Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 500
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur Heart J ; 45(18): 1662-1680, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38666340

RESUMO

BACKGROUND AND AIMS: The Glu504Lys polymorphism in the aldehyde dehydrogenase 2 (ALDH2) gene is closely associated with myocardial ischaemia/reperfusion injury (I/RI). The effects of ALDH2 on neutrophil extracellular trap (NET) formation (i.e. NETosis) during I/RI remain unknown. This study aimed to investigate the role of ALDH2 in NETosis in the pathogenesis of myocardial I/RI. METHODS: The mouse model of myocardial I/RI was constructed on wild-type, ALDH2 knockout, peptidylarginine deiminase 4 (Pad4) knockout, and ALDH2/PAD4 double knockout mice. Overall, 308 ST-elevation myocardial infarction patients after primary percutaneous coronary intervention were enrolled in the study. RESULTS: Enhanced NETosis was observed in human neutrophils carrying the ALDH2 genetic mutation and ischaemic myocardium of ALDH2 knockout mice compared with controls. PAD4 knockout or treatment with NETosis-targeting drugs (GSK484, DNase1) substantially attenuated the extent of myocardial damage, particularly in ALDH2 knockout. Mechanistically, ALDH2 deficiency increased damage-associated molecular pattern release and susceptibility to NET-induced damage during myocardial I/RI. ALDH2 deficiency induced NOX2-dependent NETosis via upregulating the endoplasmic reticulum stress/microsomal glutathione S-transferase 2/leukotriene C4 (LTC4) pathway. The Food and Drug Administration-approved LTC4 receptor antagonist pranlukast ameliorated I/RI by inhibiting NETosis in both wild-type and ALDH2 knockout mice. Serum myeloperoxidase-DNA complex and LTC4 levels exhibited the predictive effect on adverse left ventricular remodelling at 6 months after primary percutaneous coronary intervention in ST-elevation myocardial infarction patients. CONCLUSIONS: ALDH2 deficiency exacerbates myocardial I/RI by promoting NETosis via the endoplasmic reticulum stress/microsomal glutathione S-transferase 2/LTC4/NOX2 pathway. This study hints at the role of NETosis in the pathogenesis of myocardial I/RI, and pranlukast might be a potential therapeutic option for attenuating I/RI, particularly in individuals with the ALDH2 mutation.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Armadilhas Extracelulares , Leucotrieno C4 , Traumatismo por Reperfusão Miocárdica , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Benzamidas , Benzodioxóis , Modelos Animais de Doenças , Armadilhas Extracelulares/metabolismo , Antagonistas de Leucotrienos/farmacologia , Antagonistas de Leucotrienos/uso terapêutico , Leucotrieno C4/antagonistas & inibidores , Leucotrieno C4/metabolismo , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Neutrófilos/metabolismo , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Infarto do Miocárdio com Supradesnível do Segmento ST/metabolismo
2.
J Cell Mol Med ; 28(16): e70043, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39205481

RESUMO

Renal ischaemia-reperfusion injury (RIRI) is a primary cause of acute kidney damage, occurring frequently in situations like renal transplantation, yet the underlying mechanisms were not fully understood. Sentrin-specific protease 1 (SENP1) is an important member of the SENP family, which is widely involved in various diseases. However, the role of SENP1 in RIRI has been unclear. In our study, we discovered that SENP1 was involved in RIRI and reduced renal cell apoptosis and oxidative stress at elevated levels. Further mechanistic studies showed that hypoxia-inducible factor-1α (HIF-1α) was identified as a substrate of SENP1. Furthermore, SENP1 deSUMOylated HIF-1α, which reduced the degradation of HIF-1α, and exerted a renoprotective function. In addition, the protective function was lost after application of the HIF-1α specific inhibitor KC7F2. Briefly, our results fully demonstrated that SENP1 reduced the degradation of HIF-1α and attenuated oxidative stress and apoptosis in RIRI by regulating the deSUMOylation of HIF-1α, suggesting that SENP1 may serve as a potential therapeutic target for the treatment of RIRI.


Assuntos
Apoptose , Cisteína Endopeptidases , Subunidade alfa do Fator 1 Induzível por Hipóxia , Estresse Oxidativo , Traumatismo por Reperfusão , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Animais , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética , Sumoilação , Rim/metabolismo , Rim/patologia , Humanos , Masculino , Camundongos
3.
J Cell Mol Med ; 28(8): e18281, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652092

RESUMO

Conditions to which the cardiac graft is exposed during transplantation with donation after circulatory death (DCD) can trigger the recruitment of macrophages that are either unpolarized (M0) or pro-inflammatory (M1) as well as the release of extracellular vesicles (EV). We aimed to characterize the effects of M0 and M1 macrophage-derived EV administration on post-ischaemic functional recovery and glucose metabolism using an isolated rat heart model of DCD. Isolated rat hearts were subjected to 20 min aerobic perfusion, followed by 27 min global, warm ischaemia or continued aerobic perfusion and 60 min reperfusion with or without intravascular administration of EV. Four experimental groups were compared: (1) no ischaemia, no EV; (2) ischaemia, no EV; (3) ischaemia with M0-macrophage-dervied EV; (4) ischaemia with M1-macrophage-derived EV. Post-ischaemic ventricular and metabolic recovery were evaluated. During reperfusion, ventricular function was decreased in untreated ischaemic and M1-EV hearts, but not in M0-EV hearts, compared to non-ischaemic hearts (p < 0.05). In parallel with the reduced functional recovery in M1-EV versus M0-EV ischaemic hearts, rates of glycolysis from exogenous glucose and oxidative metabolism tended to be lower, while rates of glycogenolysis and lactate release tended to be higher. EV from M0- and M1-macrophages differentially affect post-ischaemic cardiac recovery, potentially by altering glucose metabolism in a rat model of DCD. Targeted EV therapy may be a useful approach for modulating cardiac energy metabolism and optimizing graft quality in the setting of DCD.


Assuntos
Vesículas Extracelulares , Transplante de Coração , Macrófagos , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Ratos , Macrófagos/metabolismo , Masculino , Transplante de Coração/métodos , Glucose/metabolismo , Miocárdio/metabolismo , Modelos Animais de Doenças , Recuperação de Função Fisiológica , Glicólise , Coração/fisiopatologia , Coração/fisiologia
4.
J Physiol ; 602(19): 4959-4985, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39197117

RESUMO

This study investigates the molecular mechanisms behind ischaemia/reperfusion (I/R) injury in the brain, focusing on neuronal apoptosis. It scrutinizes the role of the Jun proto-oncogene in apoptosis, involvement of SOCS1 in neural precursor cell accumulation in ischaemic regions, and the upregulation of C-EBPß in the hippocampus following I/R. Key to the study is understanding how Jun controls C-EBPß degradation via SOCS1, potentially offering new clinical treatment avenues for I/R. Techniques such as mRNA sequencing, KEGG enrichment analysis and protein-protein interaction (PPI) in mouse models have indicated involvement of Jun (AP-1) in I/R-induced cerebral damage. The study employs middle cerebral artery occlusion in different mouse models and oxygen-glucose deprivation/reoxygenation in cortical neurons to examine the impacts of Jun and SOCS1 manipulation on cerebral I/R injury and neuronal damage. The findings reveal that I/R reduces Jun expression in the brain, but its restoration lessens cerebral I/R injury and neuron death. Jun activates SOCS1 transcriptionally, leading to C-EBPß degradation, thereby diminishing cerebral I/R injury through the SOCS1/C-EBPß pathway. These insights provide a deeper understanding of post-I/R cerebral injury mechanisms and suggest new therapeutic targets for cerebral I/R injury. KEY POINTS: Jun and SOCS1 are poorly expressed, and C-EBPß is highly expressed in ischaemia/reperfusion mouse brain tissues. Jun transcriptionally activates SOCS1. SOCS1 promotes the ubiquitination-dependent C-EBPß protein degradation. Jun blunts oxygen-glucose deprivation/reoxygenation-induced neuron apoptosis and alleviates neuronal injury. This study provides a theoretical basis for the management of post-I/R brain injury.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão , Proteína 1 Supressora da Sinalização de Citocina , Ubiquitinação , Animais , Masculino , Camundongos , Apoptose , Isquemia Encefálica/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Neurônios/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Traumatismo por Reperfusão/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/genética
5.
Expert Rev Mol Med ; 26: e3, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525836

RESUMO

Deubiquitinases are a group of proteins that identify and digest monoubiquitin chains or polyubiquitin chains attached to substrate proteins, preventing the substrate protein from being degraded by the ubiquitin-proteasome system. Deubiquitinases regulate cellular autophagy, metabolism and oxidative stress by acting on different substrate proteins. Recent studies have revealed that deubiquitinases act as a critical regulator in various cardiac diseases, and control the onset and progression of cardiac disease through a board range of mechanism. This review summarizes the function of different deubiquitinases in cardiac disease, including cardiac hypertrophy, myocardial infarction and diabetes mellitus-related cardiac disease. Besides, this review briefly recapitulates the role of deubiquitinases modulators in cardiac disease, providing the potential therapeutic targets in the future.


Assuntos
Infarto do Miocárdio , Ubiquitina , Humanos , Ubiquitina/metabolismo , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Enzimas Desubiquitinantes/genética
6.
Biochem Soc Trans ; 52(2): 693-706, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38629629

RESUMO

Pathological breakdown of membrane lipids through excessive lipid peroxidation (LPO) was first described in the mid-20th century and is now recognized as a form of regulated cell death, dubbed ferroptosis. Accumulating evidence unveils how metabolic regulation restrains peroxidation of phospholipids within cellular membranes, thereby impeding ferroptosis execution. Unleashing these metabolic breaks is currently therapeutically explored to sensitize cancers to ferroptosis inducing anti-cancer therapies. Reversely, these natural ferroptotic defense mechanisms can fail resulting in pathological conditions or diseases such as ischemia-reperfusion injury, multi-organ dysfunction, stroke, infarction, or neurodegenerative diseases. This minireview outlines current ferroptosis-inducing anti-cancer strategies and highlights the detection as well as the therapeutic targeting of ferroptosis in preclinical experimental settings. Herein, we also briefly summarize observations related to LPO, iron and redox deregulation in patients that might hint towards ferroptosis as a contributing factor.


Assuntos
Ferroptose , Peroxidação de Lipídeos , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Animais , Ferro/metabolismo , Oxirredução , Antineoplásicos/uso terapêutico , Traumatismo por Reperfusão/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico
7.
Toxicol Appl Pharmacol ; 492: 117113, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39343043

RESUMO

Cardiac ischaemia/reperfusion (I/R) impairs mitochondrial function, resulting in excessive oxidative stress and cardiomyocyte ferroptosis and death. Nuclear factor E2-related factor 2 (Nrf2) is a key regulator of redox homeostasis and has cardioprotective effects against various stresses. Here, we tested whether CBR-470-1, a noncovalent Nrf2 activator, can protect against cardiomyocyte death caused by I/R stress. Compared with vehicle treatment, the administration of CBR-470-1 (2 mg/kg) to mice significantly increased Nrf2 protein levels and ameliorated the infarct size, the I/R-induced decrease in cardiac contractile performance, and the I/R-induced increases in cell apoptosis, ROS levels, and inflammation. Consistently, the beneficial effects of CBR-470-1 on cardiomyocytes were verified in a hypoxia/reoxygenation (H/R) model in vitro, but this cardioprotection was dramatically attenuated by the GPX4 inhibitor RSL3. Mechanistically, CBR-470-1 upregulated Nrf2 expression, which increased the expression levels of antioxidant enzymes (NQO1, SOD1, Prdx1, and Gclc) and antiferroptotic proteins (SLC7A11 and GPX4) and downregulated the protein expression of p53 and Nlrp3, leading to the inhibition of ROS production and inflammation and subsequent cardiomyocyte death (apoptosis, ferroptosis and pyroptosis). In summary, CBR-470-1 prevented I/R-mediated cardiac injury possibly through inhibiting cardiomyocyte apoptosis, ferroptosis and pyroptosis via Nrf2-mediated inhibition of p53 and Nlrp3 and activation of the SLC7A11/GPX4 pathway. Our data also highlight that CBR-470-1 may serve as a valuable agent for treating ischaemic heart disease.

8.
Toxicol Appl Pharmacol ; 487: 116954, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705402

RESUMO

Dual-specificity phosphatase 26 (DUSP26) acts as a pivotal player in the transduction of signalling cascades with its dephosphorylating activity. Currently, DUSP26 attracts extensive attention due to its particular function in several pathological conditions. However, whether DUSP26 plays a role in kidney ischaemia-reperfusion (IR) injury is unknown. Aims of the current work were to explore the relevance of DUSP26 in kidney IR damage. DUSP26 levels were found to be decreased in renal tubular epithelial cells following hypoxia-reoxygenation (HR) and kidney samples subjected to IR treatments. DUSP26-overexpressed renal tubular epithelial cells exhibited protection against HR-caused apoptosis and inflammation, while DUSP26-depleted renal tubular epithelial cells were more sensitive to HR damage. Upregulation of DUSP26 in rat kidneys by infecting adenovirus expressing DUSP26 markedly ameliorated kidney injury caused by IR, while also effectively reducing apoptosis and inflammation. The mechanistic studies showed that the activation of transforming growth factor-ß-activated kinase 1 (TAK1)-JNK/p38 MAPK, contributing to kidney injury under HR or IR conditions, was restrained by increasing DUSP26 expression. Pharmacological restraint of TAK1 markedly diminished DUSP26-depletion-exacebated effects on JNK/p38 activation and HR injury of renal tubular cells. The work reported a renal-protective function of DUSP26, which protects against IR-related kidney damage via the intervention effects on the TAK1-JNK/p38 axis. The findings laid a foundation for understanding the molecular pathogenesis of kidney IR injury and provide a prospective target for treating this condition.


Assuntos
Apoptose , Células Epiteliais , Túbulos Renais , MAP Quinase Quinase Quinases , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Traumatismo por Reperfusão/patologia , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Masculino , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Linhagem Celular , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Transdução de Sinais/fisiologia
9.
Rev Cardiovasc Med ; 25(2): 67, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39077342

RESUMO

Background: Ischaemia-reperfusion injury (IRI) is the damage that occurs when blood flow is restored to a tissue or organ after a period of ischaemia. Postconditioning is a therapeutic strategy aimed at reducing the tissue damage caused by IRI. Postconditioning in rodents is a useful tool to investigate the potential mechanisms of postconditioning. Currently, there is no convenient approach for postconditioning rodents. Methods: Rats were subjected to a balloon postconditioning procedure. A balloon was used to control the flow in the vessel. This allowed for easy and precise manipulation of perfusion. Evans blue and triphenyltetrazolium chloride (TTC) double staining were used to determine the infarct size. Apoptosis in the myocardium was visualised and quantified by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Western blotting was performed to assess the expression of key apoptotic proteins, i.e., B-cell lymphoma 2 (Bcl-2), Bcl-2 Associated X (Bax), and cleaved caspase-3. Results: The balloon control approach to postconditioning provided accurate control of coronary blood flow and simplified the postconditioning manipulation. Infarct size reduction was observed in IRI rats after post-conditioning. There was a decrease in cardiac apoptosis in IRI rats after conditioning, as detected by TUNEL staining. IRI rats showed increased Bcl-2 levels and decreased Bax and cleaved caspase-3 levels in the myocardium. Conclusions: Postconditioning was successfully applied in rats using this novel approach. Postconditioning with this approach reduced infarct size and apoptosis in the area at risk.

10.
Clin Sci (Lond) ; 138(8): 491-514, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38639724

RESUMO

The non-stop provision of chemical energy is of critical importance to normal cardiac function, requiring the rapid turnover of ATP to power both relaxation and contraction. Central to this is the creatine kinase (CK) phosphagen system, which buffers local ATP levels to optimise the energy available from ATP hydrolysis, to stimulate energy production via the mitochondria and to smooth out mismatches between energy supply and demand. In this review, we discuss the changes that occur in high-energy phosphate metabolism (i.e., in ATP and phosphocreatine) during ischaemia and reperfusion, which represents an acute crisis of energy provision. Evidence is presented from preclinical models that augmentation of the CK system can reduce ischaemia-reperfusion injury and improve functional recovery. Energetic impairment is also a hallmark of chronic heart failure, in particular, down-regulation of the CK system and loss of adenine nucleotides, which may contribute to pathophysiology by limiting ATP supply. Herein, we discuss the evidence for this hypothesis based on preclinical studies and in patients using magnetic resonance spectroscopy. We conclude that the correlative evidence linking impaired energetics to cardiac dysfunction is compelling; however, causal evidence from loss-of-function models remains equivocal. Nevertheless, proof-of-principle studies suggest that augmentation of CK activity is a therapeutic target to improve cardiac function and remodelling in the failing heart. Further work is necessary to translate these findings to the clinic, in particular, a better understanding of the mechanisms by which the CK system is regulated in disease.


Assuntos
Insuficiência Cardíaca , Traumatismo por Reperfusão , Humanos , Creatina Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Coração , Metabolismo Energético/fisiologia , Traumatismo por Reperfusão/metabolismo , Fosfocreatina/metabolismo , Doença Crônica , Miocárdio/patologia
11.
Clin Sci (Lond) ; 138(10): 599-614, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739452

RESUMO

AIM: Acute kidney injury (AKI) increases the risk for progressive chronic kidney disease (CKD). MicroRNA (miR)-486-5p protects against kidney ischemia-reperfusion (IR) injury in mice, although its long-term effects on the vasculature and development of CKD are unknown. We studied whether miR-486-5p would prevent the AKI to CKD transition in rat, and affect vascular function. METHODS: Adult male rats were subjected to bilateral kidney IR followed by i.v. injection of liposomal-packaged miR-486-5p (0.5 mg/kg). Kidney function and histologic injury were assessed after 24 h and 10 weeks. Kidney endothelial protein levels were measured by immunoblot and immunofluorescence, and mesenteric artery reactivity was determined by wire myography. RESULTS: In rats with IR, miR-486-5p blocked kidney endothelial cell increases in intercellular adhesion molecule-1 (ICAM-1), reduced neutrophil infiltration and histologic injury, and normalized plasma creatinine (P<0.001). However, miR-486-5p attenuated IR-induced kidney endothelial nitric oxide synthase (eNOS) expression (P<0.05). At 10 weeks, kidneys from rats with IR alone had decreased peritubular capillary density and increased interstitial collagen deposition (P<0.0001), and mesenteric arteries showed impaired endothelium-dependent vasorelaxation (P<0.001). These changes were inhibited by miR-486-5p. Delayed miR-486-5p administration (96 h, 3 weeks after IR) had no impact on kidney fibrosis, capillary density, or endothelial function. CONCLUSION: In rats, administration of miR-486-5p early after kidney IR prevents injury, and protects against CKD development and systemic endothelial dysfunction. These protective effects are associated with inhibition of endothelial ICAM-1 and occur despite reduction in eNOS. miR-486-5p holds promise for the prevention of ischemic AKI and its complications.


Assuntos
Injúria Renal Aguda , Rim , MicroRNAs , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Animais , Masculino , Ratos , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Rim/patologia , Rim/irrigação sanguínea , Rim/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Sprague-Dawley , Insuficiência Renal Crônica/prevenção & controle , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo
12.
Exp Physiol ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478872

RESUMO

Ischaemic heart diseases (IHD) are among the major causes of mortality in the elderly population. Although timely reperfusion is a common treatment for IHD, it causes additional damage to the ischaemic myocardium known as ischaemia-reperfusion (IR) injury. Considering the importance of preventing reperfusion injuries, we aimed to examine the combination effect of mitochondrial transplantation (MT) and coenzyme Q10 (CoQ10 ) in myocardial IR injury of aged male rats. Seventy-two aged male Wistar rats were randomly divided into six groups: Sham, IR, CoQ10 , MT, combination therapy (MT + CoQ10 ) and vehicle. Myocardial IR injury was established by occlusion of the left anterior descending coronary artery followed by reopening. Young male Wistar rats were used as mitochondria donors. Isolated mitochondria were injected intraventricularly (500 µL of a respiration buffer containing 6 × 106 ± 5 × 105  mitochondria/mL) in MT-receiving groups at the onset of reperfusion. CoQ10  (10 mg/kg/day) was injected intraperitoneally for 2 weeks before IR induction. Twenty-four hours after reperfusion, haemodynamic parameters, myocardial infarct size (IS), lactate dehydrogenase (LDH) release and cardiac mitochondrial function (mitochondrial reactive oxygen species (ROS) generation and membrane potential) were measured. The combination of MT and CoQ10  improved haemodynamic index changes and reduced IS and LDH release (P < 0.05). It also decreased mitochondrial ROS generation and increased membrane potential (P < 0.05). CoQ10 also showed a significant cardioprotective effect. Combination therapy displayed greater cardioprotective effects than single treatments. This study revealed that MT and CoQ10 combination treatment can be considered as a promising cardioprotective strategy to reduce myocardial IR injury in ageing, in part by restoring mitochondrial function.

13.
Nephrol Dial Transplant ; 39(8): 1239-1247, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38400561

RESUMO

Through improved insights into the increasing incidence and detrimental effects of acute kidney injury (AKI), its clinical relevance has become more and more apparent. Although treatment strategies for AKI have also somewhat improved, an adequate remedy still does not exist. Finding one is complicated by a multifactorial pathophysiology and by heterogeneity in the patient population. Alkaline phosphatase (ALP) has been suggested as a therapy for sepsis-associated AKI because of its protective effects against lipopolysaccharide (LPS)-induced inflammation and kidney injury in animals. However, its effectiveness as an AKI treatment has not been demonstrated definitively. Because the anti-inflammatory properties of ALP are likely not reliant on a direct effect on LPS itself, we postulate that other pathways are much more important in explaining the renoprotective properties ascribed to ALP. The re-evaluation of which properties of the ALP enzyme are responsible for the benefit seen in the lab is an important step in determining where the true potential of ALP as a treatment strategy for AKI in the clinic lies. In this review we will discuss how ALP can prevent activation of harmful pro-inflammatory receptors, redirect cell-cell signalling and protect barrier tissues, which together form the basis for current knowledge of the role of ALP in the kidney. With this knowledge in mind and by analysing currently available clinical evidence, we propose directions for new research that can determine whether ALP as a treatment strategy for AKI has a future in the clinical field.


Assuntos
Injúria Renal Aguda , Fosfatase Alcalina , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/terapia , Humanos , Fosfatase Alcalina/metabolismo , Animais
14.
Parasite Immunol ; 46(8-9): e13061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39313941

RESUMO

Hepatic ischaemia-reperfusion (I/R) injury is a frequent and nearly inevitable pathophysiological process without widely accepted effective therapy. Soluble egg antigen (SEA) of Schistosoma japonicum (S. japonicum) is the main mediators capable of regulating immunological activities and has received increased attention in immune-mediated diseases. But its role in hepatic I/R injury has not been well defined. This study aimed to elucidate whether SEA protects liver against hepatic I/R injury and explore underlying mechanism. After intraperitoneal injecting SEA three times a week for 4 weeks, mice underwent 70% hepatic I/R injury. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), haematoxylin-eosin (HE) and TdT-mediated dUTP nick-end labelling (TUNEL) staining were used to evaluate liver injury. The severity related to the inflammatory response was also investigated. Furthermore, immunofluorescence was used to detect macrophage polarisation. Compared with the hepatic I/R injury group, SEA pretreatment significantly alleviated hepatic I/R injury induced liver damage, apoptosis and inflammatory. Interestingly, SEA enhanced the polarisation of macrophages towards M2 macrophages in vivo. We are the first to investigate the therapeutic efficacy of S. japonicum SEA in a hepatic I/R injury model in mice. We provided the first direct evidence that SEA attenuated hepatic I/R injury by promoting M2 macrophage polarisation.


Assuntos
Fígado , Macrófagos , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/imunologia , Camundongos , Macrófagos/imunologia , Fígado/patologia , Fígado/imunologia , Antígenos de Helmintos/imunologia , Masculino , Schistosoma japonicum/imunologia , Modelos Animais de Doenças , Apoptose , Aspartato Aminotransferases/sangue , Alanina Transaminase/sangue , Camundongos Endogâmicos C57BL
15.
Diabetes Obes Metab ; 26(9): 3940-3957, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38988216

RESUMO

AIM: Post-transcriptional modifications and their specific mechanisms are the focus of research on the regulation of myocardial damage. Stress granules (SGs) can inhibit the inflammatory response by inhibiting the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. This study investigated whether alkylation repair homologue protein 5 (ALKBH5) could affect myocardial inflammation and apoptosis during diabetic myocardial ischaemia-reperfusion injury (IRI) through the cGAS-STING pathway via SGs. METHODS: A diabetes ischaemia-reperfusion rat model and a high glucose hypoxia/reoxygenation cell model were established. Adeno-associated virus (AAV) and lentivirus (LV) were used to overexpress ALKBH5, while the SG agonist arsenite (Ars) and the SG inhibitor anisomycin were used as interventions. Then, the levels of apoptosis and related indicators in the cell and rat models were measured. RESULTS: In the in vivo experiment, compared with the normal sham group, the degree of myocardial tissue damage, creatine kinase-MB and cardiac troponin I in serum, and myocardial apoptosis, the infarcted area of myocardium, and the level of B-cell lymphoma 2 associated X protein, cGAS-STING pathway and inflammatory factors in the diabetes ischaemia-reperfusion group were significantly increased. However, the expression of SGs and the levels of ALKBH5, rat sarcoma-GTPase-activating protein-binding protein 1, T-cell intracellular antigen-1 and Bcl2 were significantly decreased. After AAV-ALKBH5 intervention, the degree of myocardial tissue damage, degree of myocardial apoptosis, and extent of myocardial infarction in myocardial tissue were significantly decreased. In the in vitro experiment, compared with those in the normal control group, the levels of lactate dehydrogenase, inflammation and apoptosis were significantly greater, and cell viability and the levels of ALKBH5 and SGs were decreased in the high glucose and hypoxia/reoxygenation groups. In the high glucose hypoxia/reoxygenation cell model, the degree of cell damage, inflammation, and apoptosis was greater than those in the high glucose and hypoxia/reoxygenation models, and the levels of ALKBH5 and SGs were further decreased. LV-ALKBH5 and Ars alleviated the degree of cell damage and inhibited inflammation and cell apoptosis. The inhibition of SGs could partly reverse the protective effect of LV-ALKBH5. The cGAS agonist G140 antagonized the inhibitory effects of the SG agonist Ars on cardiomyocyte apoptosis, inflammation and the cGAS-STING pathway. CONCLUSION: Both ALKBH5 and SGs inhibited myocardial inflammation and apoptosis during diabetic myocardial ischaemia-reperfusion. Mechanistically, ALKBH5 might inhibit the apoptosis of cardiomyocytes by promoting the expression of SGs through the cGAS-STING pathway.


Assuntos
Apoptose , Traumatismo por Reperfusão Miocárdica , Transdução de Sinais , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Ratos , Masculino , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Ratos Sprague-Dawley , Diabetes Mellitus Experimental/metabolismo
16.
Acta Pharmacol Sin ; 45(1): 125-136, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37684381

RESUMO

Acute kidney injury (AKI) is a worldwide public health problem characterized by the massive loss of tubular cells. However, the precise mechanism for initiating tubular cell death has not been fully elucidated. Here, we reported that phosphoglycerate mutase 5 (PGAM5) was upregulated in renal tubular epithelial cells during ischaemia/reperfusion or cisplatin-induced AKI in mice. PGAM5 knockout significantly alleviated the activation of the mitochondria-dependent apoptosis pathway and tubular apoptosis. Apoptosis inhibitors alleviated the activation of the mitochondria-dependent apoptosis pathway. Mechanistically, as a protein phosphatase, PGAM5 could dephosphorylate Bax and facilitate Bax translocation to the mitochondrial membrane. The translocation of Bax to mitochondria increased membrane permeability, decreased mitochondrial membrane potential and facilitated the release of mitochondrial cytochrome c (Cyt c) into the cytoplasm. Knockdown of Bax attenuated PGAM5 overexpression-induced Cyt c release and tubular cell apoptosis. Our results demonstrated that the increase in PGAM5-mediated Bax dephosphorylation and mitochondrial translocation was implicated in the development of AKI by initiating mitochondrial Cyt c release and activating the mitochondria-dependent apoptosis pathway. Targeting this axis might be beneficial for alleviating AKI.


Assuntos
Injúria Renal Aguda , Citocromos c , Camundongos , Animais , Citocromos c/metabolismo , Fosfoglicerato Mutase/metabolismo , Proteína X Associada a bcl-2/metabolismo , Apoptose/fisiologia , Mitocôndrias/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Proteínas de Transporte/metabolismo , Fosfoproteínas Fosfatases/metabolismo
17.
Acta Pharmacol Sin ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937576

RESUMO

Reperfusion injury, which is distinct from ischaemic injury, occurs when blood flow is restored in previously ischaemic brain tissue, further compromising neurons and other cells and worsening the injury. There is currently a lack of pharmaceutical agents and therapeutic interventions that specifically mitigate cerebral ischaemia/reperfusion (I/R) injury. Ginsenoside Rg1 (Rg1), a protopanaxatriol-type saponin isolated from Panax ginseng C. A. Meyer, has been found to protect against cerebral I/R injury, but its intricate protective mechanisms remain to be elucidated. Numerous studies have shown that autophagy plays a crucial role in protecting brain tissue during the I/R process and is emerging as a promising therapeutic strategy for effective treatment. In this study, we investigated whether Rg1 protected against I/R damage in vitro and in vivo by regulating autophagy. Both MCAO and OGD/R models were established. SK-N-AS and SH-SY5Y cells were subjected to OGD followed by reperfusion with Rg1 (4-32 µM). MCAO mice were injected with Rg1 (30 mg·kg-1·d-1. i.p.) for 3 days before and on the day of surgery. Rg1 treatment significantly mitigated ischaemia/reperfusion injury both in vitro and in vivo. Furthermore, we demonstrated that the induction of autophagy contributed to I/R injury, which was effectively inhibited by Rg1 in both in vitro and in vivo models of cerebral I/R injury. Rg1 inhibited autophagy through multiple steps, including impeding autophagy initiation, inducing lysosomal dysfunction and inhibiting cathepsin enzyme activities. We revealed that mTOR activation was pivotal in mediating the inhibitory effect of Rg1 on autophagy. Treatment with Torin-1, an autophagy inducer and mTOR-specific inhibitor, significantly reversed the impact of Rg1 on autophagy, decreasing its protective efficacy against I/R injury both in vitro and in vivo. In conclusion, our results suggest that Rg1 may serve as a promising drug candidate against cerebral I/R injury by inhibiting autophagy through activation of mTOR signalling.

18.
Clin Exp Pharmacol Physiol ; 51(2): e13835, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37994166

RESUMO

Ischemic reperfusion injury, caused by oxidative stress during reperfusion, is an inevitable outcome of organ transplantation, especially when the organ preservation time is prolonged. Prolonged ischaemic preservation is a valuable technique for improving the success of organ transplantation, but numerous challenges remain. 3-nitro-N-methyl salicylamide (3-NNMS), an inhibitor of mitochondrial electron transport chain complex III, can be used to reduce reactive oxygen species production during blood reperfusion by slowing the electron flow rate of the respiratory chain. Based on this property, a novel preservation solution was developed for the preservation of isolated rat heart and its cardioprotective effect was investigated during an 8-h cold ischaemia preservation time for the first time. For comparison, 3-NNMS was also included in the histidine-tryptophan-ketoglutarate (HTK) solution. Compared to HTK, HTK supplemented with 3-NNMS significantly improved the heart rate of isolated rat hearts after 8 h of cold storage. Both 3-NNMS solution and HTK supplemented with 3-NNMS solution decreased cardiac troponin T and lactate dehydrogenase levels in perfusion fluid and reduced reactive oxygen species and malondialdehyde levels in the myocardium. The 3-NNMS also maintained the membrane potential of myocardial mitochondria and significantly increased superoxide dismutase levels. These results showed that the new 3-NNMS solution can protect mitochondrial and cardiomyocyte function by increasing antioxidant capacity and reducing oxidative stress in cryopreserved rat hearts during a prolonged preservation time, resulting in less myocardial injury and better heart rate.


Assuntos
Coração , Soluções para Preservação de Órgãos , Ratos , Animais , Soluções para Preservação de Órgãos/farmacologia , Espécies Reativas de Oxigênio , Miocárdio , Glucose/farmacologia , Manitol/farmacologia , Salicilamidas/farmacologia
19.
J Cell Mol Med ; 28(5): e17956, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845831

RESUMO

Ischaemic stroke is a common cerebrovascular disease. Long non-coding RNA (lncRNA) of small nucleolar RNA host gene (SNHG15) has been supposedly performed a regulatory role in many diseases. Nonetheless, the function of SNHG15 in cerebral ischaemia-reperfusion injury has not been clarified. The OGD/R of Neuro2A cells simulated the ischaemic and reperfused states of the brain. Neuro2a cell line with stable transfection of plasmid with silent expression of SNHG15 was constructed. Neuro2a cell lines transfected with miR-153-3p mimic (miR-153-3p-mimics) and miR-153-3p inhibitor (miR-153-3p-inhibition) were constructed. Expression of SNHG15, mi R-200a, FOXO3 and ATG7 in mouse brain tissue and N2a cells was identified by qRT-PCR. Western blot (WB) analysis of mouse brain tissue and Neuro2a cells revealed the presence of the proteins ATG5, Cle-caspase-3, Bax, Bcl-2, LC3 II/I and P62 (WB). The representation and distribution of LC3B were observed by immunofluorescence. The death of cells was measured using a technique called flow cytometry (FACS). SNHG15 was highly expressed in cerebral ischaemia-reperfusion injury model. Down-regulation of SNHG15 lead to lower apoptosis rate and decreased autophagy. Dual luciferase assay and co-immunoprecipitation (CoIP) found lncRNA SNHG15/miR-153-3p/ATG5. Compared to cells transfected with NC suppression, cells transfected with miR-153-3p-inhibition had substantially greater overexpression of LC 3 II/I, ATG5, cle-Caspase-3, and Bax, as determined by a recovery experiment, the apoptosis rate was elevated, yet both P62 and Bcl-2 were significantly lower and LC3+ puncta per cells were significantly increased. Co-transfection of miR-153-3p-inhibition and sh-SNHG15 could reverse these results. LncRNA SNHG15 regulated autophagy and prevented cerebral ischaemia-reperfusion injury through mediating the miR-153-3p/ATG5 axis.

20.
J Cell Mol Med ; 27(10): 1384-1397, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37005492

RESUMO

Human placental mesenchymal stem cells (PMSCs) can prevent liver ischaemia-reperfusion injury (LIRI). However, their therapeutic effects are limited. Therefore, additional research is required to elucidate the mechanisms of PMSC-mediated LIRI prevention and enhance the related therapeutic effects. This study aimed to examine the role of the Lin28 protein in the regulation of glucose metabolism in PMSCs. Further, it explored whether Lin28 could enhance the protective effects of PMSCs against LIRI and investigated the underlying mechanisms. Western blotting was performed to examine Lin28 expression in PMSCs under hypoxic conditions. A Lin28 overexpression construct was introduced into PMSCs, and the effect on glucose metabolism was examined using a glucose metabolism kit. Further, the expression of some proteins involved in glucose metabolism and the PI3K-AKT pathway and the levels of microRNA Let-7a-g were examined using western blots and real-time quantitative PCR, respectively. To examine the relationship between Lin28 and the PI3K-Akt pathway, the effects of AKT inhibitor treatment on the changes induced by Lin28 overexpression were examined. Subsequently, AML12 cells were co-cultured with PMSCs to elucidate the mechanisms via which PMSCs prevent hypoxic injury in liver cells in vitro. Finally, C57BL/6J mice were used to establish a partial warm ischaemia-reperfusion model. The mice received intravenous injections containing PMSCs (control and Lin28-overexpressing PMSCs). Finally, their serum transaminase levels and degree of liver injury were assessed using biochemical and histopathological methods, respectively. Lin28 was upregulated under hypoxic conditions in PMSCs. Lin28 exerted protective effects against hypoxia-induced cell proliferation. Moreover, it increased the glycolytic capacity of PMSCs, allowing PMSCs to produce more energy under hypoxic conditions. Lin28 also activated the PI3K-Akt signalling pathway under hypoxic conditions, and its effects were attenuated by AKT inhibition. Lin28 overexpression could protect cells against LIRI-induced liver damage, inflammation and apoptosis and could also attenuate hypoxia-induced hepatocyte injury. Lin28 enhances glucose metabolism under hypoxic conditions in PMSCs, thereby exerting protective effects against LIRI by activating the PI3K-Akt signalling pathway. Our study is the first to report the potential of genetically modified PMSCs for LIRI treatment.


Assuntos
Hepatopatias , Traumatismo por Reperfusão , Animais , Feminino , Humanos , Camundongos , Gravidez , Apoptose/genética , Glucose/farmacologia , Hipóxia , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Placenta/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA