Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(9): e2305999, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37840400

RESUMO

An unprecedented correlation between the catalytic activity of a Zr-based UiO-type metal-organic framework (MOF) and its degree of interpenetration (DOI) is reported. The DOI of an MOF is hard to control owing to the high-energy penalty required to construct a partially interpenetrated structure. Surprisingly, strong interactions between building blocks (inter-ligand hydrogen bonding) facilitate the formation of partially interpenetrated structures under carefully regulated synthesis conditions. Moreover, catalytic conversion rates for cyanosilylation and Knoevenagel condensation reactions are found to be proportional to the DOI of the MOF. Among MOFs with DOIs in the 0-100% range, that with a DOI of 87% is the most catalytically active. Framework interpenetration is known to lower catalytic performance by impeding reactant diffusion. A higher effective reactant concentration due to tight inclusion in the interpenetrated region is possibly responsible for this inverted result.

2.
Chemistry ; 30(39): e202401243, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38711202

RESUMO

Axially chiral cycloalkylidenes are interesting but less developed axially chiral molecules. Here, a bispidine-based chiral amine catalytic system was developed to promote efficiently the asymmetric Knoevenagel condensation of N-protected oxindoles and benzofuranones with 4-substituted cyclohexanones. A variety of alkylidenecycloalkanes with stable axial chirality were obtained in good yields and fairly good er (enantiomeric ratio). Based on the absolute configuration determination of product and DFT calculations, a possible mechanism of stereoselective induction was proposed.

3.
Chemistry ; 30(39): e202400756, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38727558

RESUMO

Multimetallic synergistic effects have the potential to improve CO2 cycloesterification and Knoevenagel reaction processes, outperforming monometallic MOFs. The results demonstrate superior performance in these processes. To investigate this, we created and characterized a selection of single-component Ln(III)-MOFs (Ln=Eu, Tb, Gd, Dy, Ho) and high-entropy lanthanide-organic framework (HE-LnMOF) using solvent-thermal conditions. The experiments revealed that HE-LnMOF exhibited heightened catalytic efficiency in CO2 cycloesterification and Knoevenagel reactions compared to single-component Ln(III) MOFs. Moreover, the HE-LnMOF displayed significant stability, maintaining their structural integrity after five cycles while sustaining elevated conversion and selectivity rates. The feasible mechanisms of catalytic reactions were also discussed. HE-LnMOF possess multiple unsaturated metal centers, acting as Lewis acid sites, with oxygen atoms connecting the metal, and hydroxyl groups on the ligand serving as base sites. This study introduces a novel method for synthesizing HE-LnMOF and presents a fresh application of HE-LnMOF for converting CO2.

4.
Bioorg Med Chem Lett ; 109: 129853, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38909705

RESUMO

Overexpression of Bcl-2 protein is a predominant hallmark of disturbed apoptotic pathway in most of the cancers. Herein, chromone-linked thiazolidinediones were designed and synthesized to target Bcl-2 for regulating anti-apoptotic proteins. The study on in vitro cancer cell lines revealed the presence of compounds 8a, 8k, 8l, and 8n, which were found to have good to moderate anti-proliferative activity (with an IC50 concentration less than 10 µM). Among them, 8l depicted the highest cytotoxicity on the A549 cell line with an IC50 of 6.1 ± 0.02 µM. Aberrantly, the compounds displayed less toxicity towards human embryonic kidney HEK cells underlining its selectivity. The DCFDA study revealed a gradual increase in the ROS generation of 8l, followed by its quantification by flow analysis. Similarly, the studies including DAPI, AO/EtBr and Annexin-V binding clearly elucidated the DNA damage, membrane integrity prospects, and insights for early and late apoptotic phases. Markedly, the Bcl-2-FITC anti-body study revealed that compound 8l reduced the expression of anti-apoptotic proteins by 79.1 % compared to the control at 9 µM concentration. In addition, the molecular docking study provided the impending scope of these hybrids, showing promising interaction with the Mcl-1 target (member of the Bcl-2 family) with comparable binding affinities.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Cromonas , Ensaios de Seleção de Medicamentos Antitumorais , Tiazolidinedionas , Humanos , Apoptose/efeitos dos fármacos , Cromonas/farmacologia , Cromonas/química , Cromonas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Tiazolidinedionas/farmacologia , Tiazolidinedionas/química , Tiazolidinedionas/síntese química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Células HEK293 , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linhagem Celular Tumoral
5.
Mol Divers ; 28(1): 171-182, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37335464

RESUMO

A efficient protocol has been developed for the synthesis of regioselective imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrimidine derivatives through cascade reaction between 2-aminopyridine, arylelglyoxal, and 4-hydroxypyran via three-component reaction to prepare targeted compounds with good to excellent yields. The advantages of this transformation are a catalyst-free reaction, green solvent, operationally simple, scalable, and eco-friendly. The product collects with simple filtration which avoided tedious and expensive purification techniques. In addition, computational studies like molecular docking were conducted to provide the theoretical possibilities of binding these types of synthesized compounds to the VEGFR2 receptors as potential key inhibitors of tumor cell growth and angiogenesis.


Assuntos
Piridinas , Simulação de Acoplamento Molecular , Piridinas/química , Solventes , Catálise
6.
Mol Divers ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951417

RESUMO

Four new series of curcumin derivatives bearing NO-donating moiety were synthesized via etherification, nucleophilic substitution, and Knoevenagel condensation etc. The cytotoxicity activity of curcumin derivatives against five human tumor cell lines (A549, Hela, HepG2, MCF-7 and HT-29) and two normal cell lines (LO-2 and HK-2) has been studied. The results showed that compound 6a could inhibit the proliferation of MCF-7 cells remarkably and exhibit low toxicity to normal cells. Also, the underlying mechanism in vitro of compound 6a on MCF-7 was investigated. It has been found that compound 6a induced G2/M arrest and apoptosis of MCF-7 in a dose-dependent manner. Compound 6a-induced the fluorescence changes of ROS in MCF-7 cells confirmed the occurrence of apoptosis. Western Blot suggested that compound 6a decreased the expression of PI3K, as well as increased the expression of p53, cleaved caspase-9 and cleaved caspase-3. Furthermore, molecular docking revealed that compound 6a could bind well at active site of PI3K (3zim) with total score 9.59. Together, compound 6a, a potential PI3K inhibitor, may inhibit the survival of MCF-7 cells via interfering with PI3K/Akt/p53 pathway.

7.
Mol Divers ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141206

RESUMO

In order to achieve the high adsorption and catalytic performance of CO2, the direct self-assembly of robust defect-engineered MOFs is a scarcely reported and challenging proposition. Herein, a highly robust nanoporous indium(III)-organic framework of {[In2(CPPDA)(H2O)3](NO3)·2DMF·3H2O}n (NUC-107) consisting of two kinds of inorganic units of chain-shaped [In(COO)2(H2O)]n and watery binuclear [In2(COO)4(H2O)8] was generated by regulating the growth environment. It is worth mentioning that [In2(COO)4(H2O)8] is very rare in terms of its richer associated water molecules, implying that defect-enriched metal ions in the activated host framework can serve as strong Lewis acid. Compared to reported skeleton of [In4(CPPDA)2(µ3-OH)2(DMF)(H2O)2]n (NUC-66) with tetranuclear clusters of [In4(µ3-OH)2(COO)10(DMF)(H2O)2] as nodes, the void volume of NUC-107 (50.7%) is slightly lower than the one of NUC-66 (52.8%). However, each In3+ ion in NUC-107 has an average of 1.5 coordinated small molecules (H2O), which far exceeds the average of 0.75 in NUC-66 (H2O and DMF). After thermal activation, NUC-107a characterizes the merits of unsaturated In3+ sites, free pyridine moieties, solvent-free nanochannels (10.2 × 15.7 Å2). Adsorption tests prove that the host framework of NUC-107a has a higher CO2 adsorption (113.2 cm3/g at 273 K and 64.8 cm3/g at 298 K) than NUC-66 (91.2 cm3/g at 273 K and 53.0 cm3/g at 298 K). Catalytic experiments confirmed that activated NUC-107a with the aid of n-Bu4NBr was capable of efficiently catalyzing the cycloaddition of CO2 with epoxides into corresponding cyclic carbonates under the mild conditions. Under the similar conditions of 0.10 mol% MOFs, 0.5 mol% n-Bu4NBr, 0.5 MP CO2, 60 °C and 3 h, compared with NUC-66a, the conversion of SO to SC catalyzed by NUC-107a increased by 21%. Hence, this work offers a valuable perspective that the in situ creation of robust defect-engineered MOFs can be realized by regulating the growth environment.

8.
Chem Pharm Bull (Tokyo) ; 72(2): 143-148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296555

RESUMO

DNA-encoded libraries (DELs) are attracting attention as a screening tool in the early stages of drug discovery. In the development of DELs, drug candidate compounds are chemically synthesized on barcode DNA. Therefore, it is important to perform the synthesis under mild conditions so as to not damage the DNA. On the other hand, coumarins are gaining increasing research focus not only because they possess excellent fluorescence properties, but also because many medicines contain a coumarin skeleton. Among the various reactions developed for the synthesis of coumarins thus far, Knoevenagel condensation followed by intramolecular cyclization under mild conditions can yield coumarins. In this study, we developed a new synthetic method for preparing a coumarin-conjugated oligonucleotide library via Knoevenagel condensation. The results showed that coumarins substituted at the 5-, 6-, 7-, or 8-positions could be constructed on DNA to afford a total of 26 coumarin-conjugated DNAs. Moreover, this method was compatible with enzymatic ligation, demonstrating its utility in DEL synthesis. The developed strategy for the construction of coumarin scaffolds based on Knoevenagel condensation may contribute to the use of DELs in drug discovery and medicinal chemistry.


Assuntos
Cumarínicos , Oligonucleotídeos , Cumarínicos/química , DNA/química , Ciclização
9.
Sensors (Basel) ; 24(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38475060

RESUMO

Rhodanine-3-acetic acid derivatives are attractive compounds with versatile effects. What is very important is that compounds of this type have many biological properties. They are tested, among others, as fluorescent probes for bioimaging and aldose reductase inhibitors. Rhodanine-3-acetic acid derivatives also have antibacterial, antifungal and anticancer activity. The presented work demonstrates that a slight change in the five-membered heterocyclic substituent significantly affects the properties of the compounds under consideration. Three rhodanine-3-acetic acid derivatives (A-1-A-3) were obtained in the Knoevenagel condensation reaction with good yields, ranging from 54% to 71%. High thermal stability of the tested compounds was also demonstrated above 240 °C. The absorption and emission maxima in polar and non-polar solvents were determined. Then, the possibility of using the considered derivatives for fluorescence bioimaging was checked. Compounds A-1 and A-2 were successfully used as fluorescent dyes of fixed cells of mammalian origin. In addition, biological activity tests against bacteria and fungi were carried out. Our results showed that A-1 and A-2 showed the most excellent antimicrobial activity among the newly synthesized compounds, especially against Gram-positive bacteria.


Assuntos
Ácido Acético , Rodanina , Animais , Ácido Acético/química , Rodanina/química , Rodanina/farmacologia , Antibacterianos/farmacologia , Inibidores Enzimáticos , Fungos , Testes de Sensibilidade Microbiana , Mamíferos
10.
Molecules ; 29(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38543004

RESUMO

Chain elongation of unprotected carbohydrates in water under mild conditions remains a challenge both in chemical and biochemical synthesis. The Knoevenagel addition or condensation enables transformations to bioactive scaffolds for pharmaceutical and agrochemical compounds. Unfortunately, the catalysts in use for these transformations often reduce the green metrics of the transformations. Here, we use in situ NMR visualizations to explore the prospective use of natural catalysts for the synthesis of triple- and quadruple-functionalized furan- or dihydrofuran-derivatives from glucose and malononitrile. The dihydrofuran derivatives are formed as kinetic, major intermediates in the pathway to furan derivatives when using naturally abundant MgO or bio-sourced chitosan and N-Methyl-d-glucamine (meglumine) as the catalysts in water. Both catalyst loading, solvent composition and pH can be adapted to populate dihydrofurans with four substituents by slowing down their further reactions. Higher temperatures and higher pH values favor the formation of triple-functionalized furans over quadruple-substituted dihydrofurans, which may be bicyclic or monocyclic. Compared to more traditional catalysts, nature-sourced options offer more sustainable options that emulate natural processes. Visualization with in situ NMR contributes to streamlining the development of cheap and environmentally benign procedures for carbohydrate chain elongation.

11.
Angew Chem Int Ed Engl ; 63(20): e202403005, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38382043

RESUMO

Giant molecular acceptors (GMAs) are typically designed through the conjugated linking of individual small molecule acceptors (SMAs). This design imparts an extended molecular size, elevating the glass transition temperature (Tg) relative to their SMA counterparts. Consequently, it effectively suppresses the thermodynamic relaxation of the acceptor component when blended with polymer donors to construct stable polymer solar cells (PSCs). Despite their merits, the optimization of their chemical structure for further enhancing of device performance remains challenge. Different from previous reports utilizing p-type linkers, here, we explore an n-type linker, specifically the benzothiadiazole unit, to dimerize the SMA units via a click-like Knoevenagel condensation, affording BT-DL. In comparison with B-DL with a benzene linkage, BT-DL exhibits significantly stronger intramolecular super-exchange coupling, a desirable property for the acceptor component. Furthermore, BT-DL demonstrates a higher film absorption coefficient, redshifted absorption, larger crystalline coherence, and higher electron mobility. These inherent advantages of BT-DL translate into a higher power conversion efficiency of 18.49 % in PSCs, a substantial improvement over the 9.17 % efficiency observed in corresponding devices with B-DL as the acceptor. Notably, the BT-DL based device exhibits exceptional stability, retaining over 90 % of its initial efficiency even after enduring 1000 hours of thermal stress at 90 °C. This work provides a cost-effective approach to the synthesis of n-type linker-dimerized GMAs, and highlight their potential advantage in enhancing intramolecular coupling for more efficient and durable photovoltaic technologies.

12.
Luminescence ; 38(5): 527-535, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36905083

RESUMO

Novel push-pull fluorescent molecules based on dicyanodihydrofuran that had marked molar extinction coefficients were created and described. The fluorophores were synthesized using the Knoevenagel condensation in arid pyridine at room temperature and acetic acid as a catalytic agent. In addition, a condensation reaction was performed for the activated methyl-containing dicyanodihydrofuran with a 3° amine-containing aromatic aldehyde. The molecular structures for the synthesized fluorophores were determined using various spectral techniques such as 1 H or 13 C nuclear magnetic resonance (NMR), Fourier transform infrared (FT-IR) spectroscopy, and C, H, N analysis. Ultraviolet-visible (UV-vis) absorption and emission spectra of the prepared fluorophores revealed a high extinction coefficient, which was monitored to be affected by the type of the aryl (phenyl and thiophene)-vinyl bridge in conjugation with the 3° amine donor moiety. The substituents bonded to the tertiary amine, aryl, and alkyl groups, were found to affect the maximum absorbance wavelength. In addition, the synthesized dicyanodihydrofuran analogues were investigated to determine their antimicrobial effectiveness. Derivatives 2b, 4a, and 4b showed reasonable activity towards Gram-positive(+ve) bacteria rather than Gram-negative(-ve) bacteria relative to an amoxicillin drug reference. In addition, a molecular docking stimulation was performed to explore the binding interactions (PDB code: 1LNZ).


Assuntos
Antibacterianos , Corantes Fluorescentes , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Antibacterianos/química , Corantes Fluorescentes/farmacologia , Corantes Fluorescentes/química , Estrutura Molecular
13.
Sci Technol Adv Mater ; 24(1): 2188879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007670

RESUMO

Carbon nitrides, a distinguished class of metal-free catalytic materials, have presented a good potential for chemical transformations and are expected to become prominent materials for organocatalysis. This is largely possible due to their low cost, exceptional thermal and chemical stability, non-toxicity, ease of functionalization, porosity development, etc. Especially, the carbon nitrides with increased porosity and nitrogen contents are more versatile than their bulk counterparts for catalysis. These N-rich carbon nitrides are discussed in the earlier parts of the review. Later, the review highlights the role of such carbon nitride materials for the various organic catalytic reactions including Knoevenagel condensation, oxidation, hydrogenation, esterification, transesterification, cycloaddition, and hydrolysis. The recently emerging concepts in carbon nitride-based organocatalysis have been given special attention. In each of the sections, the structure-property relationship of the materials was discussed and related to their catalysis action. Relevant comparisons with other catalytic materials are also discussed to realize their real potential value. The perspective, challenges, and future directions are also discussed. The overall objective of this review is to provide up-to-date information on new developments in carbon nitride-based organic catalysis reactions that could see them rising as prominent catalytic materials in the future.

14.
Molecules ; 28(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38005197

RESUMO

A pyridine-tricarboxylic acid, 5-(3',5'-dicarboxylphenyl)nicotinic acid (H3dpna), was employed as a adjustable block to assemble a series of coordination polymers under hydrothermal conditions. The seven new coordination polymers were formulated as [Co(µ3-Hdpna)(µ-dpey)]n·nH2O (1), [Zn4.5(µ6-dpna)3(phen)3]n (2), [Co1.5(µ6-dpna)(2,2'-bipy)]n (3), [Zn1.5(µ6-dpna)(2,2'-bipy)]n (4), [Co3(µ3-dpna)2(4,4'-bipy)2(H2O)8]n·2nH2O (5),[Co(bpb)2(H2O)4]n[Co2(µ3-dpna)2(H2O)4]n·3nH2O (6), and [Mn1.5(µ6-dpna)(µ-dpea)]n (7), wherein 1,2-di(4-pyridyl)ethylene (dpey), 1,10-phenanthroline (phen), 2,2'-bipyridine(2,2'-bipy),4,4'-bipyridine(4,4'-bipy),1,4-bis(pyrid-4-yl)benzene (bpb), and 1,2-di(4-pyridyl)ethane (dpea) were employed as auxiliary ligands. The structural variation of polymers 1-7 spans the range from a 2D sheet (1-4, 6, and 7) to a 3D metal-organic framework (MOF, 5). Polymers 1-7 were investigated as heterogeneous catalysts in the Knoevenagel condensation reaction, leading to high condensation product yields (up to 100%) under optimized conditions. Various reaction conditions, substrate scope, and catalyst recycling were also researched. This work broadens the application of H3dpna as a versatile tricarboxylate block for the fabrication of functional coordination polymers.

15.
Molecules ; 29(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38202770

RESUMO

Quinoid single molecules are regarded as promising materials for electronic applications due to their tunable chemical structure-driven properties. A series of three single bio-inspired quinoid materials containing para-azaquinodimethane (p-AQM) moiety were designed, synthesized and characterized. AQM1, AQM2 and AQM3, prepared using aldehydes derived from almonds, corncobs and cinnamon, respectively, were studied as promising quinoid materials for optoelectronic applications. The significance of facile synthetic procedures is highlighted through a straightforward two-step synthesis, using Knoevenagel condensation. The synthesized molecules showed molar extinction coefficients of 22,000, 32,000 and 61,000 L mol-1 cm-1, respectively, for AQM1, AQM2 and AQM3. The HOMO-LUMO energy gaps were calculated experimentally, theoretically showing the same trends: AQM3 < AQM2 < AQM1. The role of the aryl substituent was studied and showed an impact on the electronic properties. DFT calculations show planar structures with quinoidal bond length alternation, in agreement with the experimental results. Finally, these bio-based materials showed high thermal stabilities between 290 °C and 340 °C and a glassy behavior after the first heating-cooling scan. These results highlight these bio-based single molecules as potential candidates for electronic or biomedical applications.

16.
Angew Chem Int Ed Engl ; 62(35): e202306303, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37322862

RESUMO

The operational stability of polymer solar cells is a critical concern with respect to the thermodynamic relaxation of acceptor-donor-acceptor (A-D-A) or A-DA'D-A structured small-molecule acceptors (SMAs) within their blends with polymer donors. Giant molecule acceptors (GMAs) bearing SMAs as subunits offer a solution to this issue, while their classical synthesis via the Stille coupling suffers from low reaction efficiency and difficulty in obtaining mono-brominated SMA, rendering the approach impractical for their large-scale and low-cost preparation. In this study, we present a simple and cost-effective solution to this challenge through Lewis acid-catalyzed Knoevenagel condensation with boron trifluoride etherate (BF3 ⋅ OEt2 ) as catalyst. We demonstrated that the coupling of the monoaldehyde-terminated A-D-CHO unit and the methylene-based A-link-A (or its silyl enol ether counterpart) substrates can be quantitatively achieved within 30 minutes in the presence of acetic anhydride, affording a variety of GMAs connected via the flexible and conjugated linkers. The photophysical properties was fully studied, yielding a high device efficiency of over 18 %. Our findings offer a promising alternative for the modular synthesis of GMAs with high yields, easier work up, and the widespread application of such methodology will undoubtedly accelerate the progress of stable polymer solar cells.

17.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077085

RESUMO

The synthesis of alkyl 2-(4-hydroxyquinolin-2-yl) acetates and 1-phenyl-4-(phenylamino)pyridine-2,6(1H,3H)-dione was optimised. Starting from 4-hydroxyquinolines (4HQs), aminomethylation was carried out via the modified Mannich reaction (mMr) applying formaldehyde and piperidine, but a second paraformaldehyde molecule was incorporated into the Mannich product. The reaction also afforded the formation of bisquinoline derivatives. A new 1H-azeto [1,2-a]quinoline derivative was synthesised in two different ways; namely starting from the aminomethylated product or from the ester-hydrolysed 4HQ. When the aldehyde component was replaced with aromatic aldehydes, Knoevenagel condensation took place affording the formation of the corresponding benzylidene derivatives, with the concomitant generation of bisquinolines. The reactivity of salicylaldehyde and hydroxynaphthaldehydes was tested; under these conditions, partially saturated lactones were formed through spontaneous ring closure. The activity of the derivatives was assessed using doxorubicin-sensitive and -resistant colon adenocarcinoma cell lines and normal human fibroblasts. Some derivatives possessed selective toxicity towards resistant cancer cells compared to doxorubicin-sensitive cancer cells and normal fibroblasts. Cytotoxic activity of the benzylidene derivatives and the corresponding Hammett-Brown substituent were correlated.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Hidroxiquinolinas , Antineoplásicos/farmacologia , Compostos de Benzilideno , Citotoxinas , Doxorrubicina/farmacologia , Humanos
18.
Molecules ; 27(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080425

RESUMO

A concept of piezo-responsive hydrogen-bonded π-π-stacked organic frameworks made from Knoevenagel-condensed vanillin-barbiturate conjugates was proposed. Replacement of the substituent at the ether oxygen atom of the vanillin moiety from methyl (compound 3a) to ethyl (compound 3b) changed the appearance of the products from rigid rods to porous structures according to optical microscopy and scanning electron microscopy (SEM), and led to a decrease in the degree of crystallinity of corresponding powders according to X-ray diffractometry (XRD). Quantum chemical calculations of possible dimer models of vanillin-barbiturate conjugates using density functional theory (DFT) revealed that π-π stacking between aryl rings of the vanillin moiety stabilized the dimer to a greater extent than hydrogen bonding between carbonyl oxygen atoms and amide hydrogen atoms. According to piezoresponse force microscopy (PFM), there was a notable decrease in the vertical piezo-coefficient upon transition from rigid rods of compound 3a to irregular-shaped aggregates of compound 3b (average values of d33 coefficient corresponded to 2.74 ± 0.54 pm/V and 0.57 ± 0.11 pm/V), which is comparable to that of lithium niobate (d33 coefficient was 7 pm/V).


Assuntos
Barbitúricos , Oxigênio , Barbitúricos/química , Benzaldeídos , Hidrogênio , Ligação de Hidrogênio , Modelos Moleculares
19.
Molecules ; 27(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36014539

RESUMO

Two novel synthetic approaches for synthesizing (E)-3-(1,3-diarylallylidene)oxindoles from oxindole were developed. All previously reported methods for synthesizing 3-(1,3-diarylallylidene)oxindoles utilized palladium-catalyzed reactions as a key step to form this unique skeleton. Despite high efficiency, palladium-catalyzed reactions have limitations in terms of substrate scope. Especially, an iodoaryl moiety cannot be introduced by the previous methods due to its high reactivity toward the palladium catalyst. Our Knoevenagel/allylic oxidation/Wittig and Knoevenagel/aldol/dehydration strategies complement each other and show broad substrate scope, including substrates with iodoaryl groups. The current methods utilized acetophenones, benzylidene phosphonium ylides, and benzaldehydes that are commercially available or easily accessible. Thus, the current synthetic approaches to (E)-3-(1,3-diarylallyldiene)oxindoles are readily amendable for variety of oxindole derivatives.


Assuntos
Indóis , Paládio , Catálise , Oxindóis
20.
Angew Chem Int Ed Engl ; 61(44): e202210447, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36099563

RESUMO

Knoevenagel condensation is a powerful tool for the construction of vinylene-linked covalent organic frameworks. Herein, we established a concise approach to vinylene-linked COFs by Knoevenagel condensation at the multi-methyl groups of a pyridine ring through in situ formation of an N-acyl pyridinium cation in the presence of various acylating reagents. Following this strategy, two vinylene-linked COFs were constructed using 2,4,6-trimethylpyridine and multi-aldehyde-substituted aromatic derivatives as monomers. The resultant COFs are highly crystalline and assembled into hexagonal lattices with specific surface areas as large as 1915 m2 g-1 (vs. 1972 m2 g-1 of the theoretical value). The stable and abundant pyridine-decorated regular nanochannels within the COFs allow for catalyzing the esterification of several pharmaceutical intermediates with distinct spatially confined selectivity and recyclability, representing an environmentally friendly catalytic organic transformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA