Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 43(5): 666-694, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279026

RESUMO

The efficacy of current antimitotic cancer drugs is limited by toxicity in highly proliferative healthy tissues. A cancer-specific dependency on the microtubule motor protein KIF18A therefore makes it an attractive therapeutic target. Not all cancers require KIF18A, however, and the determinants underlying this distinction remain unclear. Here, we show that KIF18A inhibition drives a modest and widespread increase in spindle assembly checkpoint (SAC) signaling from kinetochores which can result in lethal mitotic delays. Whether cells arrest in mitosis depends on the robustness of the metaphase-to-anaphase transition, and cells predisposed with weak basal anaphase-promoting complex/cyclosome (APC/C) activity and/or persistent SAC signaling through metaphase are uniquely sensitive to KIF18A inhibition. KIF18A-dependent cancer cells exhibit hallmarks of this SAC:APC/C imbalance, including a long metaphase-to-anaphase transition, and slow mitosis overall. Together, our data reveal vulnerabilities in the cell division apparatus of cancer cells that can be exploited for therapeutic benefit.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase , Neoplasias , Humanos , Ciclossomo-Complexo Promotor de Anáfase/genética , Dineínas , Cinesinas/genética , Cinetocoros , Mitose , Neoplasias/genética
2.
Trends Genet ; 39(12): 954-967, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37714734

RESUMO

The overwhelming majority of proliferating somatic human cells are diploid, and this genomic state is typically maintained across successive cell divisions. However, failures in cell division can induce a whole-genome doubling (WGD) event, in which diploid cells transition to a tetraploid state. While some WGDs are developmentally programmed to produce nonproliferative tetraploid cells with specific cellular functions, unscheduled WGDs can be catastrophic: erroneously arising tetraploid cells are ill-equipped to cope with their doubled cellular and chromosomal content and quickly become genomically unstable and tumorigenic. Deciphering the genetics that underlie the genesis, physiology, and evolution of whole-genome doubled (WGD+) cells may therefore reveal therapeutic avenues to selectively eliminate pathological WGD+ cells.


Assuntos
Neoplasias , Tetraploidia , Humanos , Neoplasias/genética , Divisão Celular , Genoma/genética , Fenômenos Fisiológicos Celulares
3.
EMBO Rep ; 24(11): e57227, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37795949

RESUMO

Chromosome segregation errors in mammalian oocyte meiosis lead to developmentally compromised aneuploid embryos and become more common with advancing maternal age. Known contributors include age-related chromosome cohesion loss and spindle assembly checkpoint (SAC) fallibility in meiosis-I. But how effective the SAC is in meiosis-II and how this might contribute to age-related aneuploidy is unknown. Here, we developed genetic and pharmacological approaches to directly address the function of the SAC in meiosis-II. We show that the SAC is insensitive in meiosis-II oocytes and that as a result misaligned chromosomes are randomly segregated. Whilst SAC ineffectiveness in meiosis-II is not age-related, it becomes most prejudicial in oocytes from older females because chromosomes that prematurely separate by age-related cohesion loss become misaligned in meiosis-II. We show that in the absence of a robust SAC in meiosis-II these age-related misaligned chromatids are missegregated and lead to aneuploidy. Our data demonstrate that the SAC fails to prevent cell division in the presence of misaligned chromosomes in oocyte meiosis-II, which explains how age-related cohesion loss can give rise to aneuploid embryos.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Fuso Acromático , Feminino , Animais , Fuso Acromático/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Meiose/genética , Oócitos , Cromátides , Aneuploidia , Segregação de Cromossomos , Mamíferos/genética
4.
Cell Mol Life Sci ; 81(1): 96, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372748

RESUMO

Activation of hepatic stellate cells (HSCs) has been demonstrated to play a pivotal role in the process of liver fibrogenesis. In this study, we observed a decrease in the expression of KIF18A in fibrotic liver tissues compared to healthy liver tissues, which exhibited a negative correlation with the activation of HSCs. To elucidate the molecular mechanisms underlying the involvement of KIF18A, we performed in vitro proliferation experiments and established a CCl4-induced liver fibrosis model. Our results revealed that KIF18A knockdown enhanced HSCs proliferation and reduced HSCs apoptosis in vitro. Mouse liver fibrosis grade was evaluated with Masson's trichrome and alpha-smooth muscle actin (α-SMA) staining. In addition, the expression of fibrosis markers Col1A1, Stat1, and Timp1 were detected. Animal experiments demonstrated that knockdown of KIF18A could promote liver fibrosis, whereas overexpression of KIF18A alleviated liver fibrosis in a CCl4-induced mouse model. Mechanistically, we found that KIF18A suppressed the AKT/mTOR pathway and exhibited direct binding to TTC3. Moreover, TTC3 was found to interact with p-AKT and could promote its ubiquitination and degradation. Our findings provide compelling evidence that KIF18A enhances the protein binding between TTC3 and p-AKT, promoting TTC3-mediated ubiquitination and degradation of p-AKT. These results refine the current understanding of the mechanisms underlying the pathogenesis of liver fibrosis and may offer new targets for treating this patient population.


Assuntos
Células Estreladas do Fígado , Cinesinas , Cirrose Hepática , Animais , Humanos , Camundongos , Cinesinas/genética , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Ubiquitina-Proteína Ligases
5.
Dig Dis Sci ; 69(4): 1274-1286, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38446308

RESUMO

BACKGROUND & AIMS: Kinesin family member 18A (KIF18A) is notable for its aberrant expression across various cancer types and its pivotal role is driving cancer progression. In this study, we aim to investigate the intricate molecular mechanisms underlying the impact of KIF18A on the progression of HCC. METHODS: Western blotting assays, a quantitative real-time PCR and immunohistochemical analyses were performed to quantitatively assess KIF18A expression in HCC tissues. We then performed genetic manipulations within HCC cells by silencing endogenous KIF18A using short hairpin RNA (shRNA) and introducing exogenous plasmids to overexpress KIF18A. We monitored cell progression, analyzed cell cycle and cell apoptosis and assessed cell migration and invasion both in vitro and in vivo. Moreover, we conducted RNA-sequencing to explore KIF18A-related signaling pathways utilizing Reactome and KEGG enrichment methods and validated these critical mediators in these pathways. RESULTS: Analysis of the TCGA-LIHC database revealed pronounced overexpression of KIF18A in HCC tissues, the finding was subsequently confirmed through the analysis of clinical samples obtained from HCC patients. Notably, silencing KIF18A in cells led to an obvious inhibition of cell proliferation, migration and invasion in vitro. Furthermore, in subcutaneous and orthotopic xenograft models, suppression of KIF18A sgnificantly redudce tumor weight and the number of lung metastatic nodules. Mechanistically, KIF18A appears to facilitate cell proliferation by upregulating MAD2 and CDK1/CyclinB1 expression levels, with the activation of SMAD2/3 signaling contributing to KIF18A-driven metastasis. CONCLUSION: Our study elucidates the molecular mechanism by which KIF18A mediates proliferation and metastasis in HCC cells, offering new insights into potential therapeutic targets.


Assuntos
Carcinoma Hepatocelular , Cinesinas , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Cinesinas/genética , Cinesinas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , RNA Interferente Pequeno
6.
World J Surg Oncol ; 22(1): 15, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195458

RESUMO

BACKGROUND: KIF18A is a regulator of the cell cycle that stimulates the proliferation of cancer cells. The Wnt/ß-catenin pathway is involved in different issues' carcinogenesis and is being examined as a therapeutic target. The relationship between KIF18A and ß-catenin in breast cancer was not previously investigated. Therefore, this work aims to study the immunohistochemical expression and correlation of KIF18A and ß-catenin in breast-infiltrating duct carcinoma (IDC) and their relation to prognosis. MATERIAL AND METHODS: Slides cut from paraffin blocks of 135 IDC and 40 normal breast tissues were stained by KIF18A and ß-catenin antibodies. KIF18A cytoplasmic or nucleocytoplasmic staining and ß-catenin aberrant expression either nucleo-cytoplasmic or cytoplasmic staining were considered. RESULTS: Normal breast tissue and IDC showed a significant difference regarding KIF18A and aberrant ß-catenin expression. High KIF18A and ß-catenin H score values were associated with poor prognostic factors such as high grade, advanced stage, distant metastasis, high Ki67 status, and Her2neu-enriched subtype. There was a significant direct correlation between KIF18A and ß-catenin as regards percent and H score values. Prolonged overall survival (OS) was significantly associated with mild intensity and low H score of KIF18A, and low ß-catenin H score. CONCLUSIONS: KIF18A could be involved in breast carcinogenesis by activating ß-catenin. Overexpression of KIF18A and aberrant expression of ß-catenin are considered proto-oncogenes of breast cancer development. KIF18A and ß-catenin could be poor prognostic markers and predictors of aggressive behavior of breast cancer.


Assuntos
Neoplasias da Mama , beta Catenina , Humanos , Feminino , Cinesinas , Carcinogênese , Família
7.
Mol Biol (Mosk) ; 58(2): 295-304, 2024.
Artigo em Russo | MEDLINE | ID: mdl-39355886

RESUMO

Multiple exogenous or endogenous factors alter gene expression patterns by different mechanisms that are poorly understood. We used RNA-Seq analysis in order to study changes in gene expression in melanoma cells that are capable of vasculogenic mimicry that is inhibited upon the action of an inhibitor of vasculogenic mimicry. Here, we show that the drug induces a strong upregulation of 50 genes that control the cell cycle and microtubule cytoskeleton coupled with a strong downregulation of 50 genes that control different cellular metabolic processes. We found that both groups of genes are simultaneously regulated by multiple sets of transcription factors. We conclude that one way for coordinated regulation of large groups of genes is regulation simultaneously by multiple transcription factors.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma , Humanos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Melanoma/tratamento farmacológico , Linhagem Celular Tumoral , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/biossíntese , Ciclo Celular/efeitos dos fármacos
8.
Chromosoma ; 129(2): 99-110, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32417983

RESUMO

Microtubules are essential for intracellular transport, cell motility, spindle assembly, and chromosome segregation during cell division. Microtubule dynamics regulate the proper spindle organization and thus contribute to chromosome congression and segregation. Accumulating studies suggest that kinesin-8 motors are emerging regulators of microtubule dynamics and organizations. In this review, we provide an overview of the studies focused on kinesin-8 motors in cell division. We discuss the structures and molecular kinetics of kinesin-8 motors. We highlight the essential roles and mechanisms of kinesin-8 in the regulation of microtubule dynamics and spindle organization. We also shed light on the functions of kinesin-8 motors in chromosome movement and the spindle assembly checkpoint during the cell cycle.


Assuntos
Segregação de Cromossomos , Cinesinas/metabolismo , Microtúbulos/fisiologia , Proteínas Motores Moleculares/metabolismo , Animais , Ciclo Celular/fisiologia , Pontos de Checagem do Ciclo Celular , Fenômenos Químicos , Humanos , Cinesinas/química , Microtúbulos/química , Proteínas Motores Moleculares/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Fuso Acromático/metabolismo , Relação Estrutura-Atividade
9.
Biochem Biophys Res Commun ; 557: 192-198, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33872988

RESUMO

Kinesin family member 18A (KIF18A) is significantly overexpressed and is related to the poor prognosis of human cancers. However, the function of KIF18A in esophageal cancer (EC) is still unclear. Human EC cell lines were used in this study. KIF18A expression in human tissues was assessed using Gene Expression Profiling Interactive Analysis 2.0 (GEPIA2). The expressions of KIF18A or IGF2BP3 in EC cells were detected using qRT-PCR or WB. Cells were transfected using si-KIF18A, si-IGF2BP3, and plasmid IGF2BP3. The abilities of proliferation, migration, and invasion were detected by EdU, wound-healing, and transwell assay. The interaction between KIF18A and IGF2BP3 was predicted by starBase v3.0 and studied by RIP and RNA stability assay. Colony formation assay was used to reflect the changes of radiosensitivity in EC cells. KIF18A was upregulated in EC, and KIF18A knockdown inhibited EC cell proliferation, migration, invasion, and radioresistance. The prediction in starBase and RIP assay results showed that KIF18A mRNA could bind to IGF2BP3 protein in EC cells. RNA stability assay was performed to confirm that IGF2BP3 affects mRNA stability of KIF18A. Further studies also showed that IGF2BP3 could positively regulate KIF18A on proliferation, migration, invasion, and radioresistance. Our findings first revealed an oncogenic effect of KIF18A in human EC progression. KIF18A expression was associated with radioresistance of EC cells. The binding relationship between KIF18A and IGF2BP3 might influence the mRNA stability of KIF18A in EC cell lines.


Assuntos
Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Esofágicas/metabolismo , Cinesinas/metabolismo , Invasividade Neoplásica/genética , Tolerância a Radiação/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , Cinesinas/genética , Prognóstico , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
10.
J Cell Mol Med ; 24(10): 5463-5475, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32253833

RESUMO

The influenza virus is one of the major public health threats. However, the development of efficient vaccines and therapeutic drugs to combat this virus is greatly limited by its frequent genetic mutations. Because of this, targeting the host factors required for influenza virus replication may be a more effective strategy for inhibiting a broader spectrum of variants. Here, we demonstrated that inhibition of a motor protein kinesin family member 18A (KIF18A) suppresses the replication of the influenza A virus (IAV). The expression of KIF18A in host cells was increased following IAV infection. Intriguingly, treatment with the selective and ATP-competitive mitotic kinesin KIF18A inhibitor BTB-1 substantially decreased the expression of viral RNAs and proteins, and the production of infectious viral particles, while overexpression of KIF18A enhanced the replication of IAV. Importantly, BTB-1 treatment attenuated the activation of AKT, p38 MAPK, SAPK and Ran-binding protein 3 (RanBP3), which led to the prevention of the nuclear export of viral ribonucleoprotein complexes. Notably, administration of BTB-1 greatly improved the viability of IAV-infected mice. Collectively, our results unveiled a beneficial role of KIF18A in IAV replication, and thus, KIF18A could be a potential therapeutic target for the control of IAV infection.


Assuntos
Resistência à Doença , Interações Hospedeiro-Patógeno , Vírus da Influenza A/fisiologia , Influenza Humana/metabolismo , Influenza Humana/virologia , Cinesinas/metabolismo , Replicação Viral , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Efeito Citopatogênico Viral , Modelos Animais de Doenças , Resistência à Doença/genética , Expressão Gênica , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Cinesinas/genética , Masculino , Camundongos , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
Breast Cancer Res Treat ; 173(1): 93-102, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30306428

RESUMO

PURPOSE: Identification of effective and reliable biomarkers that could be used to predict the efficacy of endocrine therapy is of crucial importance to the management of oestrogen receptor positive (ER+) breast cancer (BC). KIF18A, a key regulator of cell cycle, is overexpressed in many human cancers, including BC. In this study, we investigated the role of KIF18A as a biomarker to predict the benefit from endocrine treatment in early ER + BC patients. METHODS: KIF18A expression was assessed at the genomic level using the METABRIC dataset to explore its prognostic and predictive value in ER + BC patients (n = 1506). Predictive significance of KIF18A mRNA was validated using KM-Plot datasets (n = 2061). KIF18A protein expression was assessed using immunohistochemistry in a large annotated series of early-stage ER + BC (n = 1592) with long-term follow-up. RESULTS: High mRNA and protein expression of KIF18A were associated with short recurrence-free survival (RFS), distant-metastasis free survival (DMFS) and BC specific survival (all P < 0.05) in ER + BC in patients who received no adjuvant treatment or adjuvant endocrine therapy. In multivariate analysis, high KIF18A expression was an independent prognostic biomarker for poor RFS (P = 0.027) and DMFS (P = 0.028) in patients treated with adjuvant endocrine therapy. CONCLUSION: KIF18A appears to be a candidate biomarker of a subgroup of ER + BC characterised by poor clinical outcome. High KIF18A expression has prognostic significance to predict poor benefit from endocrine treatment for patients with ER + BC. Therefore, measurement of KIF18A on ER + BC patients prior to treatment could guide clinician decision on benefit from endocrine therapy.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Cinesinas/genética , Idoso , Antineoplásicos Hormonais/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Quimioterapia Adjuvante , Estudos de Coortes , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Cinesinas/metabolismo , Pessoa de Meia-Idade , Prognóstico , Receptores de Estrogênio/metabolismo , Resultado do Tratamento
12.
IUBMB Life ; 71(7): 942-955, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30817091

RESUMO

Kinesin family member 18A (KIF18A), as a member of the kinesin superfamily, is significantly overexpressed and abnormally functions in various human cancers. But, its expression profiling in the lung adenocarcinoma (LUAD) remains unclear. In the present work, using the data derived from the Cancer Genome Atlas (TCGA), we assessed the expression pattern and prognostic value of KIF18A in LUAD. In addition, we analyzed the underlying mechanism of its gene dysregulation. Experimental and bioinformatic analysis results showed that KIF18A expression was dramatically increased in LUAD tissues compared with the normal counterparts. Moreover, the patients with high KIF18A expression had significantly poorer overall survival (OS) and recurrence-free survival (RFS). Univariate and multivariate analyses indicated that increased KIF18A expression was independently associated with unfavorable OS and RFS. In addition, by analyzing deep sequencing data from TCGA-LUAD, we found that KIF18A mutation was detected in 2.6% of LUAD cases, and increased KIF18A expression was associated with genetic amplification rather than DNA methylation. Moreover, gene co-expression network analysis revealed that a total of 339 KIF18A co-expressed genes were detected and enriched in several tumor-related pathways, especially cell cycle. Knockdown of KIF18A significantly inhibited cell proliferation in vitro and in vivo. Furthermore, silencing KIF18A induced LUAD cells apoptosis and arrested the cell cycle in the G2/M phase. KIF18A promotes cell proliferation, inhibits apoptosis, and is a valuable prognostic predictor and potential therapeutic target for the patients with LUAD. © 2019 IUBMB Life, 2019.


Assuntos
Adenocarcinoma de Pulmão/patologia , Apoptose , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Cinesinas/metabolismo , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Idoso , Animais , Biomarcadores Tumorais/genética , Ciclo Celular , Metilação de DNA , Feminino , Perfilação da Expressão Gênica , Humanos , Cinesinas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
World J Surg Oncol ; 16(1): 36, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29466986

RESUMO

BACKGROUND: KIF18A is associated with a variety of tumours; however, the specific mechanism of action of KIF18A in hepatocellular carcinoma (HCC) remains unclear. In this study, in vitro and in vivo experiments were performed with the aim of exploring the potential function and molecular mechanism of kinesin KIF18A in the occurrence and development of HCC. METHODS: We detected the expression of KIF18A in tumour and adjacent tissues as well as cell proliferation, cell invasion and migration in hepatoma cells after silencing KIF18A. KIF18A-silenced hepatoma cells were subcutaneously injected into nude mice to verify the tumorigenicity of KIF18A. We also detected the expression of signal pathway-related proteins in hepatoma cells after KIF18A knockdown with the aim of exploring the association between KIF18A and related signalling pathways. RESULTS: The level of KIF18A protein was higher in liver cancer tissues than adjacent tissues. After silencing KIF18A in SMMC-7721 and HepG2 cells, cell growth was obviously inhibited; the migration and invasion abilities were significantly decreased and the in vivo tumour weight was decreased compared to the control group (0.201 ± 0.088 g vs 0.476 ± 0.126 g, p = 0.009). The expression of cell cycle-related protein (cyclin B1), invasion and metastasis-related proteins (MMP-7 and MMP-9) and Akt-related proteins in hepatoma cells was also decreased after knocking down KIF18A. CONCLUSIONS: KIF18A may promote proliferation, invasion and metastasis of HCC cells by promoting the cell cycle signalling pathway as well as the Akt and MMP-7/MMP-9-related signalling pathways and may serve as a new target for the diagnosis and treatment of HCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/secundário , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Cinesinas/metabolismo , Neoplasias Hepáticas/patologia , Animais , Apoptose , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Cell Sci ; 128(10): 1991-2001, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25908867

RESUMO

Kinetochores regulate the dynamics of attached microtubule bundles (kinetochore-fibres, K-fibres) to generate the forces necessary for chromosome movements in mitosis. Current models suggest that poleward-moving kinetochores are attached to depolymerising K-fibres and anti-poleward-moving kinetochores to polymerising K-fibres. How the dynamics of individual microtubules within the K-fibre relate to poleward and anti-poleward movements is poorly understood. To investigate this, we developed a live-cell imaging assay combined with computational image analysis that allows eGFP-tagged EB3 (also known as MAPRE3) to be quantified at thousands of individual metaphase kinetochores as they undergo poleward and anti-poleward motion. Surprisingly, we found that K-fibres are incoherent, containing both polymerising and depolymerising microtubules ­ with a small polymerisation bias for anti-poleward-moving kinetochores. K-fibres also display bursts of EB3 intensity, predominantly on anti-poleward-moving kinetochores, equivalent to more coherent polymerisation, and this was associated with more regular oscillations. The frequency of bursts and the polymerisation bias decreased upon loss of kinesin-13, whereas loss of kinesin-8 elevated polymerisation bias. Thus, kinetochores actively set the balance of microtubule polymerisation dynamics in the K-fibre while remaining largely robust to fluctuations in microtubule polymerisation.


Assuntos
Cromossomos/fisiologia , Cinesinas/metabolismo , Cinetocoros/metabolismo , Metáfase/fisiologia , Microtúbulos/metabolismo , Animais , Células HeLa , Humanos , Camundongos , Mitose/fisiologia , Polimerização
15.
Biochem Biophys Res Commun ; 453(3): 432-7, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25281536

RESUMO

Protein phosphatase 1 (PP1), a serine/threonine protein phosphatase, controls diverse key cellular events. PP1 catalytic subunits form complexes with a variety of interacting proteins that control its ability to dephosphorylate substrates. Here we show that the human mitotic kinesin-8, KIF18A, directly interacts with PP1γ through a conserved RVxF motif. Our phylogenetic analyses of the kinesins further uncovered the broad conservation of this interaction potential within the otherwise highly diverse motor-protein superfamily. This suggests an ancestral origin of PP1 recruitment to KIF18A and a strategic role in human mitotic cells.


Assuntos
Cinesinas/metabolismo , Mitose , Proteína Fosfatase 1/metabolismo , Sítios de Ligação , Células HeLa , Humanos , Filogenia
16.
Front Mol Biosci ; 11: 1328077, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410188

RESUMO

Background: The mitotic kinesin, KIF18A, is required for proliferation of cancer cells that exhibit chromosome instability (CIN), implicating it as a promising target for treatment of a subset of aggressive tumor types. Determining regions of the KIF18A protein to target for inhibition will be important for the design and optimization of effective small molecule inhibitors. Methods: In this study, we used cultured cell models to investigate the effects of mutating S284 within the alpha-4 helix of KIF18A, which was previously identified as a phosphorylated residue. Results: Mutations in S284 cause relocalization of KIF18A from the plus-ends of spindle microtubules to the spindle poles. Furthermore, KIF18A S284 mutants display loss of KIF18A function and fail to support proliferation in CIN tumor cells. Interestingly, similar effects on KIF18A localization and function were seen after treatment of CIN cells with KIF18A inhibitory compounds that are predicted to interact with residues within the alpha-4 helix. Conclusion: These data implicate the KIF18A alpha-4 helix as an effective target for inhibition and demonstrate that small molecules targeting KIF18A selectively limit CIN tumor cell proliferation and result in phenotypically similar effects on mitosis at the single cell level compared to genetic perturbations.

17.
Drug Discov Today ; 29(10): 104142, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39168405

RESUMO

Currently, various antimitotic inhibitors applied in tumor therapy. However, these inhibitors exhibit targeted toxicity to some extent. As a motor protein, kinesin family member 18A (KIF18A) is crucial to spindle formation and is associated with tumors exhibiting ploidy-specific characteristics such as chromosomal aneuploidy, whole-genome doubling (WGD), and chromosomal instability (CIN). Differing from traditional antimitotic targets, KIF18A exhibits tumor-specific selectivity. The functional loss or attenuation of KIF18A results in vulnerability of tumor cells with ploidy-specific characteristics, with lesser effects on diploid cells. Research on inhibitors targeting KIF18A with ploidy-specific lethality holds significant importance. This review provides a brief overview of the regulatory mechanisms of the ploidy-specific lethality target KIF18A and the research advancements in its inhibitors, aiming to facilitate the development of KIF18A inhibitors.


Assuntos
Cinesinas , Neoplasias , Ploidias , Cinesinas/antagonistas & inibidores , Cinesinas/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Desenvolvimento de Medicamentos/métodos , Antimitóticos/farmacologia , Instabilidade Cromossômica/efeitos dos fármacos
18.
Cancer Biomark ; 41(2): 165-178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39331093

RESUMO

BACKGROUND: Cervical cancer is a prevalent malignancy that significantly contributes to morbidity and mortality rates among women in developing nations. Although the association of KIF18A with various cancers has been established, its role in cervical squamous cell carcinoma (CESC) remains elusive. METHODS: The KIF18A impact on the progression of CESC and its underlying mechanism were investigated through comprehensive bioinformatics analysis utilizing publicly available datasets. The levels of KIF18A and CENPE were assessed in clinical CESC samples through western blotting and qRT-PCR. To discover the role and molecular pathways of KIF18A in CESC, a combination of experimental approaches, including wound-healing, flow cytometry, CCK-8, and Transwell assay, were employed. RESULTS: Our results demonstrate a significant KIF18A expression upregulation in CESC tissues in contrast to healthy tissues. In vitro, KIF18A upregulation was found to enhance cell growth, migration, and invasion and activate the PI3K/AKT signaling pathway while concurrently suppressing apoptosis. Conversely, downregulating KIF18A exhibited contrasting effects. Mechanistically, we observed a positive significant connection between KIF18A and CENPE in CESC cells. CONCLUSION: KIF18A promotes tumor growth in CESC by modulating the PI3K/AKT signaling pathway through regulation of CENPE, making it a potential biomarker for diagnosis and prognosis as well as a therapeutic target.


Assuntos
Carcinoma de Células Escamosas , Progressão da Doença , Cinesinas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Regulação para Cima , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Transdução de Sinais/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Apoptose/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
19.
Biochem Biophys Res Commun ; 438(1): 97-102, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23872115

RESUMO

Kinesins are a superfamily of molecular motors involved in cell division or intracellular transport. They are becoming important targets for chemotherapeutic intervention of cancer due to their crucial role in mitosis. Here, we demonstrate that the kinesin-8 Kif18a is overexpressed in murine CAC and is a crucial promoter during early CAC carcinogenesis. Kif18a-deficient mice are evidently protected from AOM-DSS-induced colon carcinogenesis. Kif18A is responsible for proliferation of colonic tumor cells, while Kif18a ablation in mice promotes cell apoptosis. Mechanistically, Kif18a is responsible for induction of Akt phosphorylation, which is known to be associated with cell survival regulation. In conclusion, Kif18a is critical for colorectal carcinogenesis in the setting of inflammation by mechanisms of increased PI3K-AKT signaling. Inhibition of Kif18A activity may be useful in the prevention or chemotherapeutic intervention of CAC.


Assuntos
Colite/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/prevenção & controle , Deleção de Genes , Marcação de Genes/métodos , Cinesinas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Fosforilação/genética , Lesões Pré-Cancerosas/genética
20.
Biomolecules ; 13(2)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36830695

RESUMO

KIF18A belongs to the Kinesin family, which participates in the occurrence and progression of tumors. However, few pan-cancer analyses have been performed on KIF18A to date. We used multiple public databases such as TIMER, The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Human Protein Atlas (HPA) to explore KIF18A mRNA expression in 33 tumors. We performed immunohistochemistry on liver cancer and pancreatic cancer tissues and corresponding normal tissues to examine the expression of KIF18A protein. Univariate Cox regression and Kaplan-Meier survival analysis were applied to detect the effect of KIF18A on overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) of patients with these tumors. Subsequently, we explored KIF18A gene alterations in different tumor tissues using cBioPortal. The relationship between KIF18A and clinical characteristics, tumor microenvironment (TME), immune regulatory genes, immune checkpoints, tumor mutational burden (TMB), microsatellite instability (MSI), mismatch repairs (MMRs), DNA methylation, RNA methylation, and drug sensitivity was applied for further study using the R language. Gene Set Enrichment Analysis (GSEA) was utilized to explore the molecular mechanism of KIF18A. Bioinformatic analysis and immunohistochemical experiments confirmed that KIF18A was up-regulated in 27 tumors and was correlated with the T stage, N stage, pathological stage, histological grade, and Ki-67 index in many cancers. The overexpression of KIF18A had poor OS, DSS, and PFI in adrenocortical carcinoma (ACC), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), brain lower-grade glioma (LGG), liver cancer (LIHC), lung adenocarcinoma (LUAD), and pancreatic cancer (PAAD). Univariate and multivariate regression analysis confirmed KIF18A as an independent prognostic factor for LIHC and PAAD. The mutation frequency of KIF18A is the highest in endometrial cancer. KIF18A expression levels were positively associated with immunocyte infiltration, immune regulatory genes, immune checkpoints, TMB, MSI, MMRs, DNA methylation, RNA methylation, and drug sensitivity in certain cancers. In addition, we discovered that KIF18A participated in the cell cycle at the single-cell level and GSEA analysis for most cancers. These findings suggested that KIF18A could be regarded as a latent prognostic marker and a new target for cancer immunological therapy.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Neoplasias Hepáticas , Neoplasias Pulmonares , Neoplasias Pancreáticas , Humanos , Cinesinas , RNA , Microambiente Tumoral , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA