Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34400505

RESUMO

The Early Cretaceous Jehol Biota is a terrestrial lagerstätte that contains exceptionally well-preserved fossils indicating the origin and early evolution of Mesozoic life, such as birds, dinosaurs, pterosaurs, mammals, insects, and flowering plants. New geochronologic studies have further constrained the ages of the fossil-bearing beds, and recent investigations on Early Cretaceous tectonic settings have provided much new information for understanding the spatiotemporal distribution of the biota and dispersal pattern of its members. Notably, the occurrence of the Jehol Biota coincides with the initial and peak stages of the North China craton destruction in the Early Cretaceous, and thus the biotic evolution is related to the North China craton destruction. However, it remains largely unknown how the tectonic activities impacted the development of the Jehol Biota in northeast China and other contemporaneous biotas in neighboring areas in East and Central Asia. It is proposed that the Early Cretaceous rift basins migrated eastward in the northern margin of the North China craton and the Great Xing'an Range, and the migration is regarded to have resulted from eastward retreat of the subducting paleo-Pacific plate. The diachronous development of the rift basins led to the lateral variations of stratigraphic sequences and depositional environments, which in turn influenced the spatiotemporal evolution of the Jehol Biota. This study represents an effort to explore the linkage between terrestrial biota evolution and regional tectonics and how plate tectonics constrained the evolution of a terrestrial biota through various surface geological processes.


Assuntos
Evolução Biológica , Biota , Dinossauros/fisiologia , Fósseis , Mamíferos/fisiologia , Análise Espaço-Temporal , Animais , Filogenia
2.
Proc Natl Acad Sci U S A ; 117(25): 14299-14305, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513701

RESUMO

The Lower Cretaceous Huajiying Formation of the Sichakou Basin in northern Hebei Province, northern China contains key vertebrate taxa of the early Jehol Biota, e.g., Protopteryx fengningensis, Archaeornithura meemannae, Peipiaosteus fengningensis, and Eoconfuciusornis zhengi This formation arguably documents the second-oldest bird-bearing horizon, producing the oldest fossil records of the two major Mesozoic avian groups Enantiornithes and Ornithuromorpha. Hence, precisely determining the depositional ages of the Huajiying Formation would advance our understanding of the evolutionary history of the Jehol Biota. Here we present secondary ion mass spectrometry (SIMS) U-Pb zircon analysis results of eight interbedded tuff/tuffaceous sandstone samples from the Huajiying Formation. Our findings, combined with previous radiometric dates, suggest that the oldest enantiornithine and ornithuromorph birds in the Jehol Biota are ∼129-131 Ma, and that the Jehol Biota most likely first appeared at ∼135 Ma. This expands the biota's temporal distribution from late Valanginian to middle Aptian with a time span of about 15 My.


Assuntos
Biota , Aves/classificação , Chumbo/química , Silicatos/química , Zircônio/química , Animais , Evolução Biológica , China , Fósseis , Geologia , Filogenia , Espectrometria de Massa de Íon Secundário
3.
BMC Biol ; 20(1): 101, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35550084

RESUMO

BACKGROUND: Birds are key indicator species in extant ecosystems, and thus we would expect extinct birds to provide insights into the nature of ancient ecosystems. However, many aspects of extinct bird ecology, particularly their diet, remain obscure. One group of particular interest is the bizarre toothed and long-snouted longipterygid birds. Longipterygidae is the most well-understood family of enantiornithine birds, the dominant birds of the Cretaceous period. However, as with most Mesozoic birds, their diet remains entirely speculative. RESULTS: To improve our understanding of longipterygids, we investigated four proxies in extant birds to determine diagnostic traits for birds with a given diet: body mass, claw morphometrics, jaw mechanical advantage, and jaw strength via finite element analysis. Body mass of birds tended to correspond to the size of their main food source, with both carnivores and herbivores splitting into two subsets by mass: invertivores or vertivores for carnivores, and granivores + nectarivores or folivores + frugivores for herbivores. Using claw morphometrics, we successfully distinguished ground birds, non-raptorial perching birds, and raptorial birds from one another. We were unable to replicate past results isolating subtypes of raptorial behaviour. Mechanical advantage was able to distinguish herbivorous diets with particularly high values of functional indices, and so is useful for identifying these specific diets in fossil taxa, but overall did a poor job of reflecting diet. Finite element analysis effectively separated birds with hard and/or tough diets from those eating foods which are neither, though could not distinguish hard and tough diets from one another. We reconstructed each of these proxies in longipterygids as well, and after synthesising the four lines of evidence, we find all members of the family but Shengjingornis (whose diet remains inconclusive) most likely to be invertivores or generalist feeders, with raptorial behaviour likely in Longipteryx and Rapaxavis. CONCLUSIONS: This study provides a 20% increase in quantitatively supported fossil bird diets, triples the number of diets reconstructed in enantiornithine species, and serves as an important first step in quantitatively investigating the origins of the trophic diversity of living birds. These findings are consistent with past hypotheses that Mesozoic birds occupied low trophic levels.


Assuntos
Ecossistema , Fósseis , Animais , Evolução Biológica , Aves , Dieta/veterinária , Herbivoria , Filogenia
4.
BMC Evol Biol ; 18(1): 125, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30157769

RESUMO

BACKGROUND: Male cones of modern Ephedraceae are compound and compact. No fossil evidence has so far been found to support an origin of the compact compound male cone from a hypothetical loosely-arranged shoot system. RESULTS: Here we describe a new macrofossil taxon, Eamesia chinensis Yang, Lin, Ferguson et Wang, gen. et sp. nov., from the Early Cretaceous of western Liaoning, northeastern China. It was an ephedroid shrub bearing male spikes terminal to twigs, but differs from modern Ephedraceae by its loosely-arranged male cones, the axillary male shoot consisting of an elongated synangiophore on which leaf-like foliar organs were inserted, and four sessile synangia terminal to the apex. CONCLUSIONS: The morphology of this fossil suggests that the modern compact male cone of Ephedra was indeed derived from a once loosely-arranged shoot system, and the male reproductive unit originated from a once elongated axillary male shoot. This new fossil species thus provides a transitional link from the hypothetical ancestral shoot system to the modern compact morphology. Changes of habitat from closed humid forests to open dry deserts and shifts of the pollination syndrome may have acted as the driving forces behind this morphological evolution.


Assuntos
Evolução Biológica , Fósseis , Traqueófitas/anatomia & histologia , Traqueófitas/fisiologia , Florestas , Polinização
5.
Proc Biol Sci ; 281(1787)2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24870044

RESUMO

Ecological divergence is thought to be coupled with evolutionary radiations, yet the strength of this coupling is unclear. When birds diversified ecologically has received much less attention than their hotly debated crown divergence time. Here, we quantify how accurately skeletal morphology can predict ecology in living and extinct birds, and show that the earliest known assemblage of birds (=pygostylians) from the Jehol Biota (≈125 Ma) was substantially impoverished ecologically. The Jehol avifauna has few representatives of highly preservable ecomorphs (e.g. aquatic forms) and a notable lack of ecomorphological overlap with the pterosaur assemblage (e.g. no large or aerially foraging pygostylians). Comparisons of the Jehol functional diversity with modern and subfossil avian assemblages show that taphonomic bias alone cannot explain the ecomorphological impoverishment. However, evolutionary simulations suggest that the constrained ecological diversity of the Early Cretaceous pygostylians is consistent with what is expected from a relatively young radiation. Regardless of the proximate biological explanation, the anomalously low functional diversity of the Jehol birds is evidence both for ecological vacancies in Cretaceous ecosystems, which were subsequently filled by the radiation of crown Aves, and for discordance between taxonomic richness and ecological diversity in the best-known Mesozoic ecosystem.


Assuntos
Aves/anatomia & histologia , Aves/fisiologia , Fósseis/anatomia & histologia , Animais , Evolução Biológica , Osso e Ossos/anatomia & histologia , Ecossistema , Comportamento Alimentar
6.
BMC Ecol Evol ; 24(1): 46, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627692

RESUMO

BACKGROUND: Tooth replacement patterns of early-diverging ornithischians, which are important for understanding the evolution of the highly specialized dental systems in hadrosaurid and ceratopsid dinosaurs, are poorly known. The early-diverging neornithischian Jeholosaurus, a small, bipedal herbivorous dinosaur from the Early Cretaceous Jehol Biota, is an important taxon for understanding ornithischian dental evolution, but its dental morphology was only briefly described previously and its tooth replacement is poorly known. RESULTS: CT scanning of six specimens representing different ontogenetic stages of Jeholosaurus reveals significant new information regarding the dental system of Jeholosaurus, including one or two replacement teeth in nearly all alveoli, relatively complete tooth resorption, and an increase in the numbers of alveoli and replacement teeth during ontogeny. Reconstructions of Zahnreihen indicate that the replacement pattern of the maxillary dentition is similar to that of the dentary dentition but with a cyclical difference. The maxillary tooth replacement rate in Jeholosaurus is probably 46 days, which is faster than that of most other early-diverging ornithischians. During the ontogeny of Jeholosaurus, the premaxillary tooth replacement rate slows from 25 days to 33 days with similar daily dentine formation. CONCLUSIONS: The tooth replacement rate exhibits a decreasing trend with ontogeny, as in Alligator. In a phylogenetic context, fast tooth replacement and multi-generation replacement teeth have evolved at least twice independently in Ornithopoda, and our analyses suggest that the early-diverging members of the major ornithischian clades exhibit different tooth replacement patterns as an adaption to herbivory.


Assuntos
Dinossauros , Dente , Animais , Filogenia , Dinossauros/anatomia & histologia , Herbivoria , Fósseis , Dente/diagnóstico por imagem , Dente/cirurgia , Dente/anatomia & histologia
7.
Sci Bull (Beijing) ; 68(12): 1317-1326, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37268441

RESUMO

The Mesozoic terrestrial Jehol Biota of northern China exceeds the biomass and biodiversity of contemporaneous Lagerstätten. From 135 to 120 Ma, biotic radiation may have responded to the peak destruction of the North China Craton. However, the direct mechanistic link between geological and biological evolution is unclear. Phosphorus (P), a bio-essential nutrient, can be supplied by weathering of volcanics in terrestrial ecosystems. The middle-late Mesozoic volcanic-sedimentary sequences of northern China are amazingly rich in terrestrial organisms. Here we demonstrate episodic increases in P delivery, biological productivity, and species abundance in these strata to reveal the coevolution of volcanism and terrestrial biotas. A massive P supply from the weathering of voluminous volcanic products of craton destruction thus supported a terrestrial environment conducive to the high prosperity of the Jehol Biota. During the nascent stage of craton destruction, such volcanic-biotic coupling can also account for the preceding Yanliao Biota with relatively fewer fossils.


Assuntos
Ecossistema , Fósforo , Biota , Evolução Biológica , China
8.
Heliyon ; 9(12): e22370, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076164

RESUMO

The Huajiying Formation (135.4-128.7 Ma) of the northern Hebei represents the early stage of the Early Cretaceous Jehol Biota in China, yielding many kinds of vertebrates. The only known pterosaur specimen was incomplete and assigned to the Ornithocheiroidea. Here we report a more complete pterosaur specimen, assigned to the Ctenochasmatidae. A new taxon is established on two autapomorphies: a large pneumatic foramen present on the ventral surface of the proximal end of the first wing phalanx; and coracoid lacking an expansion at its contact with the scapula, as well as the following combination of characteristics: subsquare sternal plate; coracoid having an extremely concave articulation with a posterior expansion; humerus without a tubercle on the proximal margin between the deltopectoral crest and the head; humerus slightly longer than the wing metacarpal; and the first and third wing phalanges equal in length. The relative thicknesses of bone walls are investigated among pterosaurs in three ways. The overall distribution of R/t ratios shows that most non-pterodactyloids, archaeopterodactyloids, and dsungaripterids have smaller R/t ratios than other groups. Relatively thick bone walls are not unique for the Dsungaripteridae as previously thought, and the humerus and radius of dsungaripterids have thinner walls than other bones. The feature of small R/t ratios is plesiomorphic and the thin-walled humerus and radius of dsungaripterids were evolved to meet the need of the flight, not for frequent take-off and landing as previously thought.

9.
PeerJ ; 10: e13819, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910775

RESUMO

The Istiodactylidae is a group of pterodactyloids characterised by large nasoantorbital fenestrae and labiolingually compressed teeth, with several records reported from the Early Cretaceous of northeastern China and western Europe. Here we report a new istiodactylid, Lingyuanopterus camposi gen. et sp. nov. from the Jiufotang Formation of Lingyuan, Liaoning, northeastern China. The holotype is represented by a near-complete skull, mandible and atlas-axis complex. It is distinguished from other istiodactylids by several characters, including two autapomorphies: short triangular tooth crowns with sharp mesial and distal carinae limited to the distal teeth, mandibular symphysis occupying approximately a quarter the mandible length. We also report the presence of helical jaw joints in istiodactylids, and provide a revised diagnosis of the clade Istiodactylidae, which includes five genera: Istiodactylus, Liaoxipterus, Nurhachius, Luchibang and Lingyuanopterus. Four pellets containing fish fragments were observed and are tentatively interpreted as bromalites of Lingyuanopterus. Although members of this clade possess similar skull morphologies, istiodactylids vary in terms of their dentition, with at least three forms from the Jiufotang Formation alone. This may represent different feeding strategies, and also indicate a similarity between the pterosaur assemblages of northeastern China and Britain during the Early Cretaceous.


Assuntos
Dinossauros , Animais , Filogenia , Dinossauros/anatomia & histologia , Fósseis , China , Articulação Temporomandibular
10.
Philos Trans R Soc Lond B Biol Sci ; 377(1847): 20210042, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35125007

RESUMO

Here we report on a new Early Cretaceous eutherian represented by a partial skeleton from the Jiufotang Formation at Sihedang site, Lingyuan City, Liaoning Province that fills a crucial gap between the earliest eutherians from the Yixian Formation and later Cretaceous eutherians. The new specimen reveals, to our knowledge for the first time in eutherians, that the Meckelian cartilage was ossified but reduced in size, confirming a complete detachment of the middle ear from the lower jaw. Seven hyoid elements, including paired stylohyals, epihyals and thyrohyals and the single basihyal are preserved. For the inner ear the ossified primary lamina, base of the secondary lamina, ossified cochlear ganglion and secondary crus commune are present and the cochlear canal is coiled through 360°. In addition, plesiomorphic features of the dentition include weak conules, lack of pre- and post-cingula and less expanded protocones on the upper molars and height differential between the trigonid and talonid, a large protoconid and a small paraconid on the lower molars. The new taxon displays an alternating pattern of tooth replacement with P3 being the last upper premolar to erupt similar to the basal eutherian Juramaia. Parsimony analysis places the new taxon with Montanalestes, Sinodelphys and Ambolestes as a sister group to other eutherians. This article is part of the theme issue 'The impact of Chinese palaeontology on evolutionary research'.


Assuntos
Eutérios , Fósseis , Animais , Biota , Mamíferos , Filogenia
11.
Elife ; 112022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35971758

RESUMO

The Early Cretaceous diversification of birds was a major event in the history of terrestrial ecosystems, occurring during the earliest phase of the Cretaceous Terrestrial Revolution, long before the origin of the bird crown-group. Frugivorous birds play an important role in seed dispersal today. However, evidence of fruit consumption in early birds from outside the crown-group has been lacking. Jeholornis is one of the earliest-diverging birds, only slightly more crownward than Archaeopteryx, but its cranial anatomy has been poorly understood, limiting trophic information which may be gleaned from the skull. Originally hypothesised to be granivorous based on seeds preserved as gut contents, this interpretation has become controversial. We conducted high-resolution synchrotron tomography on an exquisitely preserved new skull of Jeholornis, revealing remarkable cranial plesiomorphies combined with a specialised rostrum. We use this to provide a near-complete cranial reconstruction of Jeholornis, and exclude the possibility that Jeholornis was granivorous, based on morphometric analyses of the mandible (3D) and cranium (2D), and comparisons with the 3D alimentary contents of extant birds. We show that Jeholornis provides the earliest evidence for fruit consumption in birds, and indicates that birds may have been recruited for seed dispersal during the earliest stages of the avian radiation. As mobile seed dispersers, early frugivorous birds could have expanded the scope for biotic dispersal in plants, and might therefore explain, at least in part, the subsequent evolutionary expansion of fruits, indicating a potential role of bird-plant interactions in the Cretaceous Terrestrial Revolution.


Birds and plants have a close relationship that has developed over millions of years. Birds became diverse and abundant around 135 million years ago. Shortly after, plants started developing new and different kinds of fruits. Today, fruit-eating birds help plants to reproduce by spreading seeds in their droppings. This suggests that birds and plants have coevolved, changing together over time. But it is not clear exactly how their relationship started. One species that might hold the answers is an early bird species known as Jeholornis. It lived in China in the Early Cretaceous, around 120 million years ago. Palaeontologists have discovered preserved seeds inside its fossilised remains. The question is, how did they get there? Some birds eat seeds directly, cracking them open or grinding them up in the stomach to extract the nutrients inside. Other birds swallow seeds when they are eating fruit. If Jeholornis belonged to this second group, it could represent one of the early steps in plant-bird coevolution. Hu et al. scanned and reconstructed a preserved Jeholornis skull and compared it to the skulls, especially the mandibles, of modern birds, including species that grind seeds, species that crack seeds and species that eat fruits, leaving the seeds whole. The analyses ruled out seed cracking. But it could not distinguish between seed grinding and fruit eating. Hu et al. therefore compared the seed remains found inside Jeholornis fossils to seeds eaten by modern birds. The fossilised seeds were intact and showed no evidence of grinding. This suggests that Jeholornis ate whole fruits for at least part of the year. At around the time Jeholornis was alive, the world was entering a phase called the Cretaceous Terrestrial Revolution, which was characterized by an explosion of new species and an expansion of both flowering plants and birds. This finding opens new avenues for scientists to explore how plant and birds might have evolved together. Similar analyses could unlock new information about how other species interacted with their environments.


Assuntos
Dispersão de Sementes , Ecossistema , Comportamento Alimentar , Frutas , Sementes
12.
Natl Sci Rev ; 8(5): nwaa188, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34691634

RESUMO

We report a new Cretaceous multituberculate mammal with 3D auditory bones preserved. Along with other fossil and extant mammals, the unequivocal auditory bones display features potentially representing ancestral phenotypes of the mammalian middle ear. These phenotypes show that the ectotympanic and the malleus-incus complex changed notably during their retreating from the dentary at various evolutionary stages and suggest convergent evolution of some features to extant mammals. In contrast, the incudomalleolar joint was conservative in having a braced hinge configuration, which narrows the morphological gap between the quadroarticular jaw joint of non-mammalian cynodonts and the incudomalleolar articulations of extant mammals. The saddle-shaped and abutting malleus-incus complexes in therians and monotremes, respectively, could have evolved from the braced hinge joint independently. The evolutionary changes recorded in the Mesozoic mammals are largely consistent with the middle ear morphogenesis during the ontogeny of extant mammals, supporting the relation between evolution and development.

13.
Natl Sci Rev ; 8(12): nwab084, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34987839

RESUMO

A fossil eudicot, Gansufructus saligna gen. et sp. nov., is reported from the Early Cretaceous (late Aptian-early Albian) of the Gansu Province, Northwest China, based on numerous well-preserved axes with attached leaves and infructescences. The leaves are alternate, short petiolate and linear-lanceolate with low rank pinnate to reticulate venation. The infructescences are loose panicles bearing fruits in different stages of maturity, each containing four partly free carpels borne in a whorled arrangement. Each carpel has three to five seeds borne along its ventral margin. The nature of the leaves and axes indicates a terrestrial, herbaceous habit. In general organization, Gansufructus is closely similar to the fruit-bearing axes of Sinocarpus decussatus from the Early Cretaceous Jehol Biota, as well as other more or less contemporaneous angiosperms from the Far East, which together provide evidence of diverse eudicot angiosperms of low stature colonizing areas close to environments of deposition.

14.
Insects ; 12(2)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530615

RESUMO

Rheanischia new genus, type species Rheanischia brevicornis new species (Eucnemidae, Anischiinae) is described from the Lower Cretaceous of Liaoning, China. The presence of this species in early Cretaceous deposits provides new insight into the evolution of basal lignicolous Eucnemidae clades. Both Anischiinae and Palaeoxeninae species diversified in a world dominated by gymnosperms, before the main radiation of angiosperms. More than 95% of modern eucnemid larvae have a Palaeoxenus-type highly modified head structure, but contrary to the Palaeoxenus larva, they develop in angiosperm wood. Anischiinae utilize angiosperms as well, but their head capsule shows no such modifications. These facts prove that highly specialized morphological features do not offer definite proof of similar way of life in the distant past, nor should non-modified structures be taken as proof for another kind of substrate choice. Eucnemidae have invaded angiosperms with two quite different morphological adaptations. This fact may have implications for the evolution of all clicking elateroids.

15.
PeerJ ; 7: e7846, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31667014

RESUMO

During the last decade, several Bohaiornis-like enantiornithine species-and numerous specimens-have been recognized from the celebrated Jehol Biota of northwestern China. In this paper, we describe the anatomy of another "bohaiornithid" species from the 125 million-year-old Yixian Formation of Liaoning Province, China. The new taxon differs from previously recognized "bohaiornithids" on a number of characters from the forelimb and shoulder girdle. We also provide a new phylogenetic framework for enantiornithine birds, which questions the monophyly of the previously recognized bohaiornithid clade and highlights ongoing challenges for resolving enantiornithine interrelationships. Additionally, we offer the first assessment of the flight properties of Bohaiornis-like enantiornithines. Our results indicate that while "bohaiornithids" were morphologically suited for flying through continuous flapping, they would have been unable to sustain prolonged flights. Such findings expand the flight strategies previously known for enantiornithines and other early birds.

16.
Curr Biol ; 29(14): 2423-2429.e2, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31303494

RESUMO

Direct indicators of diet and predator-prey relationships are exceedingly rare in the fossil record [1, 2]. However, it is through such traces that we can best understand trophic interactions in ancient ecosystems [3], confirm dietary inferences derived from skeletal morphologies [4], and clarify behavioral and ecological interpretations [5]. Here, we identify a previously unrecognized lizard species in the abdomen of a specimen of Microraptor zhaoianus, a small, volant dromaeosaurid (Paraves) with asymmetrical flight feathers on both its forelimbs and hindlimbs from the Early Cretaceous Jehol Biota [6-8]. The lizard is largely complete and articulated, confirming the current perception of Microraptor as an agile opportunistic predator that, like extant reptiles, including raptorial birds, ingested small prey whole and head first [9]. The lizard can be readily distinguished from previously recognized Early Cretaceous species based on its unusual widely spaced and brachydont dentition. Phylogenetic analysis suggests Indrasaurus wangi gen. et sp. nov. is a basal scleroglossan closely related to the slightly older Liushusaurus [10]. Comparison of ingested remains preserved across Paraves suggests that dromaeosaurids retained the plesiomorphic condition in which ingested prey were fully digested, rather than egested, as has been demonstrated was the case in the probable troodontid Anchiornis [11]. This supports a closer relationship between Aves and Anchiornis [12, 13] and suggests that flight did not precipitate the evolution of pellet egestion in Paraves and that the evolution of the "modern avian" digestive system in paravians was highly homoplastic [14]. A preliminary Jehol food web is reconstructed from current data.


Assuntos
Dieta , Digestão , Dinossauros/fisiologia , Cadeia Alimentar , Lagartos , Fenômenos Fisiológicos da Nutrição Animal , Animais
17.
PeerJ ; 6: e5371, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30065899

RESUMO

Hyperphalangy is a rare condition in extant aquatic turtles, and mainly limited to soft-shelled turtles. Here we report a new freshwater turtle, Jeholochelys lingyuanensis gen. et sp. nov. from the Early Cretaceous Jehol Biota of western Liaoning, China. This new turtle is characterized by a hyperphalangy condition with one additional phalanx in pedal digit V, rather than the primitive condition (phalangeal formula: 2-3-3-3-3) of crown turtles. J. lingyuanensis is recovered with other coexisting turtles in the family Sinemydidae in the phylogenetic analysis. This discovery further confirms that hyperphalangy occurred multiple times in the early evolutionary history of the crown turtles. Hyperphalangy is possibly a homoplasy in Jeholochelys and the soft-shelled turtles to adapt to the aquatic environments.

18.
PeerJ ; 6: e4977, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29942679

RESUMO

A new three-dimensionally preserved troodontid specimen consisting of most of the skull, partial mandibles and six articulated cervical vertebrae (PMOL-AD00102) from the Early Cretaceous Yixian Formation of Beipiao, western Liaoning, China is identified as Sinovenator changii on the basis of a surangular with a "T"-shaped cross-section. High-resolution computed tomographic data for the skull of this new specimen facilitated a detailed description of the cranial anatomy of S. changii. New diagnostic features of S. changii include a well-developed medial shelf on the jugal, a slender bar in the parasphenoid recess, a lateral groove on the pterygoid flange of the ectopterygoid, and the lateral surface of the anterior cervical vertebrae bearing two pneumatic foramina. Our new observation confirms that the braincase of Sinovenator is not as primitive as previously suggested, although it still shows an intermediate state between derived troodontids and non-troodontid paravians in having an initial stage of the subotic recess and the otosphenoidal crest. Additionally, this new specimen reveals some novel and valuable anatomical information of troodontids regarding the quadrate-quadratojugal articulation, the stapes, the epipterygoid and the atlantal ribs.

19.
PeerJ ; 5: e3274, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28462061

RESUMO

A small juvenile turtle is described from the Early Cretaceous Jehol Biota, shedding light on the juvenile morphology and ontogeny of Manchurochelys manchoukuoensis. Several juvenile features are uncovered, such as a small and circular carapace (less than half of the adult), wide vertebral scales, and lateral carapacial fontanelles. In contrast to the adult morphology, which has an oval carapace, closed lateral fontanelles, and longer vertebrals 2-4, the juvenile of M. manchoukuoensis is more comparable to that of Sinemys lens, except for earlier occurrence of the well-ossified carapace of the latter. Differs from Changmachelys bohlini, and Ordosemys liaoxiensis, in which the circular carapace is relatively independent of ontogenetic age, and the lateral fontanelles are only closed in adult stage of O. liaoxiensis. Therefore, the trajectory of ontogenetic change appears to be highly diversified in the sinemydids.

20.
PeerJ ; 4: e1765, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27019777

RESUMO

Despite the increasing number of exceptional feathered fossils discovered in the Late Jurassic and Cretaceous of northeastern China, representatives of Ornithurae, a clade that includes comparatively-close relatives of crown clade Aves (extant birds) and that clade, are still comparatively rare. Here, we report a new ornithurine species Changzuiornis ahgmi from the Early Cretaceous Jiufotang Formation. The new species shows an extremely elongate rostrum so far unknown in basal ornithurines and changes our understanding of the evolution of aspects of extant avian ecology and cranial evolution. Most of this elongate rostrum in Changzuiornis ahgmi is made up of maxilla, a characteristic not present in the avian crown clade in which most of the rostrum and nearly the entire facial margin is made up by premaxilla. The only other avialans known to exhibit an elongate rostrum with the facial margin comprised primarily of maxilla are derived ornithurines previously placed phylogenetically as among the closest outgroups to the avian crown clade as well as one derived enantiornithine clade. We find that, consistent with a proposed developmental shift in cranial ontogeny late in avialan evolution, this elongate rostrum is achieved through elongation of the maxilla while the premaxilla remains only a small part of rostral length. Thus, only in Late Cretaceous ornithurine taxa does the premaxilla begin to play a larger role. The rostral and postcranial proportions of Changzuiornis suggest an ecology not previously reported in Ornithurae; the only other species with an elongate rostrum are two marine Late Cretacous taxa interpreted as showing a derived picivorous diet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA