Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Toxicol ; : 10915818241260280, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38872413

RESUMO

The Expert Panel for Cosmetic Ingredient Safety (Panel) first published the Final Report of the safety of Isobutane, Isopentane, Butane, and Propane in 1982. The Panel previously concluded that these ingredients are considered safe as cosmetic ingredients under the present conditions of concentration and use, as described in that safety assessment. Upon re-review in 2002, the Panel reaffirmed the original conclusion, as published in 2005. The Panel reviewed update frequency and concentration of use data again in 2023, in addition to newly available, relevant safety data. Considering this information, as well as the information provided in the original safety assessment and the prior re-review document, the Panel reaffirmed the 1982 conclusion for Isobutane, Isopentane, Butane, and Propane.

2.
Molecules ; 28(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37110599

RESUMO

Raman spectroscopy is a promising method for the analysis of natural gas. It is necessary to account for the broadening effects on spectral lines to improve measurement accuracy. In this study, the broadening coefficients for methane lines in the region of the ν2 band perturbed by propane, n-butane, and isobutane at room temperature were measured. We estimated the measurement errors of the concentration of oxygen and carbon dioxide in the case of neglecting the broadening effects on the methane spectrum by the pressure of C2-C6 alkanes. The obtained data are suited for the correct simulation of the methane spectrum in the hydrocarbon-bearing gases and can be used to improve the accuracy of the analysis of natural gas by Raman spectroscopy.

3.
Chemphyschem ; 23(1): e202100587, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34505329

RESUMO

To clarify the effects of different Zn species, zeolite topology and acidity (quantity of Brønsted acid sites, BAS) on alkane aromatization, isobutane transformation on Zn2+ /H-ZSM-5, Zn2+ /H-BEA, and ZnO/H-BEA zeolites has been monitored with 13 C MAS NMR. The alkane transformation has been established to occur by aromatization and hydrogenolysis pathways. Zn2+ species is more efficient for the aromatization reaction because aromatic products are formed at lower temperatures on Zn2+ /H-BEA and Zn2+ /H-ZSM-5 than on ZnO/H-BEA. The larger quantity of BAS in ZnO/H-BEA seems to provide a higher degree of the hydrogenolysis pathway on this catalyst. The mechanism of the alkane aromatization is similar for the zeolites of different topology and containing different Zn species, with the main reaction steps being the following: (i) isobutane dehydrogenation to isobutene via isobutylzinc; (ii) isobutene stabilization as a π-complex on Zn sites; (iii) isobutene oligomerization via the alkene insertion into Zn-C bond of methyl-σ-allylzinc formed from the π-complex; (iv) oligomer dehydrogenation with intermediate formation of polyene carbanionic structures; (v) aromatics formation via further polyene dehydrogenation, protonation, cyclization, deprotonation steps with BAS involvement.


Assuntos
Zeolitas , Óxido de Zinco , Butanos , Espectroscopia de Ressonância Magnética , Zinco
4.
Biodegradation ; 33(4): 349-371, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35553282

RESUMO

A series of single-well push-pull tests (SWPPTs) were performed to investigate the efficacy of isobutane (2-methylpropane) as a primary substrate for in situ stimulation of microorganisms able to cometabolically transform common groundwater contaminants, such as chlorinated aliphatic hydrocarbons and 1,4-dioxane (1,4-D). In biostimulation tests, the disappearance of isobutane relative to a nonreactive bromide tracer indicated an isobutane-utilizing microbial community rapidly developed in the aquifer around the test well. SWPPTs were performed as natural drift tests with first-order rates of isobutane consumption ranging from 0.4 to 1.4 day-1. Because groundwater contaminants were not present at the demonstration site, isobutene (2-methylpropene) was used as a nontoxic surrogate to demonstrate cometabolic activity in the subsurface after biostimulation. The transformation of isobutene to isobutene epoxide (2-methyl-1,2-epoxypropane) illustrates the epoxidation process previously shown for common groundwater contaminants after cometabolic transformation by alkane-utilizing bacteria. The rate and extent of isobutene consumption and the formation and transformation of isobutene epoxide were greater in the presence of isobutane, with no evidence of primary substrate inhibition. Modeled concentrations of isobutane-utilizing biomass in microcosms constructed with groundwater collected before and after each SWPPT offered additional evidence that the isobutane-utilizing microbial community was stimulated in the aquifer. Experiments in groundwater microcosms also demonstrated that the isobutane-utilizing bacteria stimulated in the subsurface could cometabolically transform a mixture of co-substrates including isobutene, 1,1-dichloroethene, cis-1,2-dichloroethene, and 1,4-D with the same co-substrate preferences as the bacterium Rhodococcus rhodochrous ATCC strain 21198 after growth on isobutane. This study demonstrated the effectiveness of isobutane as primary substrate for stimulating in situ cometabolic activity and the use of isobutene as surrogate to investigate in situ cometabolic reactions catalyzed by isobutane-stimulated bacteria.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Biodegradação Ambiental , Biotransformação , Butanos , Compostos de Epóxi , Poluentes Químicos da Água/metabolismo
5.
Microb Cell Fact ; 19(1): 209, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33187524

RESUMO

The development of sustainable routes to the bio-manufacture of gaseous hydrocarbons will contribute widely to future energy needs. Their realisation would contribute towards minimising over-reliance on fossil fuels, improving air quality, reducing carbon footprints and enhancing overall energy security. Alkane gases (propane, butane and isobutane) are efficient and clean-burning fuels. They are established globally within the transportation industry and are used for domestic heating and cooking, non-greenhouse gas refrigerants and as aerosol propellants. As no natural biosynthetic routes to short chain alkanes have been discovered, de novo pathways have been engineered. These pathways incorporate one of two enzymes, either aldehyde deformylating oxygenase or fatty acid photodecarboxylase, to catalyse the final step that leads to gas formation. These new pathways are derived from established routes of fatty acid biosynthesis, reverse ß-oxidation for butanol production, valine biosynthesis and amino acid degradation. Single-step production of alkane gases in vivo is also possible, where one recombinant biocatalyst can catalyse gas formation from exogenously supplied short-chain fatty acid precursors. This review explores current progress in bio-alkane gas production, and highlights the potential for implementation of scalable and sustainable commercial bioproduction hubs.


Assuntos
Alcanos/metabolismo , Biocombustíveis/microbiologia , Ácidos Graxos/metabolismo , Gases/metabolismo , Engenharia Metabólica , Biologia Sintética/métodos , Vias Biossintéticas , Butanos/metabolismo , Carboxiliases/metabolismo , Engenharia Genética , Microbiologia Industrial , Oxirredução , Oxigenases/metabolismo , Propano/metabolismo
6.
Int J Toxicol ; 33(1 Suppl): 28S-51S, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24179026

RESUMO

To characterize the toxicological hazards of petroleum gases, 90-day inhalation toxicity (Organization for Economic Cooperation and Development [OECD] 413) and developmental toxicity (OECD 414) tests were conducted with liquefied propane gas (LPG) at concentrations of 1000, 5000, or 10,000 ppm. A micronucleus test (OECD 474) of LPG was also conducted. No systemic or developmental effects were observed; the overall no observed adverse effect concentration (NOAEC) was 10,000 ppm. Further, there was no effect of LPG exposure at levels up to 10,000 ppm on micronucleus induction and no evidence of bone marrow toxicity. Other alkane gases (ethane, propane, n-butane, and isobutane) were then evaluated in combined repeated exposure studies with reproduction/development toxicity screening tests (OECD 422). There were no toxicologically important changes in parameters relating to systemic toxicity or neurotoxicity for any of these gases at concentrations ranging from 9000 to 16,000 ppm. There was no evidence of effects on developmental or reproductive toxicity in the studies of ethane, propane, or n-butane at the highest concentrations tested. However, there was a reduction in mating in the high-exposure group (9000 ppm) of the isobutane study, which although not significantly different was outside the range previously observed in the testing laboratory. Assuming the reduction in mating to have been toxicologically significant, the NOAEC for the isobutane reproductive toxicity screening test was 3000 ppm (7125 mg/m(3)). A method is proposed by which the toxicity of any of the 106 complex petroleum gas streams can be estimated from its composition.


Assuntos
Gases/toxicidade , Petróleo/toxicidade , Administração por Inalação , Alcanos/análise , Alcanos/toxicidade , Animais , Gases/análise , Substâncias Perigosas/análise , Substâncias Perigosas/toxicidade , Testes para Micronúcleos , Nível de Efeito Adverso não Observado , Petróleo/análise , Diagnóstico Pré-Natal , Ratos , Ratos Sprague-Dawley , Reprodução/efeitos dos fármacos , Testes de Toxicidade
7.
J Colloid Interface Sci ; 652(Pt A): 508-517, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37604062

RESUMO

The vanadium-based dehydrogenation (DH) catalyst is becoming a promise alternative to the industrial used Pt- and Cr-based catalysts, due to lower cost and less environmental threat. However, the low DH activity hampered the industrial application of vanadium-based catalysts. Herein, for the first time, we introduce a method to prepare high-efficiency vanadium-based catalyst by constructing pure V3+ species on γ-Al2O3 through treatment of as-prepared thiovanadate. The V3+ species contributes to not only enhancing the DH activity, but also fabricating the V3+-O/S acid-base pair with ideal strength and stability. The isobutene yield can reach as high as 56.9 wt%. Only Lewis acid is recognized on V3+/Al2O3 catalyst, while no Brønsted acid remains. The side-reactions are consequently inhibited, and the selectivity to isobutene is improved. Besides, with the increase of vanadium loadings, the Lewis acid content increases at first and then decreases, and the content of acid sites in middle strength keeps decreasing. Though the deposited coke on V3+/Al2O3 was just 2.5 wt% during 8.5 h consecutive DH reaction, the valence state of vanadium was still influenced and the fraction of inert V4+ species increased steadily. This study will improve the potential for industrial application of vanadium-based DH catalyst, and offer theoretical guidance for optimization of ideal DH catalysts.

8.
Polymers (Basel) ; 14(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35012225

RESUMO

We explore the foam extrusion of expanded polypropylene with a long chain branched random co-polypropylene to make its production process simpler and cheaper. The results show that the presence of long chain branches infer high melt strength and, hence, a wide foamability window. We explored the entire window of foaming conditions (namely, temperature and pressure) by means of an ad-hoc extrusion pilot line design. It is shown that the density of the beads can be varied from 20 to 100 kg/m3 using CO2 and isobutane as a blowing agent. The foamed beads were molded by steam-chest molding using moderate steam pressures of 0.3 to 0.35 MPa independently of the closed cell content. A characterization of the mechanical properties was performed on the molded parts. The steam molding pressure for sintering expanded polypropylene beads with a long chain branched random co-polypropylene is lower than the one usually needed for standard polypropylene beads by extrusion. The energy saving for the sintering makes the entire manufacturing processes cost efficient and can trigger new applications.

9.
J Colloid Interface Sci ; 600: 440-448, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34023705

RESUMO

Compared with industrial used Pt- and Cr-based catalyst in dehydrogenation (DH) of light alkanes, the sulfide V-K/γ-Al2O3 catalyst reported in this study shows lower cost and toxicity, and significant DH performance. The yield to isobutene reached as high as 52.9%, which is among the highest reported to date. We attribute such high isobutene yield to the precise modulation of polymerization degree for vanadium species via doping of potassium and indicating that the synergy between vanadium species and acid sites is critical to enhance the DH performance. Our previous work showed sulfidation promoted the increase of DH performance for vanadium-based catalyst, and we go further in this study to explore the correlation between increased range of DH performance and the added potassium. The different loaded potassium leads to variation in sulfidation degree, affecting the properties of vanadium species and acid properties consequently. The potassium was distributed uniformly on surface of the sulfide vanadium-based catalyst and was predominantly bonded with the vanadium species rather than with the γ-Al2O3 support. With increasing the potassium amount from 0 to 3 wt%, the acid amount kept decreasing, and some specific strong acid sites appeared once adequate sulfur was introduced in the V-K/γ-Al2O3 catalyst. The characterization and DFT results both revealed that the doped potassium contributes to regulating the vanadium species in the oligomeric state. The synergy between vanadium species and acid properties was regulated by the added potassium simultaneously, and thus the DH performance was enhanced. This study provides promising strategy for preparation of environment-friendly model industrial DH catalyst.


Assuntos
Potássio , Vanádio , Butanos , Oxirredução , Sulfetos
10.
ACS Appl Mater Interfaces ; 12(50): 56049-56059, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33269907

RESUMO

Metal-organic frameworks (MOFs) can be designed for chemical applications by modulating the size and shape of intracrystalline pores through selection of their nodes and linkers. Zirconium nodes with variable connectivity to organic linkers allow for a broad range of topological nets that have diverse pore structures even for a consistent set of linkers. Identifying an optimal pore structure for a given application, however, is complicated by the large material space of possible MOFs. In this work, molecular dynamics simulations were used to determine how a MOF's topology affects the diffusion of propane and isobutane over the full range of loadings and to understand how MOFs can be tuned to reduce transport limitations for applications in separations and catalysis. High-throughput simulation techniques were employed to efficiently calculate loading-dependent diffusivities in 38 MOFs. The results show that topologies with higher node connectivity have reduced alkane diffusivities compared to topologies with lower node connectivity. Molecular siting techniques were used to elucidate how the pore structures in different topologies affect adsorbate diffusivities.

11.
Biotechnol Biofuels ; 13: 125, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32684978

RESUMO

BACKGROUND: Microbial biorefinery approaches are beginning to define renewable and sustainable routes to clean-burning and non-fossil fuel-derived gaseous alkanes (known as 'bio-LPG'). The most promising strategies have used a terminal fatty acid photodecarboxylase, enabling light-driven propane production from externally fed waste butyric acid. Use of Halomonas (a robust extremophile microbial chassis) with these pathways has enabled bio-LPG production under non-sterile conditions and using waste biomass as the carbon source. Here, we describe new engineering approaches to produce next-generation pathways that use amino acids as fuel precursors for bio-LPG production (propane, butane and isobutane blends). RESULTS: Multiple pathways from the amino acids valine, leucine and isoleucine were designed in E. coli for the production of propane, isobutane and butane, respectively. A branched-chain keto acid decarboxylase-dependent pathway utilising fatty acid photodecarboxylase was the most effective route, generating higher alkane gas titres over alternative routes requiring coenzyme A and/or aldehyde deformylating oxygenase. Isobutane was the major gas produced in standard (mixed amino acid) medium, however valine supplementation led to primarily propane production. Transitioning pathways into Halomonas strain TQ10 enabled fermentative production of mixed alkane gases under non-sterile conditions on simple carbon sources. Chromosomal integration of inducible (~ 180 mg/g cells/day) and constitutive (~ 30 mg/g cells/day) pathways into Halomonas generated production strains shown to be stable for up to 7 days. CONCLUSIONS: This study highlights new microbial pathways for the production of clean-burning bio-LPG fuels from amino acids. The use of stable Halomonas production strains could lead to gas production in the field under non-sterile conditions following process optimisation.

12.
Glob Chall ; 3(2): 1800069, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31565361

RESUMO

Hydrate formation can cause serious problems in hydrocarbon exploration, production, and transportation, especially in deepwater environments. Hydrate-related problems affects the integrity of the deepwater platforms, leads to equipment blockages, and also increases operational costs. In order to solve these problems, salts are used as thermodynamic inhibitors and also mixed with the drilling fluids in most drilling processes. A comprehensive understanding of hydrate formation in aqueous salt solutions is vital to overcome these problems. Statistical thermodynamic models are commonly used to predict hydrate formation conditions in different aqueous solutions. However, these models involve rigorous computations and are restricted to certain conditions. They give inaccurate predictions of hydrate equilibrium conditions for high-temperature, high-pressure, and high-salinity systems. Therefore, it is paramount to develop a simple-to-use and reliable prediction tool. In this work, an empirical correlation is developed and successfully used to predict the equilibrium conditions of ethane, propane, and isobutane hydrates in pure water and aqueous solutions of sodium chloride, potassium chloride, calcium chloride, and magnesium chloride. Experimental data on hydrate formation conditions for these components are regressed and a generalized correlation is obtained. The predictions in this work show excellent agreement with all the experimental data in the literature.

13.
ACS Appl Mater Interfaces ; 10(27): 23112-23121, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29923708

RESUMO

Direct dehydrogenation of isobutane to isobutene has drawn extensive attention for synthesizing various chemicals. The Mo-based catalysts hold promise as an alternative to the toxic CrO x- and scarce Pt-based catalysts. However, the low activity and rapid deactivation of the Mo-based catalysts greatly hinder their practical applications. Herein, we demonstrate a feasible approach toward the development of efficient and non-noble metal dehydrogenation catalysts based on Mo-C T hybrid nanowires calcined at different temperatures. In particular, the optimal Mo-C700 catalyst exhibits isobutane consumption rate of 3.9 mmol g-1 h-1 and isobutene selectivity of 73% with production rate of 2.8 mmol g-1 h-1. The catalyst maintained 90% of its initial activity after 50 h of reaction. Extensive characterizations reveal that such prominent performance is well correlated with the adsorption abilities of isobutane and isobutene and the formation of η-MoC species. In contrast, the generation of ß-Mo2C crystalline phase during long-term reaction causes minor decline in activity. Compared to MoO2 and ß-Mo2C, η-MoC plays a role more likely in suppressing the cracking reaction. This work demonstrates a feasible approach toward the development of efficient and non-noble metal dehydrogenation catalysts.

14.
EFSA J ; 16(1): e05116, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32625667

RESUMO

The substance isobutane is intended to be used as a foaming agent at max 4.5% to produce expanded polystyrene (EPS) to be used for packaging foods, such as fruits, vegetables, meat, fish and cheese, at room temperature or lower. Isobutane is approved in Europe as a food additive (E 943b) to be used quantum satis as a gas propellant only in vegetable oil pan spray (for professional use only) and water-based emulsion spray according to Regulation (EC) No 1333/2008. The purity requirements for the use of isobutane as a food additive are described in Commission Regulation (EU) No 231/2012. The substance is a gas at room temperature. It is a saturated hydrocarbon, obtained with a high level of purity, and is not expected to react under the processing conditions used to make foamed polystyrene materials and articles. Data on migration of isobutane from trays at 20°C for 10 days ranged from 0.2 to 0.4 mg/kg food. Considering the intended applications, estimated exposure is extremely low based on migration data. In the absence of genotoxicity alerts and given the very low toxicity following repeated exposure with no observed adverse effect concentration (NOAEC) of several thousands of mg/m3 by inhalation, it was considered that the use of isobutane as a foaming agent, at the expected exposure from food, does not raise a safety concern.

15.
ACS Appl Mater Interfaces ; 9(36): 30711-30721, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28805375

RESUMO

The reaction of isobutane over Ni/SiO2 catalyst changes from hydrogenolysis to dehydrogenation when Sn is introduced. The adsorption modes and energies of isobutane and isobutene over the Ni/SiO2 catalyst with and without Sn addition were determined by in situ FTIR and a novel transient response adsorption approach. In the absence of Sn, isobutane is adsorbed in a double-site mode with H atoms in two methyl groups of isobutane, facilitating hydrogenolysis of isobutane. After the addition of Sn, a single-site adsorption mode with the H atom in the methylidyne group is speculated instead, which is beneficial to the rupture of the C-H bond rather than the C-C bond. Moreover, the double-site adsorption mode of isobutene with the C═C bond and the H atom in a methyl group is turned into single-site mode with the C═C bond after the introduction of Sn. As for the adsorption energy of isobutene, the introduction of Sn leads to an obvious decrease from 74 to 50 kJ mol-1 and facilitates the prompt desorption of isobutene, resulting in a high selectivity of 81.9 wt %.

16.
J Am Soc Mass Spectrom ; 27(11): 1789-1795, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27527096

RESUMO

As a reagent gas for positive- and negative-mode chemical ionization mass spectrometry (CI-MS), isobutane (i-C4H10) produces superior analyte signal abundance to methane. Isobutane has never been widely adopted for CI-MS because it fouls the ion source more rapidly and produces positive CI spectra that are more strongly dependent on reagent gas pressure compared with methane. Isobutane was diluted to various concentrations in argon for use as a reagent gas with an unmodified commercial gas chromatograph-mass spectrometer. Analyte spectra were directly compared using methane, isobutane, and isobutane/argon mixtures. A mixture of 10% i-C4H10 in argon produced twice the positive-mode analyte signal of methane, equal to pure isobutane, and reduced spectral dependence on reagent gas pressure. Electron capture negative chemical ionization using 1% i-C4H10 in argon tripled analyte signal compared with methane and was reproducible, unlike pure isobutane. The operative lifetime of the ion source using isobutane/argon mixtures was extended exponentially compared with pure isobutane, producing stable and reproducible CI signal throughout. By diluting the reagent gas in an inert buffer gas, isobutane CI-MS experiments were made as practical to use as methane CI-MS experiments but with superior analytical performance. Graphical Abstract ᅟ.

17.
J Chromatogr A ; 1458: 126-35, 2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27378248

RESUMO

The partial oxidation of isobutane to t-butyl hydroperoxide (TBHP) has been studied analytically for the first time as a two-phase process in a capillary micro reactor. In order to obtain detailed information on products, yields, selectivities and reaction pathways, the products have been investigated by GC/MS. An Rxi-5ms column and a PTV-injector have been used to analyze the liquid products. TBHP, di-t-butyl peroxide (DTBP), t-butanol (TBA), and propanone as main products as well as further by-products e.g. methanal, isopropanol, isobutanol and isobutanal in minor quantities have been identified by MS. The liquid products have been obtained by quenching the reaction and vaporizing the isobutane afterwards by pressure reduction using a mass flow controller allowing a constant mass flow. For all liquid reaction products calibrations, a validation of the method including limits of quantification and detection as well as calculation of uncertainties has been performed. The results have been applied successfully for the investigation of the selectivities of the main products (TBHP, DTBP, TBA, propanone) of the isobutane oxidation. In the frame of the analytical investigation of this reaction a correlation coefficient of r(2)>0.999 for TBHP and DTBP, which is necessary to perform a validation, has been obtained for the first time. The gaseous phase has been analyzed using a GASPRO column, a DEANS switch, a mole sieve column and a TCD detector. Apart from the gaseous reactants, isobutene has been found.


Assuntos
Butanos/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Butanóis/análise , Butanóis/química , Gases/análise , Gases/química , Oxirredução , Peróxidos/análise , Peróxidos/química , Pressão , Propano/análogos & derivados , Propano/análise , Propano/química , Volatilização
18.
Rev. colomb. quím. (Bogotá) ; 36(1): 93-108, ene.-jun. 2007. ilus, graf, tab
Artigo em Espanhol | LILACS | ID: lil-636602

RESUMO

A un carbón activado Norit ROX 0.8® se le modificó su química superficial mediante tratamientos en ácido nítrico, en oxígeno diluido al 8,8% en nitrógeno y en hidrógeno. Los materiales se impregnaron con una solución acuosa de CrO3 y se utilizaron en la reacción de deshidrogenación oxidativa (DHO) de isobutano a isobuteno. Se observó formación de isobuteno a 443 K, selectividades hasta del 85 % y rendimientos a isobuteno del 9 %.


The functional groups at the surface of an activated carbon Norit ROX 0.8® were modified through reaction with nitric acid, 8.8% O2 in N2 and H2 . The modified carbons were impregnated with a CrO3 aqueous solution and used in the Oxidative Dehydrogenation of isobutane to isobutene (ODH). The formation of isobutene was observed at 443 K, with a maximum selectivity of 85% and a yield of 9%.


A química superficial de um carvão ativado Norit ROX 0.8® foi modificada por tratamentos com ácido nítrico, com oxig ê nio diluído em azoto (8,8% O2 ) e com hidrog ê nio. Os materiais foram impregnados com uma solução aquosa de CrO3 e utilizados na reacção de desidrogenação oxidativa (DHO) de isobutano e isobuteno. Observou-se a formação de isobuteno a 443 K, selectividades até 85% e rendimentos de isobuteno de 9%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA