Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Eur J Clin Microbiol Infect Dis ; 43(2): 269-278, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38036711

RESUMO

OBJECTIVES: The aim of this study was to investigate the clinical and molecular characteristics of Klebsiella pneumoniae infection from a tertiary general hospital in Wuhan, China. METHODS: From December 2019 to August 2022, 311 non-duplicate isolates of K. pneumoniae were collected from a tertiary hospital in Wuhan. These comprised 140 carbapenem-resistant K. pneumoniae (CRKP) isolates and 171 carbapenem-susceptible K. pneumoniae (CSKP) isolates. The clinical characteristics of patients with K. pneumoniae infection were retrospectively collected. Polymerase chain reaction (PCR) assays were used to identify the main carbapenem resistance genes, virulence genes and multi-locus sequence typing (MLST) profiles of the isolates, and the Galleria mellonella infection model was used to determine their virulence phenotypes. RESULTS: Independent risk factors for CRKP infection were hypertension, neurological disorders, being admitted to the intensive care unit (ICU) and prior use of antibiotics. Patient with CRKP infection had higher mortality than those with CSKP infection (23.6% vs 14.0%, P < 0.05). One hundred and two sequence types (STs) were identified among the K. pneumoniae isolates, and the most prevalent ST type was ST11 (112/311, 36.0%). All of the ST11 isolates were CRKP. Among the 112 ST11 isolates, 105 (93.8%) harboured the carbapenem resistance gene blaKPC-2 (ST11-KPC-2), and of these isolates, 78 (74.3%, 78/105) contained all of the four virulence genes, namely rmpA, rmpA2, iroN and iucA, suggesting that these genes were widespread among the isolates responsible for K. pneumoniae infections. CONCLUSION: In this study, ST11-KPC-2 was responsible for most of the K. pneumoniae infection cases. Carbapenem resistance rather than the co-occurrence of the virulence genes rmpA, rmpA2, iroN and iucA was associated with K. pneumoniae infection-related mortality during hospitalisation. Furthermore, a high proportion of ST11-KPC-2 isolates carried all of the four virulence genes.


Assuntos
Infecções por Klebsiella , beta-Lactamases , Humanos , Tipagem de Sequências Multilocus , beta-Lactamases/genética , Klebsiella pneumoniae , Centros de Atenção Terciária , Hospitais Gerais , Estudos Retrospectivos , Infecções por Klebsiella/microbiologia , Carbapenêmicos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , China/epidemiologia , Ferro
2.
Drug Resist Updat ; 67: 100918, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36610180

RESUMO

Almost all the formation of hypervirulent and carbapenem-resistant Klebsiella pneumoniae follow two major patterns: KL1/KL2 hvKP strains acquire carbapenem-resistance plasmids (CR-hvKP), and carbapenem-resistant Klebsiella pneumoniae (CRKP) strains obtain virulence plasmids (hv-CRKP). These two patterns may pose different phenotypes. In this study, three typical resistance and hypervirulent K. pneumoniae (KL1, KL2, and ST11-KL64), isolating from poor prognosis patients, were selected. Compared with ST11-KL64 hv-CRKP, KL1/KL2 hypervirulent lineages harbor significantly fewer resistance determinants and exhibited lower-level resistance to antibiotics. Notably, though the blaKPC gene could be detected in all these isolates, KL1/KL2 hvKP strain did not exhibit corresponding high-level carbapenem resistance. Unlike the resistance features, we did not observe significant virulence differences between the three strains. The ST11-KL64 hv-CRKP (1403) in this study, showed similar mucoviscosity, siderophores production, and biofilm production compared with KL1 and KL2 hvKP. Moreover, the hypervirulent of ST11-KL64 hvKP also verified with the human lung epithelial cells infection and G. mellonella infection models. Moreover, we found the pLVPK-like virulence plasmid and IncF blaKPC-2 plasmid was crucial for the formation of hypervirulent and carbapenem-resistant K. pneumoniae. The conservation of origin of transfer site (oriT) in these virulence and blaKPC-2 plasmids, indicated the virulence plasmids could transfer to CRKP with the help of blaKPC-2 plasmids. The co-existence of virulence plasmid and blaKPC-2 plasmid facilitate the formation of ST11-KL64 hv-CPKP, which then become nosocomial epidemic under the antibiotic stress. The ST11-KL64 hv-CPKP may poses a substantial threat to healthcare networks, urgent measures were needed to prevent further dissemination in nosocomial settings.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecção Hospitalar , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae/genética , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , beta-Lactamases/genética
3.
Emerg Infect Dis ; 29(10): 2136-2140, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37735755

RESUMO

We report the clonal spread and evolution of high-risk Pseudomonas aeruginosa sequence type 463 co-producing KPC-2 and AFM-1 carbapenemases isolated from hospital patients in China during 2020-2022. Those strains pose a substantial public health threat and surveillance and stricter infection-control measures are essential to prevent further infections.


Assuntos
Proteínas de Bactérias , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Proteínas de Bactérias/genética , beta-Lactamases/genética , China/epidemiologia
4.
Antimicrob Agents Chemother ; 67(7): e0006123, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37272821

RESUMO

KPC-2 is one of the most relevant serine-carbapenemases among the carbapenem-resistant Enterobacterales. We previously isolated from the environmental species Chromobacterium haemolyticum a class A CRH-1 ß-lactamase displaying 69% amino acid sequence identity with KPC-2. The objective of this study was to analyze the kinetic behavior and crystallographic structure of this ß-lactamase. Our results showed that CRH-1 can hydrolyze penicillins, cephalosporins (except ceftazidime), and carbapenems with similar efficacy compared to KPC-2. Inhibition kinetics showed that CRH-1 is not well inhibited by clavulanic acid, in contrast to efficient inhibition by avibactam (AVI). The high-resolution crystal of the apoenzyme showed that CRH-1 has a similar folding compared to other class A ß-lactamases. The CRH-1/AVI complex showed that AVI adopts a chair conformation, stabilized by hydrogen bonds to Ser70, Ser237, Asn132, and Thr235. Our findings highlight the biochemical and structural similarities of CRH-1 and KPC-2 and the potential clinical impact of this carbapenemase in the event of recruitment by pathogenic bacterial species.


Assuntos
Proteínas de Bactérias , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/metabolismo , Ceftazidima/farmacologia , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana , Compostos Azabicíclicos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Klebsiella pneumoniae , Combinação de Medicamentos
5.
Antimicrob Agents Chemother ; 67(12): e0073523, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014944

RESUMO

Cefiderocol is a siderophore cephalosporin that binds ferric iron and utilizes iron transporters to cross the cell membrane. Hypervirulent Klebsiella pneumoniae (hvKp) is known to produce more siderophores; in this case, the uptake of cefiderocol may be decreased. Therefore, the objective of this study was to evaluate the in vitro activity of cefiderocol against hvKp isolates. A total of 320 carbapenem-resistant K. pneumoniae (CRKp) isolates were collected in China between 2014 and 2022, including 171 carbapenem-resistant hvKp (CR-hvKp) and 149 carbapenem-resistant classical K. pneumoniae (CR-cKp). Quantitative detection of siderophores showed that the average siderophore production of CR-hvKp (234.6 mg/L) was significantly higher than that of CR-cKp (68.9 mg/L, P < 0.001). The overall cefiderocol resistance rate of CR-hvKp and CR-cKp was 5.8% (10/171) and 2.7% (4/149), respectively. The non-susceptible rates of both cefiderocol and siderophore production of CR-hvKp isolates were higher than those of CR-cKp in either NDM-1- or KPC-2-producing groups. The MIC90 and MIC50 for CR-hvKp and CR-cKp were 8 mg/L and 2 mg/L and 4 mg/L and 1 mg/L, respectively. The cumulative cefiderocol MIC distribution for CR-hvKp was significantly lower than that of CR-cKp isolates (P = 0.003). KL64 and KL47 consisted of 53.9% (83/154) and 75.7% (53/70) of the ST11 CR-hvKp and CR-cKp, respectively, and the former had significantly higher siderophore production. In summary, cefiderocol might be less effective against CR-hvKp compared with CR-cKp isolates, highlighting the need for caution regarding the prevalence of cefiderocol-resistant K. pneumoniae strains, particularly in CR-hvKp isolates.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Cefalosporinas/farmacologia , Cefiderocol , Sideróforos/metabolismo , Klebsiella pneumoniae , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Carbapenêmicos/farmacologia , Monobactamas , China , Ferro , Antibacterianos/farmacologia
6.
Antimicrob Agents Chemother ; 67(1): e0093022, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36602311

RESUMO

Design of novel ß-lactamase inhibitors (BLIs) is one of the currently accepted strategies to combat the threat of cephalosporin and carbapenem resistance in Gram-negative bacteria. Boronic acid transition state inhibitors (BATSIs) are competitive, reversible BLIs that offer promise as novel therapeutic agents. In this study, the activities of two α-amido-ß-triazolylethaneboronic acid transition state inhibitors (S02030 and MB_076) targeting representative KPC (KPC-2) and CTX-M (CTX-M-96, a CTX-M-15-type extended-spectrum ß-lactamase [ESBL]) ß-lactamases were evaluated. The 50% inhibitory concentrations (IC50s) for both inhibitors were measured in the nanomolar range (2 to 135 nM). For S02030, the k2/K for CTX-M-96 (24,000 M-1 s-1) was twice the reported value for KPC-2 (12,000 M-1 s-1); for MB_076, the k2/K values ranged from 1,200 M-1 s-1 (KPC-2) to 3,900 M-1 s-1 (CTX-M-96). Crystal structures of KPC-2 with MB_076 (1.38-Å resolution) and S02030 and the in silico models of CTX-M-96 with these two BATSIs show that interaction in the CTX-M-96-S02030 and CTX-M-96-MB_076 complexes were overall equivalent to that observed for the crystallographic structure of KPC-2-S02030 and KPC-2-MB_076. The tetrahedral interaction surrounding the boron atom from S02030 and MB_076 creates a favorable hydrogen bonding network with S70, S130, N132, N170, and S237. However, the changes from W105 in KPC-2 to Y105 in CTX-M-96 and the missing residue R220 in CTX-M-96 alter the arrangement of the inhibitors in the active site of CTX-M-96, partially explaining the difference in kinetic parameters. The novel BATSI scaffolds studied here advance our understanding of structure-activity relationships (SARs) and illustrate the importance of new approaches to ß-lactamase inhibitor design.


Assuntos
Triazóis , beta-Lactamases , beta-Lactamases/genética , beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , Ácidos Borônicos/farmacologia , Ácidos Borônicos/química , Penicilinas , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
7.
Antimicrob Agents Chemother ; 67(11): e0067523, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37819082

RESUMO

Pseudomonas aeruginosa high-risk clones pose severe threats to public health. Here, we characterize the imipenem/relebactam (IR) resistance mechanisms in P. aeruginosa high-risk clones sequence type 235 (ST235) and ST463 in China. Minimum inhibitory concentrations (MICs) were determined, and Illumina short-read sequencing was performed for 1,168 clinical carbapenem-resistant P. aeruginosa (CRPA) isolates. The gene copy number and expression level were analyzed by Illumina sequencing depth and reverse transcription-quantitative PCR, respectively. Resistance conferred by bla GES-5 was evaluated by cloning experiments. ST463 and ST235 accounted for 9.8% (115/1,168) and 4.5% (53/1,168) of total isolates, respectively, and showed high frequencies of extensively drug-resistant and difficult-to-treat resistant phenotypes. The overall IR-resistant rate in CRPA was 21.0% (245/1,168). However, the IR resistance rate was 81.7% (94/115) in ST463-PA and 52.8% (28/53) in ST235-PA. Of the ST463 isolates, 92.2% (106/115) were Klebsiella pneumoniae carbapenemase-producing P. aeruginosa (KPC-PA), and all 94 IR-resistant ST463-PA produced KPC-2. Compared to IR-susceptible ST463 KPC-2-PA, IR-resistant ST463 KPC-2-PA exhibited significantly higher bla KPC-2 copy numbers and expression levels. In ST463 KPC-2-PA, 16 mg/L relebactam resulted in additional fourfold reductions in imipenem MIC50/90 values compared to 4 mg/L relebactam. In ST235, 1.9% (1/53) carried bla IMP carbapenemase and 54.7% (29/53) carried bla GES carbapenemase. Other than the IMP producer, all 27 IR-resistant ST235-PA produced GES-5. Cloning experiments revealed that imipenem resistance in bla GES-5-carrying PAO1 transformants was generally unaffected by relebactam. In conclusion, IR-resistant CRPA isolates in China were mainly distributed in P. aeruginosa high-risk clones ST463 and ST235. The major underlying IR resistance mechanisms were bla KPC-2 overexpression and bla GES-5 carriage.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/metabolismo , Carbapenêmicos/uso terapêutico , Células Clonais/metabolismo , Imipenem/farmacologia , Imipenem/uso terapêutico , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Infecções por Pseudomonas/tratamento farmacológico
8.
BMC Microbiol ; 23(1): 115, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095431

RESUMO

BACKGROUND: The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) attracted extensive attention. Information on CRKP from hospital wastewater (HWW) is limited. The aims of this study were to investigate the genomic characteristics and to evaluate the survivability characteristics of 11 CRKP from HWW in a Chinese teaching hospital in Fujian province. RESULTS: A total of 11 CRKP from HWW were recovered in this study. All CRKP from HWW were resistant to most antibiotics. Comparative genetic analysis demonstrated that all CRKP isolates were clustered into the three distinct phylogenetic clades and clade 2 and clade 3 were mixtures of samples collected from both HWW and clinical settings. Varieties of resistance genes, virulence genes and plasmid replicon types were detected in CRKP from HWW. In vitro transfer of blaKPC-2 was successful for 3 blaKPC-2-positive CRKP from HWW with high conjugation frequency. Our study demonstrated that the genetic environments of blaKPC-2 shared core structure with ISKpn27-blaKPC-2-ISKpn6. Group analysis showed that CRKP from HWW had a lower survivability in serum compared to clinical CRKP (p < 005); and CRKP from HWW had no significant difference in survivability in HWW compared to clinical CRKP (p > 005). CONCLUSIONS: We analyzed the genomic and survivability characteristics of CRKP from HWW in a Chinese teaching hospital. These genomes represent a significant addition of genomic data from the genus and could serve as a valuable resource for future genomic studies about CRKP from HWW.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Carbapenêmicos , Klebsiella pneumoniae/genética , Águas Residuárias , Filogenia , Infecções por Klebsiella/tratamento farmacológico , Antibacterianos/uso terapêutico , Genômica , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Hospitais de Ensino , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
9.
BMC Microbiol ; 23(1): 136, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202716

RESUMO

BACKGROUND: Carbapenem-resistant gram-negative bacilli (CR-GNB) have been increasingly reported in China. However, dynamic monitoring data on molecular epidemiology of CR-GNB are limited in pediatric patients. RESULTS: 300 CR-GNB isolates (200 Carbapenem-resistant K. pneumoniae (CRKP), 50 carbapenem-resistant A.baumannii (CRAB) and 50 carbapenem-resistant P. aeruginosa (CRPA)) were investigated. The predominant carbapenemase gene was blaNDM-1 (73%) and blaKPC-2 (65%) in neonates and non-neonates. Meanwhile, the predominant STs were ST11 (54%) in neonates and ST17 (27.0%) and ST278 (20.0%) in non-neonates. Notably, a shift in the dominant sequence type of CRKP infections from ST17 /ST278-NDM-1 to ST11-KPC-2 was observed during the years 2017-2021 and KPC-KP showed relatively higher resistance to aminoglycosides and quinolones than NDM-KP.BlaOXA-23 was isolated from all the CRAB isolates while only one isolate expressing blaBIC and 2 isolates expressing blaVIM-2 were found in CRPA isolates. ST195 (22.0%) and ST244 (24.0%) were the most common in CRAB and CRPA isolates and all the STs of CRAB belonged to CC92 while CRPA presents ST types with diversity distribution. CONCLUSION: CRKP showed different molecular phenotypes in neonates and non-neonates and was changing dynamically and high-risk clone of ST11 KPC-KP should be paid more attention. Most CRKP and CRAB strains shared the same CCs, suggesting that intrahospital transmission may occur, and large-scale screening and more effective measures are urgently needed.


Assuntos
Carbapenêmicos , beta-Lactamases , Carbapenêmicos/farmacologia , beta-Lactamases/genética , Antibacterianos/farmacologia , Epidemiologia Molecular , China/epidemiologia , Aminoglicosídeos , Bactérias Gram-Negativas/genética , Klebsiella pneumoniae/genética
10.
Int Microbiol ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857932

RESUMO

OBJECTIVES: To investigate the clinical characteristics and molecular epidemiology of CRKP infection in neonatal patients in a children's hospital in China from 2017 to 2021. METHODS: Species identification and antibiotic susceptibilities were tested with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and VITEK 2 systems. The clinical data were collected from medical records. Carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates were investigated by antimicrobial susceptibility testing, carbapenemase genes and multilocus sequence typing. RESULTS: Six kinds of resistant genes and 23 STs were detected. BlaNDM-1 (n=83, 55.3%) was the predominant carbapenemase gene, followed by blaKPC-2 (n=45, 30.0%), blaNDM-5 (n=7, 4.7%), blaIMP-38 (n=6, 4.0%). BlaNDM-1 was predominant in 2017 and 2018, whereas blaKPC-2 increased in 2019 and became the predominant gene from 2020 to 2021. ST11 accounted for most infections (n=35, 23.3%), followed by ST278 (n=23, 15.3%), ST17 (n=17, 11. 3%) and ST2735 (n=16, 10.7%). ST278 and ST17 were predominant in 2017 and 2018, whereas ST11 increased in 2019 and became the predominant sequence type from 2020 to 2021. Compared with blaNDM-1, the CRKP strains producing blaKPC-2 were characterized by high resistance to gentamicin, amikacin and levofloxacin and the change trend of drug resistance rate before and after COVID-19 was consistent with that of blaNDM-1 and blaKPC-2. CONCLUSIONS: The main sequence type of CRKP infection changed dynamically from ST278-NDM-1 to ST11-KPC-2 during the years 2017-2021 in the newborns. Antibiotic exposure and the prevalence of COVID-19 since 2020 may have led to changes in hospital population and lead to the changes.

11.
Appl Microbiol Biotechnol ; 107(24): 7531-7542, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37861819

RESUMO

The study examined the epidemiological characteristics of carbapenem-resistant Enterobacteriaceae (CRE) isolated from migratory birds and surroundings in Qinghai Lake, China. We identified 69 (15.7%) CRE isolates from a total of 439 samples including 29 (6.6%) blaNDM-5 Escherichia coli and 40 (9.1%) blaKPC-2 Klebsiella pneumoniae. WGS analysis indicated that ST746, ST48, ST1011, and ST167 were the primary sequence types (ST) for blaNDM-5 E. coli, while all blaKPC-2 K. pneumoniae were ST11 and harbored numerous antibiotic resistance gene types including blaCTX-M, qnrS, and rmtB. A phylogenetic tree based on core genomes revealed that blaNDM-5 E. coli was highly heterogeneous while the blaKPC-2 K. pneumoniae was highly genetically similar within the group and to human Chinese isolates. IncX3, IncHI2, and IncFIB-HI2 plasmid replicon types were associated with blaNDM-5 spread, while IncFII-R and IncFII plasmids mediated blaKPC-2 spread. We also identified IncFII-R hybrid plasmids most likely formed by IS26-mediated integration of IncFII into IncR plasmid backbones. This also facilitated the persistence of IncFII-R plasmids and antibiotic resistance genes including blaKPC-2. In addition, all of the blaKPC-2 K. pneumoniae isolates harbored a pLVKP-like virulence plasmid carrying a combination of two or more hypervirulence markers that included peg-344, iroB, iucA, rmpA, and rmpA2. This is the first description of ST11 K. pneumoniae that co-carried blaKPC-2- and pLVKP-like virulence plasmids from migratory birds. The blaKPC-2 K. pneumoniae carried by migratory birds displayed high genetic relatedness to human isolates highlighting a high risk of transmission of these K. pneumoniae. KEY POINTS: • Multidrug resistance plasmids (blaKPC-2, bla436NDM-5, bla CTX-M, qnrS, and rmtB). • Co-occurrence of plasmid-mediated resistance and virulence genes. • High similarity between migratory bird genomes and humans.


Assuntos
Enterobacteriaceae , Infecções por Klebsiella , Humanos , Enterobacteriaceae/genética , Escherichia coli/genética , beta-Lactamases/genética , Filogenia , Lagos , Klebsiella pneumoniae/genética , Plasmídeos/genética , Antibacterianos/farmacologia , Genômica , China , Infecções por Klebsiella/veterinária
12.
BMC Genomics ; 23(1): 20, 2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-34996351

RESUMO

BACKGROUND: Carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) causes serious infections with significant morbidity and mortality. However, the epidemiology and transmission mechanisms of CR-hvKP and the corresponding carbapenem-resistant plasmids require further investigation. Herein, we have characterized an ST11 K. pneumoniae strain EBSI041 from the blood sample encoding both hypervirulence and carbapenem resistance phenotypes from a patient in Egypt. RESULTS: K. pneumoniae strain EBSI041 showed multidrug-resistance phenotypes, where it was highly resistant to almost all tested antibiotics including carbapenems. And hypervirulence phenotypes of EBSI041 was confirmed by the model of Galleria mellonella infection. Whole-genome sequencing analysis showed that the hybrid plasmid pEBSI041-1 carried a set of virulence factors rmpA, rmpA2, iucABCD and iutA, and six resistance genes aph(3')-VI, armA, msr(E), mph(E), qnrS, and sul2. Besides, blaOXA-48 and blaSHV-12 were harboured in a novel conjugative IncL-type plasmid pEBSI041-2. The blaKPC-2-carrying plasmid pEBSI041-3, a non-conjugative plasmid lacking the conjugative transfer genes, could be transferred with the help of pEBSI041-2, and the two plasmids could fuse into a new plasmid during co-transfer. Moreover, the emergence of the p16HN-263_KPC-like plasmids is likely due to the integration of pEBSI041-3 and pEBSI041-4 via IS26-mediated rearrangement. CONCLUSION: To the best of our knowledge, this is the first report on the complete genome sequence of KPC-2- and OXA-48-coproducing hypervirulent K. pneumoniae from Egypt. These results give new insights into the adaptation and evolution of K. pneumoniae during nosocomial infections.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Egito , Humanos , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Plasmídeos/genética , beta-Lactamases/genética
13.
Emerg Infect Dis ; 28(8): 1578-1588, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35876475

RESUMO

Dissemination of carbapenemase-encoding plasmids by horizontal gene transfer in multidrug-resistant bacteria is the major driver of rising carbapenem-resistance, but the conjugative mechanics and evolution of clinically relevant plasmids are not yet clear. We performed whole-genome sequencing on 1,215 clinical Enterobacterales isolates collected in Singapore during 2010-2015. We identified 1,126 carbapenemase-encoding plasmids and discovered pKPC2 is becoming the dominant plasmid in Singapore, overtaking an earlier dominant plasmid, pNDM1. pKPC2 frequently conjugates with many Enterobacterales species, including hypervirulent Klebsiella pneumoniae, and maintains stability in vitro without selection pressure and minimal adaptive sequence changes. Furthermore, capsule and decreasing taxonomic relatedness between donor and recipient pairs are greater conjugation barriers for pNDM1 than pKPC2. The low fitness costs pKPC2 exerts in Enterobacterales species indicate previously undetected carriage selection in other ecological settings. The ease of conjugation and stability of pKPC2 in hypervirulent K. pneumoniae could fuel spread into the community.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos , Proteínas de Bactérias/genética , Humanos , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Plasmídeos/genética , Singapura/epidemiologia , beta-Lactamases/genética
14.
Antimicrob Agents Chemother ; 66(9): e0044722, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35980232

RESUMO

First variants of the Klebsiella pneumoniae carbapenemase (KPC), KPC-2 and KPC-3, have encountered a worldwide success, particularly in K. pneumoniae isolates. These beta-lactamases conferred resistance to most beta-lactams including carbapenems but remained susceptible to new beta-lactam/beta-lactamase inhibitors, such as ceftazidime-avibactam. After the marketing of ceftazidime-avibactam, numerous variants of KPC resistant to this association have been described among isolates recovered from clinical samples or derived from experimental studies. In KPC variants resistant to ceftazidime-avibactam, point mutations, insertions and/or deletions have been described in various hot spots. Deciphering the impact of these mutations is crucial, not only from a therapeutic point of view, but also to follow the evolution in time and space of KPC variants resistant to ceftazidime-avibactam. In this review, we describe the mutational landscape of the KPC beta-lactamase toward ceftazidime-avibactam resistance based on a multidisciplinary approach including epidemiology, microbiology, enzymology, and thermodynamics. We show that resistance is associated with three hot spots, with a high representation of insertions and deletions compared with other class A beta-lactamases. Moreover, extension of resistance to ceftazidime-avibactam is associated with a trade-off in the resistance to other beta-lactams and a decrease in enzyme stability. Nevertheless, the high natural stability of KPC could underlay the propensity of this enzyme to acquire in vivo mutations conferring resistance to ceftazidime-avibactam (CAZavi), particularly via insertions and deletions.


Assuntos
Compostos Azabicíclicos , Ceftazidima , Farmacorresistência Bacteriana Múltipla , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Combinação de Medicamentos , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética
15.
Appl Environ Microbiol ; 88(8): e0001922, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35380451

RESUMO

Klebsiella pneumoniae carbapenemase (KPC) producers are an emerging threat to global health, and the hospital water environment is considered an important reservoir of these life-threatening bacteria. We characterized plasmids of KPC-2-producing Citrobacter freundii and Klebsiella variicola isolates recovered from hospital sewage in Japan. Antimicrobial susceptibility testing, whole-genome sequencing analysis, bacterial conjugation, and transformation experiments were performed for both KPC-2 producers. The blaKPC-2 gene was located on the Tn3 transposon-related region from an IncP-6 replicon plasmid that could not be transferred via conjugation. Compared to the blaKPC-2-encoding plasmid of the C. freundii isolate, alignment analysis of plasmids with blaKPC-2 showed that the blaKPC-2-encoding plasmid of the K. variicola isolate was a novel IncP-6/IncF-like hybrid plasmid containing a 75,218-bp insertion sequence composed of IncF-like plasmid conjugative transfer proteins. Carbapenem-resistant transformants harboring blaKPC-2 were obtained for both isolates. However, no IncF-like insertion region was found in the K. variicola donor plasmid of the transformant, suggesting that this IncF-like region is not readily functional for plasmid conjugative transfer and is maintained depending on the host cells. The findings on the KPC-2 producers and novel genetic content emphasize the key role of hospital sewage as a potential reservoir of pathogens and its linked dissemination of blaKPC-2 through the hospital water environment. Our results indicate that continuous monitoring for environmental emergence of antimicrobial-resistant bacteria might be needed to control the spread of these infectious bacteria. Moreover, it will help elucidate both the evolution and transmission pathways of these bacteria harboring antimicrobial resistance. IMPORTANCE Antimicrobial resistance is a significant problem for global health, and the hospital environment has been recognized as a reservoir of antimicrobial resistance. Here, we provide insight into the genomic features of blaKPC-2-harboring isolates of Citrobacter freundii and Klebsiella variicola obtained from hospital sewage in Japan. The findings of carbapenem-resistant bacteria containing this novel genetic context emphasize that hospital sewage could act as a potential reservoir of pathogens and cause the subsequent spread of blaKPC-2 via horizontal gene transfer in the hospital water environment. This indicates that serial monitoring for environmental bacteria possessing antimicrobial resistance may help us control the spread of infection and also lead to elucidating the evolution and transmission pathways of these bacteria.


Assuntos
Citrobacter freundii , Esgotos , Antibacterianos , Carbapenêmicos , Citrobacter freundii/genética , Hospitais , Japão , Klebsiella , Plasmídeos/genética , Água
16.
Microb Pathog ; 168: 105593, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35595177

RESUMO

OBJECTIVES: To characterize nosocomial transmission and rearrangement of the resistance-virulence plasmid between two ST11-K64 carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) strains (JX-CR-hvKP-10 and JX-CR-hvKP-9) with low fitness. METHODS: Phenotypic tests were used to assess the virulence of JX-CR-hvKP-10 and JX-CR-hvKP-9. Whole-genome sequencing was used to analyze JX-CR-hvKP-10 and JX-CR-hvKP-9 chromosomes and plasmids. Fitness and conjugation experiments were also conducted using these two CR-hvKP isolates. RESULTS: Phenotypic tests indicated that both JX-CR-hvKP-10 and JX-CR-hvKP-9 were multidrug-resistant and hypervirulent K. pneumoniae. Whole-genome sequencing and clinical information demonstrated that the super large resistance-virulence fusion plasmid pJX10-1 formed precisely by the fusion of pJX9-1 and pJX9-2 via the nosocomial transmission. Interestingly pJX9-1 itself was also a classic resistance-virulence fusion plasmid by way of the blaKPC-carrying resistance plasmid and pLVPK-like virulence plasmid. Compared with classic K. pneumoniae ATCC700603, fitness analysis revealed no significant difference in growth was observed between JX-CR-hvKP-10 and JX-CR-hvKP-9. CONCLUSION: Nosocomial transmission and rearrangement of a blaKPC-harboring plasmid and a pLVPK-like virulence plasmid with a low fitness cost in ST11 K. pneumoniae enhances drug resistance and virulence simultaneously. Thus, active surveillance of this hybrid plasmid is needed to prevent these efficient resistance-virulence plasmids from disseminating in hospital settings.


Assuntos
Bacteriemia , Enterobacteriáceas Resistentes a Carbapenêmicos , Infecção Hospitalar , Infecções por Klebsiella , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Humanos , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae , Plasmídeos/genética , Virulência/genética , beta-Lactamases/genética
17.
Eur J Clin Microbiol Infect Dis ; 41(12): 1467-1472, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271303

RESUMO

Gram-negative bacteria containing three different carbapenemases are extremely rare. Klebsiella pneumoniae (N22-925) with KPC-2, NDM-1, and OXA-48 was obtained from a Canadian patient with recent hospitalization in Romania. Short and long read whole genome sequencing showed that the blaKPC-2 was situated on a 214 kb IncFIB(K)/IncFII(K) plasmid, the blaNDM-1 on a 104 kb IncFIB (pQil)/IncFII(K) plasmid, and the blaOXA-48 on a 64 kb IncL plasmid. These plasmids were conjugated to Escherichia coli J53. N22-925 belonged to a unique ST147 cluster that is likely endemic in Romania. This case emphasizes the need for rapid carbapenemase screening in patients from endemic regions. We described the first complete genome sequence of a K. pneumoniae isolate with three different carbapenemases, providing a reference for future studies on this rarely reported occurrence.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Canadá , beta-Lactamases/genética , Proteínas de Bactérias/genética , Plasmídeos/genética , Escherichia coli/genética , Infecções por Klebsiella/microbiologia
18.
J Appl Microbiol ; 133(3): 1434-1445, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35652720

RESUMO

AIMS: This study aimed to characterize the chromosome and plasmid sequences, and determine the transferability of plasmids in carbapenem-resistance Acinetobacter baumannii DD520 and Klebsiella pneumoniae DD521 isolates from the same patient who was co-infected in a hospital in China. METHODS AND RESULTS: Both isolates DD520 and DD521 exhibited multidrug resistance phenotype, especially the former isolate which was resistant to nine classes of antimicrobials including carbapenems, quinolones, penicillins, cephalosporins, tetracyclines, phenicols, fosfomycins, sulfanilamides and aminoglycosides. Carbapenem resistance genes of blaOXA-23 and blaOXA-66 were identified on the chromosome of A. baumannii DD520, and blaKPC-2 was found in the plasmid pDD521.2 from K. pneumoniae DD521. Phylogenetic analysis revealed that A. baumannii DD520 belonged to the ST540 clone, and K. pneumoniae DD521 belonged to the ST2237 clone. Plasmid analysis suggested that blaKPC-2 was embedded into plasmid pDD521.2, which might be resulted from IS26- and Tn1721-mediated transposition. Plasmid pDD521.2 carrying blaKPC-2 successfully transferred from K. pneumoniae DD521 into Escherichia coli C600, and carbapenems resistance also transferred in the conjugation. CONCLUSIONS: To our knowledge, it was the first report of A. baumannii ST540 and K. pneumoniae ST2237 in the same patient in China. Both these two isolates exhibited resistance to carbapenem, which was likely to have resulted from carbapenem-resistance genes blaOXA-23 -blaOXA-66 on the chromosome of A. baumannii ST540, and blaKPC-2 in the plasmid of K. pneumoniae ST2237. SIGNIFICANCE AND IMPACT OF THE STUDY: Our study highlighted that effective measures were urgent to prevent and control the co-infection caused by two or more carbapenem-resistance pathogens in the same patient.


Assuntos
Acinetobacter baumannii , Pneumonia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Carbapenêmicos/farmacologia , Humanos , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos/genética , beta-Lactamases/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-35195536

RESUMO

The study aimed to analyze antibiotic resistance determinants in a carbapenem-resistant Klebsiella pneumoniae by whole-genome sequencing (WGS). K. pneumoniae was isolated from a urine sample and it was characterized by 16S rDNA sequencing in Turkey. This strain was named as Kpn Rize-53-TR. Antimicrobial susceptibility testing was performed for seventeen antibiotics by VITEK-2 and the result was confirmed by MIC. The whole genome of isolate was sequenced by Illumina and was analysed by bioinformatic tools for MLST, replicon types, and antimicrobial resistance genes. The whole genome data was submitted to NCBI. The isolate was found to be resistant to all tested ß-lactam antibiotics and the highest MIC values were found for piperacillin, piperacillin/tazobactam (≥128). No resistance to colistin and moderate susceptibility to amikacin and tetracycline was observed. The isolate carried 12 resistance genes belonging to 10 resistance classes; ere(A), fosA, oqxB, cmlA1, aac(a)-IIa, bla KPC-2, bla TEM-1A, bla SHV-67, bla CTX-M-15, bla OXA-1-2-9. Mutations were detected in gyrA (83Y) and parC (80I) genes. Clonal subtype of the isolate was ST147, and it had wzi420 and wzc38 alleles. Its serotype was O3/O3a. The bla KPC-2 was firstly found in both ST147 clonal group in Turkey and in serotype O3/O3a in the world. By plasmid replicon typing, five plasmids IncFII(K), Col(BS512), IncR, IncFIA(HI1) and IncFIB(pQil) were determined in Kpn Rize-53-TR and bla KPC-2 was located on IncFII(K) plasmid. The presence of bla KPC-2 on the plasmid with other resistance genes accelerates its own spread together with other resistance genes.

20.
Clin Infect Dis ; 72(5): e158-e161, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33211115

RESUMO

The role of outpatient clinics as a potential transmission ground for multidrug-resistant organisms has not been adequately investigated. Here, we report a transmission cluster of blaKPC-2-positive Enterobacter cloacae among patients treated in a highly frequented outpatient department.


Assuntos
Enterobacter cloacae , Infecções por Enterobacteriaceae , Instituições de Assistência Ambulatorial , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Enterobacter cloacae/genética , Infecções por Enterobacteriaceae/epidemiologia , Humanos , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA