and Na levels at all concentrations. While, THC significantly reduced at all Cu concentrations, this reduction was observed only at higher Zn concentrations (50 and 100 mg). Larval and pupal development time significantly extended at the highest concentration (100 mg) of Cu, and females' lifespan significantly shortened at all concentrations of Cu. Zinc caused an extension in larval development time at the highest concentration (100 mg), and caused a shortening in females and males' lifetime at all concentrations. The observed changes in biomarkers can be used as the illustration of potential toxic effects of high levels of Cu and Zn in organisms.


Assuntos
Cobre , Zinco , Animais , Biomarcadores , Cobre/farmacologia , Feminino , Larva , Peroxidação de Lipídeos , Masculino , Estresse Oxidativo , Zinco/farmacologia
2.
Ecotoxicol Environ Saf ; 215: 112137, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33740490

RESUMO

In the past few decades, industrialization has caused a large number of pollutants to be released into the atmosphere. Forest ecosystems play an important function in regulating the biogeochemistry and the circulation of metal ions pollutants. Forest ecosystems affect the absorption of pollutants and dissolution of nutrients from the atmosphere and vegetation canopy, thereby influencing the content and composition of forest floor leachate and soil solution. This study examined changes in acid anions (NO3-, SO42-, Cl-) and metal cations (K+, Ca2+, Na2+, Mg2+, Fe3+, Pb2+, Cu2+, Cd2+) in rainfall, throughfall, stemflow, and forest floor leachate for five different forests (Larix principis-rupprechtii, Picea wilsonii, Picea crassifolia, Betula platyphylla and Rhododendron communities). The results showed that the enrichment capacity of acid anions and metal cations in the vegetation canopy of the coniferous forests (L. principis-rupprechtii, P. wilsonii, P. crassifolia) was stronger than that of the broad-leaved forests (B. platyphylla and Rhododendron communities). The content of acid anions and metal cations in stemflow of coniferous forests were 3.7-5.6 times and 0-9.3 times higher than those of broad-leaved forests, respectively. Corresponding values in throughfall were 1-1.4 times and 0.3-2.4 times, respectively. The contents of NO3-, Cl-, K+, Mg2+, Fe3+, Pb2+, Cu2+, and Cd2+ in leachate filtered from the soil layers that are deepening gradually showed consistent decreasing trend for all the forest stands. In addition, NO3-, Cl-, K+, Mg2+, Fe3+, and Pb2+ were also concentrated in the topsoil, except for Cu2+ and Cd2+. Nevertheless, SO42- and Na+ were concentrated in the subsoil, whereas Ca2+ was concentrated in the upper soil layers. Soil organic carbon (SOC) and total nitrogen (TN) contents in coniferous forest stands were 20-37% and 34-63% higher than those in broad-leaved forest stands, respectively. This results also shown that the contents of OC and TN has a strong correlation with the content of partial metal cations in soil and litter, indicating that coniferous forest stands had stronger ion scavenging and adsorption capacity in soil layer and litter layer than broad-leaved forest stands. Therefore, L. principis-rupprechtii, P. wilsonii, P. crassifolia had higher air pollutant adsorption and soil pollution remediation capacities than the other two forests. Thus, we recommend planting coniferous tree species (L. principis-rupprechtii, P. wilsonii and P. crassifolia) for eco-rehabilitation and water purification to improve the ecological service function of forest ecosystems.


Assuntos
Recuperação e Remediação Ambiental , Florestas , Traqueófitas/fisiologia , Adsorção , Betula , Carbono/química , China , Ecossistema , Íons , Nitrogênio/análise , Picea , Solo/química , Árvores
3.
Clin Oral Investig ; 25(3): 833-839, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32483679

RESUMO

AIMS: The objective of this study is to compare size, enamel thickness and ion relative concentration in generalized megadontia (Ekman- Westborg and Julin trait) and a localized megadont upper third molar to normal teeth. MATERIALS AND METHODS: The MD dimensions of permanent teeth were compared to controls. Tooth components of molars were measured from X-rays and compared to controls. The enamel and dentin relative amounts of elements of mandibular first permanent molar and deciduous canines of E-WJ trait girl, and megadont upper third molar were determined using ESD program of SEM and compared to match-paired normal teeth. RESULTS: The teeth of the girl diagnosed with E-WJ trait were true megadont (larger than mean ± 2SD). The ratio of enamel thickness to M-D dimension of molars of E-WJ trait and localized megadontia molars is reduced in comparison with normal similar teeth. In the enamel, carbon and silica concentrations were different in E-WJ trait teeth. CONCLUSIONS: The enamel thickness was reduced in the E-WJ trait and megadont molars, but the relative amount of elements in enamel and dentin was similar to normal. The megadontia is due to a very large tooth germ, as determined by the DEJ, while the ratio of enamel apposition from the total M-D dimension is reduced. CLINICAL RELEVANCE: Generalized megadontia, as observed in E-WJ trait, is due to large tooth germ, but the enamel thickness is similar to normal. Extractions of permanent teeth are necessary in order to allow normal eruption of teeth.


Assuntos
Anormalidades Dentárias , Dente , Esmalte Dentário , Dentina , Dentição Permanente , Feminino , Humanos , Dente Molar , Dente Decíduo
4.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919933

RESUMO

Vacuolar sodium/proton (Na+/H+) antiporters (NHXs) can stabilize ion contents to improve the salt tolerance of plants. Here, GhNHX3D was cloned and characterized from upland cotton (Gossypium hirsutum). Phylogenetic and sequence analyses showed that GhNHX3D belongs to the vacuolar-type NHXs. The GhNHX3D-enhanced green fluorescent protein (eGFP) fusion protein localized on the vacuolar membrane when transiently expressed in Arabidopsis protoplasts. The quantitative real-time PCR (qRT-PCR) analysis showed that GhNHX3D was induced rapidly in response to salt stress in cotton leaves, and its transcript levels increased with the aggravation of salt stress. The introduction of GhNHX3D into the salt-sensitive yeast mutant ATX3 improved its salt tolerance. Furthermore, silencing of GhNHX3D in cotton plants by virus-induced gene silencing (VIGS) increased the Na+ levels in the leaves, stems, and roots and decreased the K+ content in the roots, leading to greater salt sensitivity. Our results indicate that GhNHX3D is a member of the vacuolar NHX family and can confer salt tolerance by adjusting the steady-state balance of cellular Na+ and K+ ions.


Assuntos
Antiporters/genética , Gossypium/genética , Estresse Salino/genética , Trocadores de Sódio-Hidrogênio/genética , Antiporters/química , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Gossypium/crescimento & desenvolvimento , Gossypium/fisiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Estresse Salino/fisiologia , Tolerância ao Sal/genética , Trocadores de Sódio-Hidrogênio/química , Vacúolos/enzimologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-28738174

RESUMO

This study investigated the distribution of ion contents and microorganisms during the electro-bioremediation (EK-Bio) of petroleum-contaminated saline soil. The results showed that soil ions tend to accumulate around the electrodes, and the concentration was correlated with the distance from the electrodes. The average soil ion content was 7.92 g/kg around the electrodes (site A) and 0.55 g/kg at the furthest distance from the electrodes (site B) after 112 days of treatment, while the initial average content was 3.92 g/kg. Smooth linear (R2 = 0.98) loss of soil ions was observed at site C, which was closer to the electrodes than site B, and had a final average soil ion content of 1.96 g/kg. The dehydrogenase activity was much higher in EK-Bio test soil than in the Bio test soil after 28 days of treatment, and followed the order: site C > site B > site A. However, the soil dehydrogenase activity dropped continuously when the soil ion reached very high and low concentrations at sites A and B. The soil microbial community varied in sample sites that had different ion contents, and the soil microbial diversity followed the order: site C > site B > site A. The applied electric field clearly enhanced the biodegradation efficiency for soil petroleum contaminants. However, the biodegradation promotion effects were weakening in soils where the ion contents were extremely high and low (sites A and B). These results can provide useful information for EK-Bioremediation of organic-contaminated saline soil.


Assuntos
Técnicas Eletroquímicas/métodos , Consórcios Microbianos , Petróleo/análise , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Biodegradação Ambiental , Eletrodos , Concentração de Íons de Hidrogênio , Íons/análise , Consórcios Microbianos/genética , Petróleo/metabolismo , RNA Ribossômico 16S/genética , Microbiologia do Solo/normas , Poluentes do Solo/metabolismo
6.
J Photochem Photobiol B ; 259: 113019, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39217730

RESUMO

Photobiomodulation therapy (PBMT) is a form of treatment commonly used for routine clinical applications, such as wound healing of the skin and reduction of inflammation. Additionally, PBMT has been explored for its potential in pain relief. In this work, we investigated the effect of PBMT on ion content within the 50B11 sensory neurons cell line in vitro using X-Ray fluorescence (XRF) and atomic force microscope (AFM) analysis. Two irradiation protocols were selected utilizing near-infrared laser lights at 800 and 970 nm, with cell fixation immediately following irradiation. Results showed a decrease in Calcium content after irradiation with both protocols, and with lidocaine, used as an analgesic control. Furthermore, a reduction in Potassium content was observed, particularly evident when normalized to cellular volume. These findings provide valuable insights into the molecular impact of PBMT within 50B11 sensory neurons under normal conditions. Such understanding may contribute to the wider adoption of PBMT as a therapeutic approach.


Assuntos
Cálcio , Raios Infravermelhos , Terapia com Luz de Baixa Intensidade , Células Receptoras Sensoriais , Animais , Células Receptoras Sensoriais/efeitos da radiação , Células Receptoras Sensoriais/metabolismo , Cálcio/metabolismo , Camundongos , Linhagem Celular , Espectrometria por Raios X , Microscopia de Força Atômica , Potássio/metabolismo , Potássio/química , Lidocaína/farmacologia
7.
Front Plant Sci ; 15: 1423761, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081524

RESUMO

The Mediterranean region's harsh conditions, characterized by low rainfall, high solar radiation, and elevated temperatures, pose challenges for vegetation, particularly in the face of climate change. Cultivated olive (Olea europaea subsp. europaea var. europaea) holds historical and economic significance as one of the oldest crops in the Mediterranean. Due to their high germplasm diversity and greater flowering abundance compared to the offspring of cultivated olives, wild olives (Olea europaea subsp. europaea var. sylvestris) could be utilized for selecting new olive cultivars capable of adapting to a changing climate. This research aimed to compare the effects of salt and drought stress on wild and cultivated genotypes by analyzing morphological, physiological, and biochemical parameters. Results showed that shoot length, shoot dry mass, and leaf area are key drought stress indicators in wild olive trees. The results indicated the olive trees more susceptible to salinity stress had lower Na+ and Cl- concentrations in their leaves and took longer to stabilize salt ion levels. Decreased K+ content in roots across all treatments indicated a general stress response. The uptake of Ca2+ appears to be the most energy-efficient response of olive trees to short-term salinity and drought. In contrast to proline and malondialdehyde, trends in superoxide dismutase activity suggest that it is a reliable indicator of salinity and drought stress. Regarding olive adaptability to salinity stress, promising results obtained with two wild olive genotypes merit their further physiological study.

8.
Plant Physiol Biochem ; 215: 109077, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39213946

RESUMO

Drought is a major challenge for the cultivation of durum wheat, a crucial crop for global food security. Plants respond to drought by adjusting their mineral nutrient profiles to cope with water scarcity, showing the importance of nutrient plasticity for plant acclimation and adaptation to diverse environments. Therefore, it is essential to understand the genetic basis of mineral nutrient profile plasticity in durum wheat under drought stress to select drought-tolerant varieties. The research study investigated the responses of different durum wheat genotypes to severe drought stress at the seedling stage. The study employed an ionomic, molecular, biochemical and physiological approach to shed light on distinct behaviors among different genotypes. The drought tolerance of SVEMS16, SVEVO, and BULEL was related to their capacity of maintaining or increasing nutrient's accumulation, while the limited nutrient acquisition capability of CRESO and S.CAP likely resulted in their susceptibility to drought. The study highlighted the importance of macronutrients such as SO42-, NO3-, PO43-, and K+ in stress resilience and identified variant-containing genes potentially influencing nutritional variations under drought. These findings provide valuable insights for further field studies to assess the drought tolerance of durum wheat genotypes across various growth stages, ultimately ensuring food security and sustainable production in the face of changing environmental conditions.


Assuntos
Secas , Minerais , Triticum , Triticum/genética , Triticum/fisiologia , Triticum/metabolismo , Minerais/metabolismo , Genótipo , Adaptação Fisiológica/genética , Resistência à Seca
9.
Materials (Basel) ; 17(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38541417

RESUMO

Magnesium Potassium Phosphate Cements (MKPCs) are considered a good alternative for the immobilization of aluminium radioactive waste. MKPC composition and moisture curing conditions are relevant issues to be evaluated. The corrosion of pure aluminium (A1050) and AlMg alloys (AA5754) with 3.5% of Mg is studied in MKPC systems prepared with different MgO/KH2PO4 (M/P) molar ratios (1, 2, and 3M) and moisture curing conditions (100% Relative Humidity (RH) and isolated in plastic containers (endogenous curing)). The Al corrosion potential (Ecorr) and corrosion kinetic (icorr and Vcorr) are evaluated over 90 days. Additionally, the pore ion evolution, the matrix electrical resistance, the pore structure, and compressive strength are analysed. The corrosion process of Al alloy is affected by the pH and ion content in the pore solution. The pore pH increases from near neutral for the 1M M/P ratio to 9 and 10 for the 2 and 3M M/P ratio, increasing in the same way the corrosion of pure Al (AA1050) and AlMg alloys (AA5754). The effect of Mg content in the alloy (AA5754) becomes more relevant with the increase in the M/P ratio. The presence of phosphate ions in the pore solution inhibits the corrosion process in both Al alloys. The MKPC physicochemical stability improved with the increase in the M/P ratio, higher mechanical strength, and more refined pore structure.

10.
Plants (Basel) ; 13(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39065466

RESUMO

The impacts of climate change are reaching unprecedented levels, heightening the risk of species loss and ecosystem service degradation. Wetlands, highly threatened ecosystems, serve vital ecological functions by capturing carbon, filtering water, and harbouring diverse wildlife. Coastal wetlands encounter many challenges, such as increased drought periods and escalating salinity levels, severely impacting plant biodiversity. Assessing how plants respond to various environmental stress factors is imperative for devising successful conservation strategies. In the present study, we examined three representative grass species found in various habitats within the Albufera Natural Park, close to the city of Valencia on the Spanish Mediterranean coast: Imperata cylindrica, Phragmites australis, and Saccharum ravennae. High salinity and water stress conditions were induced by subjecting the plants to irrigation with solutions containing 200, 400, 600, and 800 mM NaCl or withholding irrigation altogether to mimic coastal flooding and drought scenarios. The treatments were maintained until noticeable wilting of the plants occurred, at which point a range of stress biomarkers were determined, including photosynthetic pigments, ions, osmolytes, oxidative stress markers, and antioxidant metabolites, as well as antioxidant enzyme activities. Saccharum ravennae displayed the highest sensitivity to salt stress, whereas I. cylindrica appeared to be the most tolerant. The primary salinity tolerance mechanism observed in I. cylindrica and P. australis was a blockage of ion transport from the root zone to the aerial part, together with the salt-induced accumulation of proline and soluble sugars to high concentrations in the former. No significant effects of the water deficit treatment on the growth or biochemical parameters were observed for any of the analysed species. These findings offer valuable information for the effective management and conservation of coastal wetlands facing the challenges posed by climate change.

11.
Physiol Mol Biol Plants ; 19(4): 509-14, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24431519

RESUMO

The present experiment was aimed to study the effect of imposing modulated temperature treatments 14 °C and 18 °C, around the fruiting region of watermelon plants, and to estimate the economic feasibility of the temperature treatments based on energy consumption for heating. Watermelon cultivar 'Sambok-gul' was selected and sown on perlite beds in a plastic house under controlled conditions at Watermelon Farm, Jeongeup-Jeonbuk, longitude 35° 31' 47.51N, 126° 48'48.84E, altitude 37 m during the early spring season (2010-2011). The findings revealed that the temperature treatment at 18 °C caused significant increase in weight (2.0 kg plant(-1)), fruit weight (8.3 kg plant(-1)), soluble solid content (11.5 %), and fruit set rate (96.5 %) at harvest stage. Higher contents of Ca(2+) and Mg(2+) ions were observed in the 1st upper leaf of the fruit set node (79.3 mg L(-1)) and the 1st lower leaf of the fruit set node (12.0 mg L(-1)), respectively at 14 °C. The power consumption and extra costs of the temperature treatment 18 °C were suggested as affordable and in range of a farmer's budget (41.14 USD/22 days). Hence, it was concluded that modulating temperature treatments could be utilized successfully to optimize the temperature range for enhancing the fruit yield and quality in the winter watermelon crops.

12.
Plants (Basel) ; 13(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38202390

RESUMO

Excessive salt content in soil has adverse effects on cotton production, especially during the germination and seedling stages. γ-aminobutyric acid (GABA) is an important active substance that is expected to improve the resistance of plants to abiotic stresses. This study focused on two cotton cultivars (Gossypium hirsutum L.: Tahe 2 and Xinluzhong 62) and investigated the impact of exogenous GABA (0, 1, 2, 3, and 4 mM) on seed germination, seedling growth, and related morphological, physiological, and biochemical indicators under salt stress (150 mM NaCl). The results showed that salt stress significantly reduced the germination rate and germination index of cotton seeds (decreased by 20.34% and 32.14% for Tahe 2 and Xinluzhong 62, respectively), leading to decreased seedling height and biomass and causing leaf yellowing. Salt stress induced osmotic stress in seedlings, resulting in ion imbalance (marked reduction in K+/Na+ ratio) and oxidative damage. Under salt stress conditions, exogenous GABA increased the germination rate (increased by 10.64~23.40% and 2.63~31.58% for Tahe 2 and Xinluzhong 62, respectively) and germination index of cotton seeds, as well as plant height and biomass. GABA treatment improved leaf yellowing. Exogenous GABA treatment increased the content of proline and soluble sugars, with varying effects on betaine. Exogenous GABA treatment reduced the Na+ content in seedlings, increased the K+ content, and increased the K+/Na+ ratio (increased by 20.44~28.08% and 29.54~76.33% for Tahe 2 and Xinluzhong 62, respectively). Exogenous GABA treatment enhanced the activities of superoxide dismutase and peroxidase, and reduced the accumulation of hydrogen peroxide and malondialdehyde, but had a negative impact on catalase activity. In conclusion, exogenous GABA effectively improved cotton seed germination. By regulating osmoprotectant levels, maintaining ion homeostasis, and alleviating oxidative stress, GABA mitigated the adverse effects of salt stress on cotton seedling growth.

13.
Materials (Basel) ; 16(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005115

RESUMO

Chloride ion erosion is an important factor affecting the durability of marine engineering concrete. In particular, concrete structures in wave splash and tidal zones are subjected to dry and wet cycles and multidimensional diffusion of chloride ions. To investigate the intricate diffusion of chloride ions within concrete under these dynamic conditions, we devised a comprehensive experiment. This experiment encompasses multiple dimensions, involving dry and wet cycles, as well as static immersion. The experiment intends to reveal how chloride ions are distributed in the concrete and clarify the changes that occur in its microstructure. Based on Fick's second law, the multidimensional diffusion model of chloride ions in concrete under the dry and wet cycles and static immersion was established by comprehensively considering the effects of chloride ion exposure time, environment temperature, relative humidity, and the action of dry and wet cycles. The results show that, under the same conditions, the chloride content in concrete decreases with the increase in penetration depth but increases with the increase in the chloride diffusion dimension and exposure time. Dry and wet cycles and multidimensional diffusion of chloride ions increase the development of cracks and pores in the concrete structure and generate large quantities of C3A·CaCl2·10H2O, which will exacerbate the chloride ion transport rate and penetration depth of concrete. Under the same exposure time and penetration depth, the chloride ion content in concrete under two-dimensional (2D) and three-dimensional (3D) diffusion under dry and wet cycles was 1.09~4.08 times higher than that under one-dimensional (1D) diffusion. The correlation coefficients between the simulation results of the multidimensional transport model of chloride ions in concrete under multi-factor coupling and the experimental results were all greater than 0.95, and the model can be utilized to predict the distribution of chloride ion concentration in concrete.

14.
Front Plant Sci ; 14: 1162923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332707

RESUMO

Estuarine wetlands are highly heterogeneous due to strong interactions between freshwater input and seawater intrusion. However, little is known about how clonal plant populations adapt to heterogeneous salinity in soil environments. In the present study, the effects of clonal integration on Phragmites australis populations under salinity heterogeneity were studied using field experiments with 10 treatments in the Yellow River Delta. Clonal integration significantly increased plant height, aboveground biomass, underground biomass, root-shoot ratio, intercellular CO2 concentration, net photosynthetic rate, stomatal conductance, transpiration rate, and stem Na+ content under homogeneous treatment. Under the heterogeneous salt treatment, clonal integration significantly affected total aboveground and underground biomass, photosynthetic traits, and stem Na+ content under different salt gradients. The increase in salt concentration inhibited the physiological activity and growth of P. australis to varying degrees. Compared with the heterogeneous saline environment, clonal integration was more beneficial to P. australis populations in the homogeneous saline habitat. The results of the present study suggest that P. australis prefers homogeneous saline habitats; however, plants can adapt to heterogeneous salinity conditions via clonal integration.

15.
Plants (Basel) ; 11(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35406886

RESUMO

Soil salinization is a major environmental stressor that reduces the growth and yield of crops. Maintaining the balance of ions under salinity is vital for plant salt tolerance; however, little is known about the correlation between the salt tolerance of crops and the ion contents of their roots and shoots. Here, we investigated the poorly understood salt-tolerance mechanisms, particularly regarding ion contents (particularly Na+), in Brassica napus subsp. napus L., an agriculturally important species. Twenty B. napus inbred lines were randomly chosen from five salt-tolerance categories and treated with increasing concentrations of NaCl (0-200 mmol) for this work. We found that the root Na+ content is the most correlated limiting factor for the salt tolerance of B. napus; the higher the salt tolerance, the lower the root Na+ content. Correspondingly, the Ca2+/Na+ and K+/Na+ ratios of the roots were highly correlated with B. napus salt tolerance, indicating that the selective absorption ability of these ions by the roots and their translocation to the shoots play a pivotal role in this trait. These data provide a foundation for the further study of the molecular mechanisms underlying salt tolerance and for breeding salt-tolerant B. napus cultivars.

16.
Plants (Basel) ; 11(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365288

RESUMO

Salt stress could inhibit the growth and development of crops and negatively affect yield and quality. The objective of this study was to investigate the physiological responses of different asparagus cultivars to salt stress. Twenty days old seedlings ofasalt-tolerant Apollo andasalt-sensitive cultivar JL1 were subjected to 0 (CK) and120 mM NaCl stress for 20 d. Their changes in growth, ion contents, antioxidant enzyme activities and gene expression were analyzed. Salt stress significantly inhibited the growth of both cultivars, and JL1 showed a greater decrease than Apollo. The root development of Apollo was promoted by 120 mM NaCl treatment. The Na+ content in roots, stems, and leaves of both cultivars was increased under salt stress, while K+ content and K+/Na+ decreased. The salt-tolerant cultivar Apollo showed less extent of increase in Na+ and decrease in K+ content and kept a relatively high K+/Na+ ratio to compare with JL1. The contents of proline, soluble sugar and protein increased in Apollo, while thesesubstances changed differently in JL1 under salt stress. Activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were gradually increased under salt stress in Apollo, while the corresponding enzyme activities in JL1 were decreased at the late stage of salt stress. The expression of SOD, POD, and CAT genes of both cultivars changed in a similar way to the enzyme activities. Malondialdehyde (MDA) content was increased slightly in Apollo, while increased significantly in JL1. At the late stage of salt stress, Apollomaintained a relatively high K+/Na+, osmotic adjustment ability and antioxidant defense capability, and therefore exhibited higher tolerance to salt stress than that of JL1.

17.
Chemosphere ; 299: 134474, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35367497

RESUMO

Salinity is a global issue limiting efficient agricultural production. Nano-enabled plant salt tolerance is a hot topic. However, the role of nanoparticles induced possible early stimulation on antioxidant system in its improved plant salt tolerance is still largely unknown. Here, poly (acrylic) acid coated nanoceria (cerium oxide nanoparticles) (PNC, 7.8 nm, -31 mV) with potent ROS (reactive oxygen species) scavenging ability are used. Compared with control, no significant difference of H2O2 and O2•─ content, MDA (malondialdehyde) content, relative electric conductivity, and Fv/Fm was found in leaves and/or roots of cucumber before onset of salinity stress, regardless of leaf or root application of PNC. While, before onset of salinity stress, compared with control, the activities of SOD (superoxide dismutase, up to 1.8 folds change), POD (peroxidase, up to 2.5 folds change) and CAT (catalase, up to 2.3 folds change), and the content of GSH (glutathione, up to 3.0 folds change) and ASA (ascorbic acid, up to 2.4 folds change) in leaves and roots of cucumber with PNC leaf spray or root application were significantly increased. RNA seq analysis further confirmed that PNC foliar spray upregulates more genes in leaves over roots than the root application. These results showed that foliar sprayed PNC have stronger early stimulation effect on antioxidant system than the root applied one and leaf are more sensitive to PNC stimulation than root. After salt stress, cucumber plants with foliar sprayed PNC showed better improvement in salt tolerance than the root applied one. Also, plants with foliar sprayed PNC showed significant higher whole plant cerium content than the root applied one after salt stress. In summary, we showed that foliar spray of nanoceria is more optimal than root application in terms of improving cucumber salt tolerance, and this improvement is associated with better stimulation on antioxidant system in plants.


Assuntos
Cucumis sativus , Nanopartículas , Antioxidantes/farmacologia , Glutationa/farmacologia , Peróxido de Hidrogênio/farmacologia , Folhas de Planta , Tolerância ao Sal
18.
Front Plant Sci ; 12: 765173, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721491

RESUMO

Soil and freshwater salinization is increasingly becoming a problem worldwide and has adversely affected plant growth. However, most of the related studies have focused on sodium ion (Na+) stress, with relatively little research on chloride ion (Cl-) stress. Here, we found that upland cotton (Gossypium hirsutum) plants accumulated Cl- and exhibited strong growth inhibition under NaCl or KCl treatment. Then, a chloride channel gene (GhCLCg-1) was cloned from upland cotton. Phylogenetic and sequence analyses indicated that GhCLCg-1 was highly homologous to AtCLCg and also have conserved voltage_CLC and CBS domains. The subcellular localization assay showed that GhCLCg-1 was localized on the vacuolar membrane. Gene expression analyses revealed that the expression of GhCLCg-1 increased rapidly in cotton in response to chloride stress (NaCl or KCl), and the transcript levels increased as the chloride stress intensified. The overexpression of GhCLCg-1 in Arabidopsis thaliana changed the uptake of ions with a decrease of the Na+/K+ ratios in the roots, stems, and leaves, and enhanced salt tolerance. In contrast, silencing GhCLCg-1 in cotton plants increased the Cl- contents in the roots, stems, and leaves and the Na+/K+ ratios in the stems and leaves, resulting in compromised salt tolerance. These results provide important insights into the toxicity of chloride to plants and also indicate that GhCLCg-1 can positively regulates salt tolerance by adjusting ion accumulation in upland cotton.

19.
Plant Biol (Stuttg) ; 23(6): 1063-1073, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33969585

RESUMO

Limonium Mill. plants are typical recretohalophytes, as they withstand salt stress by secreting excess salt onto the leaf surface through salt glands. However, little is known on the salinity thresholds of these plants and the function of salt glands in salt tolerance. Here, we investigated the salinity thresholds of salt tolerance of the Limonium species L. aureum (Linn.) Hill, L. gmelinii (Willd.) Kuntze, L. otolepis (Schrenk) Kuntze and L. sinuatum (L.) Mill grown with various concentrations of NaCl. The salinity thresholds of L. otolepis, L. aureum, L. sinuatum and L. gmelinii were 300, 350, 400 and 420 mm NaCl, respectively. Correlation analysis indicated that total dry weight, chlorophyll content and intercellular CO2 concentration were highly positively correlated with the total fresh weights of all four Limonium species and could therefore be used as indicators of plant salt tolerance. Furthermore, as the salt gland density on the leaf surface increased, the rate of salt secretion per salt gland also increased, allowing more Na+ to be secreted from the plant. Redundancy discriminant analysis indicated that salt gland density, Na+ content and Na+ secretion rate per salt gland were positively correlated with salt concentration. These observations support the notion that salt glands play important roles in the adaptation of Limonium species to high salinity conditions.


Assuntos
Plumbaginaceae , Tolerância ao Sal , Folhas de Planta , Plumbaginaceae/fisiologia , Estresse Salino
20.
PeerJ ; 9: e12133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616610

RESUMO

BACKGROUND: High soil salinity seriously affects plant growth and development. Excessive salt ions mainly cause damage by inducing osmotic stress, ion toxicity, and oxidation stress. Casuarina equisetifolia is a highly salt-tolerant plant, commonly grown as wind belts in coastal areas with sandy soils. However, little is known about its physiology and the molecular mechanism of its response to salt stress. RESULTS: Eight-week-old C. equisetifolia seedlings grown from rooted cuttings were exposed to salt stress for varying durations (0, 1, 6, 24, and 168 h under 200 mM NaCl) and their ion contents, cellular structure, and transcriptomes were analyzed. Potassium concentration decreased slowly between 1 h and 24 h after initiation of salt treatment, while the content of potassium was significantly lower after 168 h of salt treatment. Root epidermal cells were shed and a more compact layer of cells formed as the treatment duration increased. Salt stress led to deformation of cells and damage to mitochondria in the epidermis and endodermis, whereas stele cells suffered less damage. Transcriptome analysis identified 10,378 differentially expressed genes (DEGs), with more genes showing differential expression after 24 h and 168 h of exposure than after shorter durations of exposure to salinity. Signal transduction and ion transport genes such as HKT and CHX were enriched among DEGs in the early stages (1 h or 6 h) of salt stress, while expression of genes involved in programmed cell death was significantly upregulated at 168 h, corresponding to changes in ion contents and cell structure of roots. Oxidative stress and detoxification genes were also expressed differentially and were enriched among DEGs at different stages. CONCLUSIONS: These results not only elucidate the mechanism and the molecular pathway governing salt tolerance, but also serve as a basis for identifying gene function related to salt stress in C. equisetifolia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA