Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 65(7): 1636-1650, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36866859

RESUMO

Abiotic stress is one of the most important factors reducing soybean yield. It is essential to identify regulatory factors contributing to stress responses. A previous study found that the tandem CCCH zinc-finger protein GmZF351 is an oil level regulator. In this study, we discovered that the GmZF351 gene is induced by stress and that the overexpression of GmZF351 confers stress tolerance to transgenic soybean. GmZF351 directly regulates the expression of GmCIPK9 and GmSnRK, leading to stomata closing, by binding to their promoter regions, which carry two CT(G/C)(T/A)AA elements. Stress induction of GmZF351 is mediated through reduction in the H3K27me3 level at the GmZF351 locus. Two JMJ30-demethylase-like genes, GmJMJ30-1 and GmJMJ30-2, are involved in this demethylation process. Overexpression of GmJMJ30-1/2 in transgenic hairy roots enhances GmZF351 expression mediated by histone demethylation and confers stress tolerance to soybean. Yield-related agronomic traits were evaluated in stable GmZF351-transgenic plants under mild drought stress conditions. Our study reveals a new mode of GmJMJ30-GmZF351 action in stress tolerance, in addition to that of GmZF351 in oil accumulation. Manipulation of the components in this pathway is expected to improve soybean traits and adaptation under unfavorable environments.


Assuntos
Secas , Glycine max , Glycine max/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloreto de Sódio/farmacologia , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico , Zinco/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant J ; 95(6): 961-975, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29923261

RESUMO

Plant somatic cells can be reprogrammed by in vitro tissue culture methods, and massive genome-wide chromatin remodeling occurs, particularly during callus formation. Since callus tissue resembles root primordium, conversion of tissue identity is essentially required when leaf explants are used. Consistent with the fact that the differentiation state is defined by chromatin structure, which permits limited gene profiles, epigenetic changes underlie cellular reprogramming for changes to tissue identity. Although a histone methylation process suppressing leaf identity during leaf-to-callus transition has been demonstrated, the epigenetic factor involved in activation of root identity remains elusive. Here, we report that JUMONJI C DOMAIN-CONTAINING PROTEIN 30 (JMJ30) stimulates callus formation by promoting expression of a subset of LATERAL ORGAN BOUNDARIES-DOMAIN (LBD) genes that establish root primordia. The JMJ30 protein binds to promoters of the LBD16 and LBD29 genes along with AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 and activates LBD expression. Consistently, the JMJ30-deficient mutant displays reduced callus formation with low LBD transcript levels. The ARF-JMJ30 complex catalyzes the removal of methyl groups from H3K9me3, especially at the LBD16 and LBD29 loci to activate their expression during leaf-to-callus transition. Moreover, the ARF-JMJ30 complex further recruits ARABIDOPSIS TRITHORAX-RELATED 2 (ATXR2), which promotes deposition of H3K36me3 at the LBD16 and LBD29 promoters, and the tripartite complex ensures stable LBD activation during callus formation. These results indicate that the coordinated epigenetic modifications promote callus formation by establishing root primordium identity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cromatina/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Reprogramação Celular , Cromatina/fisiologia , Desmetilação , Regulação da Expressão Gênica de Plantas , Histona Desmetilases com o Domínio Jumonji/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
3.
Biochem Biophys Res Commun ; 474(2): 271-276, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27086112

RESUMO

Histone methylation is an epigenetic modification mechanism that regulates gene expression in eukaryotic cells. Jumonji C domain-containing demethylases are involved in removal of methyl groups at lysine or arginine residues. The JmjC domain-only member, JMJ30/JMJD5 of Arabidopsis, is a component of the plant circadian clock. Although some plant circadian clock genes undergo alternative splicing in response to external cues, there is no evidence that JMJ30/JMJD5 is regulated by alternative splicing. In this study, the expression of an Arabidopsis JMJ30/JMJD5 ortholog in Medicago truncatula, MtJMJC5, in response to circadian clock and abiotic stresses were characterized. The results showed that MtJMJC5 oscillates with a circadian rhythm, and undergoes cold specifically induced alternative splicing. The cold-induced alternative splicing could be reversed after ambient temperature returning to the normal. Sequencing results revealed four alternative splicing RNA isoforms including a full-length authentic protein encoding variant, and three premature termination condon-containing variants due to alternative 3' splice sites at the first and second intron. Under cold treatment, the variants that share a common 3' alternative splicing site at the second intron were intensively up-regulated while the authentic protein encoding variant and the premature termination condon-containing variant only undergoing a 3' alternative splicing at the first intron were down regulated. Although all the premature termination condon-harboring alternative splicing variants were sensitive to nonsense-mediated decay, the premature termination codon-harboring alternative splicing variants sharing the 3' alternative splicing site at the second intron showed less sensitivity than the one only containing the 3' alternative slicing site at the first intron under cold treatment. These results suggest that the cold-dependent alternative splicing of MtJMJC5 is likely a species or genus-specific mechanism of gene expression regulation on RNA levels, and might play a role in epigenetic regulation of the link between the circadian clock and ambient temperature fluctuation in Medicago.


Assuntos
Processamento Alternativo/genética , Relógios Circadianos/genética , Resposta ao Choque Frio/genética , Histona Desmetilases com o Domínio Jumonji/genética , Medicago truncatula/fisiologia , Adaptação Fisiológica/genética , Temperatura Baixa , Regulação da Expressão Gênica de Plantas/genética , Domínios Proteicos/genética
4.
Front Plant Sci ; 13: 837831, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845667

RESUMO

Vernalization is the promotion of flowering after prolonged exposure to cold. In Arabidopsis thaliana, vernalization induces epigenetic silencing of the floral repressor gene FLOWERING LOCUS C (FLC). Among the repressive epigenetic marks, the trimethylation of lysine 27 on histone H3 proteins (H3K27me3) is a critical contributor to the epigenetic silencing of FLC. The deposition of H3K27me3 is mediated by Polycomb Repressive Complex 2 (PRC2). Conversely, the elimination of H3K27me3 is mediated by histone demethylases, Jumonji-C domain-containing protein JMJ30 and its homolog JMJ32. However, the role of JMJ30 and JMJ32 in vernalization is largely unknown. In this study, we found that cold treatment dramatically reduced the expression levels of JMJ30 and did not reduce those of JMJ32. Next, by using the genetic approach, we found that the flowering of jmj30 jmj32 was accelerated under moderate vernalized conditions. Under moderate vernalized conditions, the silencing of FLC occurred more quickly in jmj30 jmj32 than in the wild type. These results suggested that the histone demethylases JMJ30 and JMJ32 brake vernalization through the activation of FLC. Our study suggested that PRC2 and Jumonji histone demethylases act in an opposing manner to regulate flowering time via epigenetic modifications.

5.
Front Plant Sci ; 10: 57, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774641

RESUMO

The circadian system ensures that plants respond appropriately to environmental change by predicting regular transitions that occur during diel cycles. In order to be most useful, the circadian system needs to be compensated against daily and seasonal changes in temperature that would otherwise alter the pace of this biological oscillator. We demonstrate that an evening-phased protein, the putative histone demethylase JMJD5, contributes to temperature compensation. JMJD5 is co-expressed with components of the Evening Complex, an agglomeration of proteins including EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHYMO (LUX), which also integrates temperature changes into the molecular clockwork. One role of the Evening Complex is to regulate expression of PSEUDORESPONSE REGULATOR9 (PRR9) and PRR7, important components of the temperature compensation mechanism. Surprisingly we find that LUX, but not other Evening Complex components, is dispensable for clock function at low temperatures. Further genetic analysis suggests JMJD5 acts in a parallel pathway to LUX within the circadian system. Although an intact JMJD5 catalytic domain is required for its function within the clock, our findings suggest JMJD5 does not directly regulate H3K36 methylation at circadian loci. Such data refine our understanding of how JMDJ5 acts within the Arabidopsis circadian system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA