RESUMO
Partial budgeting was used to estimate the net benefit of blending Jersey milk in Holstein-Friesian milk for Cheddar cheese production. Jersey milk increases Cheddar cheese yield. However, the cost of Jersey milk is also higher; thus, determining the balance of profitability is necessary, including consideration of seasonal effects. Input variables were based on a pilot plant experiment run from 2012 to 2013 and industry milk and cheese prices during this period. When Jersey milk was used at an increasing rate with Holstein-Friesian milk (25, 50, 75, and 100% Jersey milk), it resulted in an increase of average net profit of 3.41, 6.44, 8.57, and 11.18 pence per kilogram of milk, respectively, and this additional profit was constant throughout the year. Sensitivity analysis showed that the most influential input on additional profit was cheese yield, whereas cheese price and milk price had a small effect. The minimum increase in yield, which was necessary for the use of Jersey milk to be profitable, was 2.63, 7.28, 9.95, and 12.37% at 25, 50, 75, and 100% Jersey milk, respectively. Including Jersey milk did not affect the quantity of whey butter and powder produced. Although further research is needed to ascertain the amount of additional profit that would be found on a commercial scale, the results indicate that using Jersey milk for Cheddar cheese making would lead to an improvement in profit for the cheese makers, especially at higher inclusion rates.
Assuntos
Bovinos , Queijo/economia , Indústria de Laticínios/métodos , Leite/economia , Animais , Orçamentos , Bovinos/genética , Leite/químicaRESUMO
Organic milk has a high risk of food fraud as it can easily be adulterated with non-organic milk. This study aimed to identify metabolite markers for assessing the authenticity of organic milk from Jersey and Yak. In the untargeted strategy, ultra-high performance liquid chromatography-Q Exactive HF-X mass spectrometer coupled with chemometrics analysis was used to screen and identify tentative markers of organic milk from Jersey and Yak. In the targeted strategy, a quick and easy method of ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed to quantify three markers. The peptide of Thr-Ala-Val and D-biotin were determined to be metabolite markers for distinguishing organic and non-organic Jersey milk, whereas trimethylamine N-oxide was determined to be a metabolite marker for distinguishing organic and non-organic Yak milk. These findings provide critical information to facilitate assessments of organic milk authenticity.