Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Genomics ; 112(1): 423-431, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30880114

RESUMO

Kruppel-like factor 6 (KLF6) genes plays a significant role in the regulation of cell differentiation, proliferation and muscle development. The aim of this study is to investigate the genetic variation and the haplotype combination of the KLF6 gene in Qinchuan cattle and verify its contribution to bovine carcass traits and body measurements. The data were analyzed by real-time quantitative PCR (qPCR) to detect the expression profile of the KLF6 gene in the various tissues of Qinchuan cattle. PCR amplicons sequencing explored three novel SNPs at loci 3332C > G; 3413C > T and 3521G > A in the 2nd exon region of the KLF6 gene. The expression of KLF6 in the liver, kidney and lung was greater than that of other tissues. Allelic and genotypic frequencies of these SNPs were found to be in Hardy Weinberg equilibrium (P < 0.05). In SNP1, genotype CC, in SNP2, genotype CT and in SNP3 genotype GG were associated (P < 0.05) with larger body and carcass measurements. Association analysis results indicated that individuals with the Hap1/4 diplotype had a longer body and rump, were taller at the withers, and were wider at the hip than the other combinations. In terms of ultrasound carcass measures, Hap1/4 was associated with a larger muscle area and more intramuscular fat than other combinations. The bioinformatics study of the KLF6 protein showed a high degree of conservation in different mammalian species. The above results suggest that the KLF6 gene can used as potential candidate markers gene for the beef breed improvement through marker assisted selection of Qinchuan cattle.


Assuntos
Bovinos/genética , Fator 6 Semelhante a Kruppel/genética , Polimorfismo de Nucleotídeo Único , Motivos de Aminoácidos , Animais , Pesos e Medidas Corporais , Bovinos/metabolismo , Haplótipos , Fator 6 Semelhante a Kruppel/química , Fator 6 Semelhante a Kruppel/classificação , Fator 6 Semelhante a Kruppel/metabolismo , Desequilíbrio de Ligação , Filogenia , Domínios Proteicos , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Distribuição Tecidual
2.
J Agric Food Chem ; 72(17): 9656-9668, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642059

RESUMO

Intramuscular fat is a crucial determinant of carcass quality traits like tenderness and taste, which in turn is influenced by the proliferation of intramuscular preadipocytes. This study aimed to investigate the Krüppel-like factor 6 (KLF6)-mediated proliferation of bovine preadipocytes and identify underlying molecular mechanisms. Down-regulation of KLF6 by siKLF6 resulted in a significant (p < 0.01) suppression of cell cycle-related genes including CDK1, MCM6, ZNF4, PCNA, CDK2, CCNB1, and CDK6. Conversely, the expression level of p27 was significantly (p < 0.01) increased. Moreover, EdU (5-ethynyl-20-deoxyuridine) staining revealed a significant decrease in EdU-labeled cells due to KLF6 down-regulation. Collectively, these findings indicate that KLF6 down-regulation inhibits adipocyte proliferation. Furthermore, RNA sequencing of preadipocytes transfected with siKLF6 and NC, followed by differential gene expression analysis, identified 100 up-regulated and 70 down-regulated genes. Additionally, the differentially expressed genes also significantly influenced various Gene Ontology (GO) terms related to cell cycle, nuclear chromosomes, and catalytic activity on DNA. Furthermore, the top 20 pathways enriched in these DEGs included cell cycle, DNA replication, cellular senescence, and homologous recombination. These GO terms and KEGG pathways play key roles in bovine preadipocyte proliferation. In conclusion, the results of this study suggest that KLF6 positively regulates the proliferation of bovine preadipocytes.


Assuntos
Adipócitos , Proliferação de Células , Fator 6 Semelhante a Kruppel , Animais , Bovinos/metabolismo , Bovinos/genética , Adipócitos/metabolismo , Adipócitos/citologia , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Ciclo Celular , Carne Vermelha/análise
3.
Microrna ; 9(1): 64-69, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30868974

RESUMO

BACKGROUND: Recent studies have attempted to elucidate the function of super enhancers by means of microRNAs. Although the functional outcomes of miR-1301 have become clearer, the pathways that regulate the expressions of miR-1301 remain unclear. OBJECTIVE: The objective of this paper was to consider the pathway regulating expression of miR- 1301 and miR-1301 signaling pathways with the inhibition of cell proliferation. METHODS: In this study, we prepared the cell clones that the KLF6 super enhancer was deleted by means of the CRISPR/Cas9 system-mediated genetic engineering. Changes in miR-1301 expression after the deletion of the KLF6 super enhancer were evaluated by RT-PCR analysis, and the signal pathway of miR-1301 with inhibition of the cell proliferation was examined using RNA interference technology. RESULTS: The results showed that miR-1301 expression was significantly increased after the deletion of the KLF6 super enhancer. Over-expression of miR-1301 induced by deletion of the KLF6 super enhancer also regulated the expression of p21 and p53 in human hepatoma cells. functional modeling of findings using siRNA specific to miR-1301 showed that expression level changes had direct biological effects on cellular proliferation in Human hepatoma cells. Furthermore, cellular proliferation assay was shown to be directly associated with miR-1301 levels. CONCLUSION: As a result, it was demonstrated that the over-expression of miR-1301 induced by the disruption of the KLF6 super enhancer leads to a significant inhibition of proliferation in HepG2 cells. Moreover, it was demonstrated that the KLF6 super enhancer regulates the cell-proliferative effects which are mediated, at least in part, by the induction of p21and p53 in a p53-dependent manner. Our results provide the functional significance of miR-1301 in understanding the transcriptional regulation mechanism of the KLF6 super enhancer.


Assuntos
Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica/genética , Fator 6 Semelhante a Kruppel/metabolismo , Neoplasias Hepáticas/genética , MicroRNAs/genética , Sistemas CRISPR-Cas/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Edição de Genes/métodos , Células Hep G2 , Humanos , Fator 6 Semelhante a Kruppel/genética , Neoplasias Hepáticas/patologia , Interferência de RNA , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/biossíntese
4.
Nutrients ; 8(10)2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27690088

RESUMO

To investigate the antitumor effect of anthocyanins extracted from Chinese bayberry fruit (Myrica rubra Sieb. et Zucc.), a nude mouse tumor xenograft model was established. Treatments with C3G (cyanidin-3-glucoside, an anthocyanin) significantly suppressed the growth of SGC-7901 tumor xenografts in a dose-dependent manner. Immunohistochemical staining showed a significant increase in p21 expression, indicating that the cell cycle of tumor xenografts was inhibited. qPCR screening showed that C3G treatment up-regulated the expression of the KLF6 gene, which is an important tumor suppressor gene inactivated in many human cancers. Western blot showed that C3G treatments markedly increased KLF6 and p21 protein levels, inhibited CDK4 and Cyclin D1 expression, but did not notably change the expression of p53. These results indicated that KLF6 up-regulates p21 in a p53-independent manner and significantly reduces tumor proliferation. This study provides important information for the possible mechanism of C3G-induced antitumor activity against gastric adenocarcinoma in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA